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Abstract: - In smart meter technology, the reliability of Backplane to Bezel (BTB) Liquid Crystal Displays (LCDs) is crucial for 

efficient functioning within intelligent grid systems. Defects in these LCD screens can significantly impact overall smart meter 
performance, necessitating effective detection methods for proper management and utilization. Current detection approaches, which 

combine manual and automatic methods based on machine vision, have shown unsatisfactory performance. This research addresses 

this challenge by proposing a novel method for advanced fault detection in BTB LCDs of smart meters, Automatic Testing 
Technology of BTB Liquid Crystal Display Advanced Fault Detection in Smart Meter for smart machine (BTB-LCD-FD- 

MCDSGAN) is proposed. The study begins by collecting datasets specifically tailored for LCD screen localization and defect 

detection. To enhance data quality, a Window Adaptive Extended Kalman Filter (WAEKF) is applied during preprocessing for noise 
removal. Feature extraction follows, utilizing Parameterized Multi Synchrosqueezing Transforms (PMST) with a primary focus on 

Gray Level Co-occurrence Matrix features. These extracted features serve as input for classification by a Multimodal Contrastive 

Domain Sharing Generative Adversarial Network (MCDSGAN), categorizing defects into five types likes normal display, no 

display, abnormal display, liquid crystal rupture, and incomplete display. Furthermore, the proposed method optimizes the 

MCDSGAN weight parameter using the Red Fox Optimization Algorithm (RFOA) to achieve accurate LCD fault defect prediction. 
The entire approach is implemented in Python, performance metrics likes accuracy, precision, recall, F-score, computational time 

are thoroughly analyzed. Performance of proposed BTB-LCD-FD-MCDSGAN approach attains 20.89%, 33.67% and 25.98% high 

accuracy, and 17.98%, 23.78% and 33.45% higher recall compared with existing methods such as automatic detection of display 
defects for smart meters depend on deep learning (AD-AM-DL), deep learning-enabled image content-adaptive field sequential 

color LCDs by mini-LED backlight (DL-AFSC-LCD) and new multi category defect detection method depend on convolutional 

neural network technique for TFT-LCD panels (MDF-CNN-LCD), methods respectively. 

Keywords: Liquid Crystal Displays, Smart Meter, Red Fox Optimization Algorithm, Parameterized Multi 

Synchrosqueezing Transforms, Multimodal Contrastive Domain Sharing Generative Adversarial Network. 

 

 

I. INTRODUCTION 

The identification of defects in LCD screens is a crucial aspect of the quality certification process for smart 

meters throughout their life cycle [1]. Currently, manual methods are predominantly employed for detecting 

defects in LCD screens of smart meters. However, this approach becomes impractical due to the extensive use 

of smart meters in power grids. [2-4] have introduced the utilization of template matching methods for defect 

detection LCD screens of smart meters [5]. While this method demonstrates satisfactory results by detecting 

defects in input images comprising only LCD screen area, it exhibits poor robustness and becomes ineffective 

when the size of the LCD screen in smart meters deviates from that of the template. Additionally, accurately 

identifying and positioning the LCD screen within natural scenes poses a significant challenge [6]. 

Presently, research focused on localizing LCD screens in smart meters primarily relies on methods such as 

LSD (Line Segment Detector) [7], [8] or Hough Transform [9]. While these approaches demonstrate 

satisfactory accuracy in localizing LCD screens with a complete appearance, challenges arise when the target 

screen exhibits cracks. In such cases, the identification accuracy of the model may be compromised. 

Additionally, difficulties arise when the input image contains numerous linear edge features, making 

challenging to automatically filter LCD screen's edge using LSD or Hough Transform methods. Currently, DL 

methods demonstrated remarkable success in realm of feature extraction, target finding, target recognition 

research [10]. Here, suggests employing DL method forlocalization of LCD screens, the detection of defects in 

smart meters. Through extraction of features from input images of smart meters, the deep learning model is 

capable of pinpointing and identifying defects LCD screens of smart meters with varying sizes. Itimproves 

method's robustness, diminishes impact of external environmental factors on its performance. 
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The main contribution of this paper is, 

• By collecting datasets specifically designed for LCD screen localization and defect detection, 

ensuring that the data is representative of real-world scenarios. 

• The Window Adaptive Extended Kalman Filter (WAEKF) is employed during preprocessing to 

enhance data quality by effectively removing noise from the collected datasets. 

• The use of Parameterized Multi Synchrosqueezing Transforms (PMST) for feature extraction, with 

a primary focus on GLCM features. These features capture important characteristics of the LCD 

screens, aiding in the identification of defects. 

• The proposed method utilizes a Multimodal Contrastive Domain Sharing Generative Adversarial 

Network (MCDSGAN) for defect classification. This approach allows for effective categorization 

of defects into five types likes normal display, abnormal display, no display, liquid crystal rupture, 

incomplete display. 

• It compares performance of proposed technique by existing approaches, demonstrating significant 

improvements. Specifically, the proposed approach achieves higher accuracy and recall compared 

to methods such as AD-AM-DL, DL-AFSC-LCD, and MDF-CNN-LCD. 

Remaining part of this paper is arranged below: section 2 defines related work, section 3 designates 

proposed methodology, section 4 proves outcome with discussion, section 5 designates conclusion. 

II. RELATED WORK 

Here we review the recent papers of Backplane to Bezel Liquid Crystal Display using deep learning as 

shown as below; 

Chen et al. [11] have introduced two-stage deep learning system that integrates YOLOv5 and ResNet34. 

YOLOv5 was employed for the localization of smart meter LCDs, while ResNet34 is utilized for classifying 

LCD faults. To facilitate model training and evaluation, two datasets were created: one for LCD screen 

localization and another for defect detection. The model demonstrates an impressive defect detection accuracy 

of 98.9% on dataset specifically designed, showcasing its ability to accurately identify common defects in LCD 

screens. It has high accuracy but has less precision. 

Zou et al. [12] have introduced deep learning for image classification enables precise identification of the 

optimal Field Sequential Color (FSC) algorithm, characterized by the lowest Color Break-Up (CBU). 

Furthermore, the algorithm exhibits heterogeneity, as it independently conducts image classification in each 

segment, ensuring the minimization of CBU across all segments. The validation process encompasses both 

objective and subjective assessments for comprehensive evaluation. It has low computational time but it has low 

accuracy. 

Ho et al. [13] have introduced a system for detecting the depth of rib marks on TFT-LCDs, comprising three 

key components likes hardware, system control, software. In hardware section, utilized line scan camera paired 

by telecentric coaxial lens for imaging. To enhance characteristic information, employed internal coaxial white 

light source in conjunction by white line light source. The system control aspect involved the use of Nvidia 

Xavier AGX. It has high precision and also has low accuracy. 

Chang et al. [14] have introduced multicategory classification method employing CNN for automating 

optical inspection (AOI) in the identification of defective pixels on TFT-LCD panels. In presence of a 

significant class imbalance, with non-defective pixels outnumbering defective ones, posed a substantial 

challenge. The study showcases efficacy, effectiveness of method using real panel images supplied with mobile 

manufacturer in Taiwan. It has high sensitivity and also has low f-score. 

Zhu et al. [15] have introduced a framework dedicated to robustly addressing module-level defects detection 

under complex scenarios. The presented framework was built upon the YOLOV3 detection unit and comprises 

key components such as preprocessing module, defects definition module, detection module, interferences 

elimination module. Notably, this work marks the first attempt at designing practical AOI scheme specifically 

tailored for module-level defects detection. To validate efficacy of suggested technique, extensive 

experimentations were conducted on manufacturing lines. Assessment of AOI system's detection presentation, 

when compared to a manual scheme, demonstrates the practicality of the system for accurately detecting 

module-level defects. It attains high f1-score and low precision. 

Torres et al. [16] have introduced collaborative project involving UFAM/CETELI, Envision, ICTS, present 

automated system for detecting mura defects on LCD displays. The system relies on histogram comparisons and 
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employs ML process known as RF. To assess effectiveness of technique, compare it with the widely used k-

Nearest Neighbors (kNN) method. It has high recall but also has low precision. 

III. PROPOSED METHODOLOGY 

This study introduces an Automatic Testing Technology for Liquid Crystal Display (LCD) Advanced Fault 

Detection in Smart Meters for Intelligent Grid Systems. The proposed approach, named BTB-LCD-FD- 

MCDSGAN, employs an optimized Multimodal Contrastive Domain Sharing Generative Adversarial Network. 

The process begins with the collection of datasets for LCD screen localization and defect detection. Noise 

removal is performed using a Window Adaptive Extended Kalman Filter (WAEKF) during preprocessing to 

improve data quality. Feature extraction utilizes Parameterized Multi Synchrosqueezing Transforms (PMST) 

with a focus on GLCM features. These extracted features are employed for classification with Multimodal 

Contrastive Domain Sharing Generative Adversarial Network (MCDSGAN) to categorize defects into five 

type’s likes normal display, abnormal display, no display, liquid crystal rupture, and incomplete display. The 

weight parameter of MCDSGAN is further optimized using the Red Fox optimization algorithm (RFOA) to 

enhance the accuracy of LCD fault defect prediction. The proposed methodology diagram is shown in Figure 1. 
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Figure 1: Proposed Methodology Diagram BTB-LCD-FD- MCDSGAN 

A. Preprocessing by Window Adaptive Extended Kalman Filter (WAEKF) 

The WAEKF [17] is a signal processing technique used for noise removal in preprocessing to improve the 

quality of data. It is an extension of traditional EKF that adapts to changing conditions within a specified 

window of data. The WAEKF is particularly effective when dealing with non-stationary signals or when the 

underlying dynamics of the system may vary over time. The mathematical representation of the WAEKF 

involves equations for prediction and update steps, similar to the EKF. 

Let’s denote the state vector as kx at time k , the measurement vector as kz , and the process and 

measurement models as (.)f  and (.)h respectively. 

The prediction step is given by in equation (1) and (2), 

)ˆ(ˆ
111 −−−

= kkkk xfx                  (1) 

k
T
kkkkkk

QFPFP +=
−−− 111                 (2) 
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where, 
1

ˆ
−kkx is the predicted state, 

1−kkP is the predicted covariance matrix, kF is the jacobian matrix of the 

process model, and kQ is the process noise covariance matrix. 

The update step involves using equation (3) (4) and (5), 
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Where, kK denotes kalman gain, kH signifies jacobian matrix of measurement model, kR denotes 

measurement noise covariance matrix. Then preprocess data fed in to Parameterized Multi Synchrosqueezing 

Transforms for feature extraction. 

B. Feature extraction by parameterized local maximum synchrosqueezing transforms (PLMST) 

In this section, the parameterized local maximum synchrosqueezing transform (PLMST) [18] for extracting 

GLCM textual features such as contrast, energy, entropy, homogeneity, and inverse different moments. The 

mathematical representation of PLMST for feature extraction is given below; 

The Parameterized local maximum synchrosqueezing transform (PLMST) has obtained a new TFA method 

with parameterizing STFT, local maximizing TF reassignment is given in the equation (6), 

 qggTgPLMSST m )),('(),,(),',( −= 
+

−
                                                                                (6) 

Where, )(T  denotes the time )(g  is a frequency and )(  is the block. For multi-component modes, all 

mono-component mode is decomposed, and TF coefficients in IF trajectories of PLMSST expression is 

followed in the equation (7). 
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GLCM features are discussed below 

Entropy is scale of disorder of a system. The value of entropy based on mass of system. Entropy have a 

positive/negative value. Allowing to second law of thermodynamics, entropy of one system decreases only if 

entropy of another system increases. 

( ) ( ) ( )( ) 
=

−−−−−=
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(8) 

where, uz − signifies spatial relationship of pixels, da − signifies intensity values , k denotes coordinates 

of points. Homogeneity refers to degree of uniformity among sampling units within a population. It is often 

perceived as indicating that the items in identical traits. It is image's comparison variation of co-occurrence 

matrix. It is given in equation (9). 
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here, xv− signifies element of co-occurrence matrix. Energy is ability or potential to perform work, 

exemplified by the capability to move an object through the application of force. It can take on various forms, 

including electrical, mechanical, chemical, thermal, or nuclear, and has the capacity for transformation from one 

form to another. Is sum of pixel point in image is given in equation (10) 
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where, x and v signifies variation in images, A denotes standard deviation of intensity. Contrast typically 

denotes the noticeable differences among two or more elements, objects, or concepts. The use of contrast is 

widespread in various contexts, including art, design, literature, and theoretical interest. It is scale of existence 

of variation in image pixels. It is given in equation (11) 
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where, v and x signifies variation in pixel, A denotes feature value. Then extracted features are then used 

for classification by MCDSGAN. 

C. Classification using Multimodal Contrastive Domain Sharing Generative Adversarial Networks 

In this section, the classification using MCDSGAN [19] is discussed. The features extracted using PMST 

and Gray Level Co-occurrence Matrix (GLCM) serve as input to the MCDSGAN. The generator component of 

the MCDSGAN may generate synthetic representations of the input features for each defect type. The 

discriminator component tries to classify between real and generated samples. It is trained to distinguish 

features associated with different defect types. The contrastive learning aspect helps the model learn to 

differentiate between features of different defect types. Positive pairs might be features belonging to the same 

defect type, and negative pairs might be features from different defect types. The entire MCDSGAN is trained 

in an adversarial manner, with the generator attempting to generate realistic defect features, and the 

discriminator learning to correctly classify real and generated features. The trained MCDSGAN is then used for 

classification. Given a set of features, the model predicts the defect type by considering the learned 

representations. The mathematical representation of MCDSGAN is given below; 

During the training process, weights of network are updated depend on combined error by training algorithm 

(i.e., back-propagation) and it is given in equation (12) 
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where, sim is defined as cosine similarity, yands  denotes non-linear boundaries, t signifies temperature 

parameter. It has been successful in LCD defect classification and image examination challenges. The 

multimodal contrastive loss is defined as follows equation (13) 
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 where 
+ and 

+ denotes set of each LCD similar pairs. We form batch by randomly sampling N pairs 

images   1, =pqp Nba .  qp ba , and qp ba  ,  are pairs of different edge boundary views of images. While candy 

edge generator, purposes to make realistic images and adversarial GAN loss LGAN given in equation (14)  
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Additionally, integrating GAN loss with loss is stated to beneficial for reducing blurring, features from 

paired images, comparable to Pix2Pix, L1-depend translation loss utilized to minimize differences among input, 

translation LCD images. Form equation (15) 

   1)(1)()( )()( abRKbaRKRL ybjdatabxajdataaT −+−=                                                      (15) 

Finally, reconstructive loss utilized to minimize distance among reconstructed breast image  (resp., B  ), 

input image A. Three networks had these metrics calculated, one of which was only trained on frontal 

thermograms formally in equation (16),    

   1)(1)()( )()( bbRKaaRKRL ybjdatabxajdataaR −+−=                                                                    (16) 

 Consequently, the complete loss of DSGANs is given in equation (17) 

),,()()(),,,,(),( tRLRLRLBADisDisRLDisDisRL CRTbaGANba  +++=                                      (17) 

where  ,  and  denotes coefficients of ),,(),(),( tRLRLRL cRT  used in classification. Finally, 

MCDSGAN classifies the defects as normal display, abnormal display, no display, liquid crystal rupture, 

incomplete display. Red Fox optimization process is used to enhance weight parameters of MCDSGAN for 

improved prediction accuracy. 
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1) Optimization using Red Fox optimization algorithm 

The weights parameter of MCDSGAN is optimized utilizing RFOA [20]. Here their behaviors were 

mathematically described as habits, searching food, and hunting, emerging population though escaping from 

hunters. Importantly territorial habits and then their relation between adult and young among the fox which help 

those to easily adaptable to various conditions so that they can survive in any changing environment. 

Step 1: Initialization.  

Initialize the populace of individuals that has a stable count of foxes. Each one is specified in equation (18), 

( )110 .......,, −= nyyyy                                            (18) 

To distinguish every fox in iteration, introduce ( )Ta
by . 

Where, a  = total fox, b = coordinate as per the dimensions of solution space.
ay = represents the iteration 

inT . 

Step 2: Fitness Function 

The new positions are generated by better individuals who stay on newly positions, else they return to prior 

location (which moves move toward the best location) in equation (19), 
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


TBestTa yyD ,,0  = represents the randomly chosen scaling hyper-parameter set once on 

iteration for each individuals. Then the fitness function is calculated by equation (20) 

)(  andonoptimizatictionfitnessfum =                                                       (20) 

Step3: Randomness Generation: 

The movement red fox is observed via radius, which is indicated through 2 parameters:𝑎∈⟨0, 0.2⟩ = is 

scaling parameter set once on iteration for every individuals to method stochastically varying distance from 

prey 0 ∈⟨0, 2𝜋⟩ = is chosen to every individuals in equation (21), 
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where, 𝜃=is taken as a random value amid 0 and 1. And it predetermined one algorithm at the start that 

interpreted as an impact of unfavorable weather stages like fog, rain. 

Step 4: Exploration Phase. 

Here, the model is being used during the exploration phase to take everyone's fitness into account. In the 

suggested approach, say that the ideal candidate has visited the fascinating locations in equation (22), 

( ) ( ) ( ) ( )TBestTaTBestTa yyyyD −=






 ,                                                       (22) 

where, ( )TBesty = estimate the square of Euclidean distance. 

Step 5: Termination 

The weight parameter value from MCDSGAN optimized by support of RFOA Algorithm, iteratively repeat 

the step 3 until halting conditions.  Then MCDSGAN classifies defective type into normal display, abnormal 

display, no display, liquid crystal rupture, incomplete display with higher accuracy. 

IV. RESULT WITH DISCUSSION 

Experimental outcomes of presented method are discussed. The BTB-LCD-FD- MCDSGAN approach is 

implemented in python using LCD defect detection dataset. The obtained outcome of the proposed BTB-LCD-

FD- MCDSGAN approach is analyzed with existing systems like AD-AM-DL, DL-AFSC-LCD and MDF-

CNN-LCD, methods respectively. 
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A. Performance Measures 

To measure performance metrics likes True Negative, True Positive, False Negative, False Positive values 

are needed. To measure performance metric, True Negative, True Positive, False Negative, False Positive 

samples are needed. 

• True Positives ( tp ): Instances correctly classified as a specific defect type. 

• False Positives ( fp ): Instances incorrectly classified as a specific defect type. 

• False Negatives ( fn ): Instances of a specific defect type incorrectly classified another class. 

• True Negatives ( tn ): Instances correctly classified not belonging to a specific defect type. 

1) Accuracy 

Accuracy measures overall correctness of method in predicting defect types, providing a general assessment 

of classification performance. It is given in equation (23), 

fnfptntp

tntp

+++

+
                                                         (23) 

2) Precision 

Precision indicates the accuracy of method specifically in identifying particular defect type, minimizing 

false positives. It is calculated by equation (24), 

fptp

tp

+
                                             (24) 

3) Recall  

Recall measures the model's ability to capture all instances of a specific defect type, minimizing false 

negatives. It is calculated by equation (25), 

fntp

tp

+
                                             (25) 

4) F-score  

It combines precision, recall, offering single metric balances trade-off among false positives and negatives. 

It is calculated by equation (26), 

callecision

callecision

RePr

RePr
2

+


                                            (26) 

5) Computational Time 

It defines time taken by method to execute defect classification on given dataset. 

B. Performance analysis 

Figure 2 to 6 portrays simulation outcomes of BTB-LCD-FD-MCDSGAN method.  Then, the proposed 

BTB-LCD-FD-MCDSGAN method is compared with existing AD-AM-DL, DL-AFSC-LCD and MDF-CNN-

LCD methods respectively. 

The comparison of accuracy between proposed, existing methods is presented in Figure 2. The performance 

of BTB-LCD-FD- MCDSGAN technique results in accuracy that are 20.76%, 35.97%, and 20.67% higher for 

the classification of normal display, 35.58%, 23.54% 48.83% higher for the classification of no display, 

30.76%, 18.43% and 20.89% higher for the classification of abnormal display, 20.76%, 35.97%, and 20.67% 

higher for classification of liquid crystal rapture and 20.76%, 35.97%, and 20.67% higher for the classification 

of incomplete display when evaluated to the existing AD-AM-DL, DL-AFSC-LCD and MDF-CNN-LCD 

methods respectively. 



J. Electrical Systems 20-3s (2024): 2372-2382 

2379 

 
Figure 2: Accuracy analysis 

The comparison of precision between proposed, existing methods is presented in Figure 3. The performance 

of BTB-LCD-FD- MCDSGAN technique results in precision that are 40.76%, 45.97%, and 20.64% higher for 

the classification of normal display, 25.58%, 23.54% 48.83% higher for the classification of abnormal display, 

30.76%, 18.43% and 20.89% higher for the classification of liquid crystal rapture and 20.76%, 35.97%, and 

20.67% higher for the classification of incomplete display when evaluated to the existing AD-AM-DL, DL-

AFSC-LCD and MDF-CNN-LCD methods respectively. 

The comparison of recall between proposed, existing methods is presented in Figure 4. The performance of 

BTB-LCD-FD- MCDSGAN technique results in recall that are 40.76%, and 40.64% higher for the 

classification of normal display, 35.58%, 33.54% 48.83% higher for the classification of abnormal display, 

20.66%, 18.43% and 20.89% higher for the classification of Cloud server compromise attack, 20.76%, 15.97%, 

and 23.67% higher for the classification of liquid crystal rapture and 25.76%, 35.97%, and 30.67% higher for 

classification of incomplete display when evaluated to the existing AD-AM-DL, DL-AFSC-LCD and MDF-

CNN-LCD methods respectively. 

 
Figure 3: Precision analysis 
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Figure 4: Recall analysis 

 
Figure 5: FI-score analysis 

The comparison of f-score between proposed, existing methods is displayed in Figure 5. The performance of 

BTB-LCD-FD-MCDSGAN technique results in f-score that are 40.76%, 30.67% and 40.64% higher for the 

classification of normal display, 35.58%, 33.54% 48.83% higher for the classification of no display, 20.66%, 

18.43% and 20.89% higher for the classification of abnormal display, 20.76%, 15.97%, and 23.67% higher for 

the classification of liquid crystal rupture and  25.76%, 35.97%, and 30.67% higher for classification of 

incomplete display when analyzed with existing AD-AM-DL, DL-AFSC-LCD and MDF-CNN-LCD methods 

respectively. 

Figure 6 shows computational time analysis. The BTB-LCD-FD- MCDSGAN is assessed to the AD-AM-

DL, DL-AFSC-LCD and MDF-CNN-LCD existing methods. The proposed ATT-LCD-FD-MCDSGAN method 

provides 5.34%, 10.11%, and 11.20 % lower computational time for classifying the attack detection with 

existing methods like AD-AM-DL, DL-AFSC-LCD and MDF-CNN-LCD, respectively. 
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Figure 6: Computational time analysis 

Discussion 

The proposed research, Automatic Testing Technology of BTB Liquid Crystal Display Advanced Fault 

Detection in Smart Meter for smart machine (BTB-LCD-FD-MCDSGAN), addresses a critical issue in smart 

meter technology – the reliable functioning of Backplane to Bezel (BTB) Liquid Crystal Displays (LCDs). The 

introduction of a novel fault detection method using a combination of advanced technologies demonstrates a 

significant advancement in improving the accuracy and efficiency of defect detection in smart meters. Let's 

delve into the key aspects and discuss the implications of this research. The research begins by collecting 

datasets specifically designed for LCD screen localization and defect detection, indicating a targeted approach 

for addressing the challenges in smart meter LCDs. The use of the Window Adaptive Extended Kalman Filter 

(WAEKF) during preprocessing for noise removal indicates a focus on enhancing data quality, which is crucial 

for accurate defect detection. Utilizing Parameterized Multi Synchrosqueezing Transforms (PMST) with a 

primary focus on Gray Level Co-occurrence Matrix (GLCM) features showcases a sophisticated feature 

extraction process for capturing relevant information. The Multimodal Contrastive Domain Sharing Generative 

Adversarial Network (MCDSGAN) is introduced for defect categorization, distinguishing between five types of 

defects. This reflects a multi-faceted approach to fault detection. The optimization of the MCDSGAN weight 

parameter using the Red Fox Optimization Algorithm (RFOA) highlights an effort to fine-tune the proposed 

method for achieving accurate defect prediction. Investigating the generalizability of the approach to various 

LCD technologies and smart meter models would contribute to the broader applicability of the proposed 

method. In summary, the research presents a comprehensive and advanced approach to BTB LCD fault 

detection in smart meters. The combination of preprocessing techniques, feature extraction methods, and the 

introduction of MCDSGAN and RFOA for optimization sets the research apart in addressing the challenges 

associated with LCD defects. Further validation and exploration of scalability and generalizability will be 

essential for establishing the broader impact of the proposed BTB-LCD-FD-MCDSGAN approach in the field 

of smart meter technology. 

V. CONCLUSION 

This study introduces an innovative approach, termed Automatic Testing Technology of BTB Liquid Crystal 

Display Advanced Fault Detection in Smart Meter for smart machine (BTB-LCD-FD-MCDSGAN). The 

proposed approach employs a series of advanced techniques, including Window Adaptive Extended Kalman 

Filter (WAEKF) for noise removal, Parameterized Multi Synchrosqueezing Transforms (PMST) for feature 

extraction, and Multimodal Contrastive Domain Sharing Generative Adversarial Network (MCDSGAN) for 

classification into defect types. The MCDSGAN weight parameter optimization is achieved through the Red 

Fox optimization algorithm (RFOA). Performance evaluation demonstrates the superiority of the proposed 

ATT-LCD-FD-MCDSGAN approach, achieving significant improvements in accuracy and recall compared to 

existing methods AD-AM-DL and DL-AFSC-LCD.  
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