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Abstract: - Virtual Reality (VR) technology has shown promise in simulating music scenes for emotion regulation. The challenge is 

to enhance the realism and interactivity of VR-based music experiences to create a more immersive and emotionally impactful 

environment for users. This manuscript proposes an augmented physics-informed neural network and seahorse optimization 

algorithm for music scene simulation and emotion regulation in virtual reality technology (APINN-SHO-MSS-ERVRT). Initially, 
the data is collected via head-mounted display (HMD) in real time basis. Afterward, the data is fed to data-adaptive Gaussian 

average filtering (DAGAF) based pre-processing process. In the pre-processing segment, it improves virtual presence. The pre-

processing output is given to augmented physics-informed neural network (APINN)and seahorse optimization algorithm (SHO) for 
effectively classifying the facial expression for fear and null. Therefore, SHO is proposed to enhance weight parameter of 

augmented physics-informed neural network classifier, which precisely classifies the facial emotion classifier. The proposed method 

is implemented in MATLAB and evaluated their performance with existing methods. The performance metrics, like accuracy, 
precision, sensitivity, specificity, computational time and ROC is analysed to the performance of the proposed method. The 

proposed APINN-SHO-MSS-ERVRT methods of accuracy are provide 90% higher accuracy for fear and 97% higher accuracy for 

null emotion is analysed when compared with existing methods GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI. Proposed 
APINN-SHO-MSS-ERVRT method attains 0.87%, 0.88% and 0.89%higher ROC analysed to the existing methods respectively. 

Keywords: Music, Emotion Regulation, Virtual Reality, Fear, Improved Adaptive Federated Kalman Filter, Facial 

Expression, Seahorse Optimizer. 

 

 

I. INTRODUCTION 

In the contemporary era, an increasing number of individuals find themselves grappling with elevated levels 

of stress. The prevalence of long-term depression is on the rise, contributing to a growing societal burden [1]. 

The tradition of music therapy in China dates back through generations, with Chinese ancestors acknowledging 

the interconnectedness of music, medicine, and healing [2]. Globally, the use of music as a means of emotional 

regulation is widespread [3].Music therapy involves an individual listening to various music genres under a 

music therapist's guidance [4]. The customization of therapeutic repertoires takes into account the treatment 

goals, the individual's physiological and psychological state, and the specific treatment environment [5]. 

Unfortunately, the accessibility of music therapists is constrained by cost and availability, leaving a significant 

number of individuals in need of emotional regulation without adequate support [6].An automated therapist 

could serve as a viable alternative, addressing the gap in available resources. Furthermore, listening to music at 

home has become a prevalent method for individuals to alleviate negative emotions [7]. 

Studies indicate that emotional reactions induced by music closely resemble spontaneous emotions in terms 

of quality. Music has the ability to produce distinct patterns of physiological changes, such as alterations in 

heart rate and blood pressure, corresponding to specific emotions [8]. The research specifically concentrated on 

male participants experiencing four emotions joy, anger, pleasure, and sadness and achieved an impressive 

average recognition accuracy of 87%, surpassing previous studies [9].While the exploration of music's 

evocative power in generating authentic emotional states is limited, Kim and André's work contributes to the 

growing body of evidence supporting the notion that music can genuinely elicit emotional responses [10]. In 

their research, Kim and André utilized musical induction as a method to elicit emotions, recording subjects' 

physiological signals during the exposure to various musical pieces [11].  
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Subjects were encouraged to select songs associated with special memories related to the target emotions, 

recognizing music's role in accompanying significant life events and its connection to personal memories 

[12].Moreover, the solitary nature of music listening minimizes the impact of social masking artifacts, and 

individuals' emotional responses to music can significantly vary based on their past experiences and cultural 

background [13]. Studies have demonstrated that an individual's emotional reactions to music are susceptible to 

influence by their musical preferences. 

Various studies reinforce the notion of music as a potent stimulus for evoking emotional responses, 

accompanied by discernible changes in the Autonomic Nervous System (ANS) [14]. Researchers have 

identified significant variations in physiological measures during music listening, including elements such as 

melody, rhythm, and continuity [15]. This aligns with Kim and André's findings and is corroborated by other 

research highlighting music's impact on ANS reactions [16].Notably, certain studies have delved into clinical 

and therapeutic contexts, uncovering the influence of music on ANS responses [17]. For instance, research has 

shown that music can trigger ANS reactions such as vascular constriction, heart rate fluctuations, muscle 

tension, and changes in skin temperature (SKT), even when subjects report reduced anxiety and increased 

relaxation [18]. The study revealed distinct associations between emotions and physiological changes; 

happiness manifested in significant alterations in respiration, sadness correlated with pronounced changes in 

blood pressure, heart rate,  and SKT, while fear exhibited the highest change in blood flow velocity [19].These 

findings suggest that music doesn't merely convey easily recognizable emotions but actively generates genuine 

emotions in the listener [20]. However, the extent to which changes in the ANS and distinctions in musical 

emotions align with those observed in non-musical emotions remains unclear. 

The main contribution of this manuscript includes; 

• This manuscript, APINN-SHO-MSS-ERVRT is proposed. Initially input data are collected from 

HMD in real time basis. Afterward, the collected data are fed to pre-processing by utilizing data-

adaptive Gaussian average filtering. 

• Data is collected from head-mounted display (HMD) in real time basis dataset. 

• In pre-processing segment, it improves the presence in VR. Following the pre-processing 

processes, the resulting output is inputted into the classification method.  

• The proposed technique is executed and the efficiency of proposed APINsN-SHO-MSS-ERVRT 

for classify facial emotional expression is evaluated by several performances analysing metrics like 

accuracy, precision, specificity, sensitivity, computational time, and ROC. 

• From the result, it concludes that the proposed approach is better compared with existing 

approaches like GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI respectively. 

 Remaining manuscript is organized as follows: sector 2 depicts survey of literature, sector 3 describes 

proposed approach; the outcomes are proved in sector 4, and finally, the end is presented in sector 5. 

II. LITERATURE SURVEY 

Among the frequent research work on Music Scene and Emotion Regulation in Virtual Reality Technology 

based on deep learning; In this section, some of the most recent investigations were evaluated. 

Ibanez et al. [21] developed an adaptive music system in virtual reality applications using a head gesture 

detection system to detect emotional inputs and provide them, enlightening virtual presence. The system 

underwent two iterations, both based on neural networks: the first iteration used hybrid convolutional neural 

network operating in one dimension, and the second iteration used a multi-layer perceptron. In both instances, 

the system successfully recognized fear by analyzing head gestures. 

Suhaimi et al. [22] presented a virtual reality (VR) headgear intended to elicit four emotional categories. 

They used an inexpensive wearable EEG device to record brainwaves, and employed popular classifiers to 

compare their feasibility for this specific setup. The authors' first goal was to create a public, immersive VR 

database that would help with studies using virtual reality stimuli and emotion recognition. Second, they made 

use of a tiny, inexpensive wearable EEG headgear that was easy to affix to the scalp and gave participants 

unrestricted movement to view their surroundings within the immersive virtual reality stimulation. 

Feng [23] introduced a virtual reality-based system for teaching music. Initially, they created a virtual piano 

using the hardware platform of the HTC Vive kit and the Leap Motion sensor installed on a helmet. The 

software platforms included Leap Motion plug-ins, Unity3D, and pertinent Steam VR plug-ins. Subsequently, 
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they proposed and implemented a gesture recognition algorithm. To collect user gesture command data, a 

DCCNN, or Dual Channel Convolutional Neural Network, was employed. In order to enable DCCNN to 

recognize them, this network used a dual-size convolution kernel to recognize gesture commands in films and 

extract feature information from images. Photos with a Red-Green-Blue (RGB) color pattern were fed into the 

DCCNN and optical flow images after extracting spatial and temporal information. 

Shen and Zhao [24] presented a model for music-based emotion recognition features, along with the 

construction of a Computer-Aided Design (CAD) system for musical animation. The system extracted 

fundamental musical features from MIDI (Musical Instrument Digital Interface) files and further derived the 

musical features of the music. This process involved segmenting each music section into emotional music 

visualization programs. By aggregating the segment features, they designed an emotional feature program 

capable of reflecting the musical form as a whole. Through the application of deep learning algorithms, the 

improved segment nodes were visualized and matched, thereby enhancing the expressive form of music 

emotional animation. 

Zhao et al. [25] developed an innovative technique that uses inertial signals and the electroencephalogram 

(EEG) to identify emotions while walking. By use of end-to-end deep learning training and multi-modal fusion, 

emotions were recognized accurately. Wearing virtual reality head-mounted display gear, participants were able 

to fully experience powerful emotions while they were moving. The virtual reality environment exhibited 

remarkable imitation and experience qualities, significantly contributing to the elicitation and modification of 

emotions. Furthermore, DWT was used to convert the multi-modal information from inertial sensors and EEG 

into virtual emotion images. The attention-based CNN fusion model used these images as inputs. 

Wang and Ko [26] presented the emotional depiction of music during the music experience. Initially, they 

employed Internet of Things sensors based on the principles of multi-modal technology to acknowledge the 

emotional impact of music. Subsequently, they utilized the Naive Bayes Classifier grounded in deep learning to 

classify the emotions in music compositions and users' emotional responses to the music. Lastly, they examined 

how consumers' emotional experiences and music's emotional representation were analysed, studying the 

accuracy of music emotion classification through various classification methods. 

Patel [27] developed Convolutional neural networks were used to process facial features for the purpose of 

detecting emotions (CNN). The six main categories of emotions that were examined were: fear, disgust, anger, 

sadness, happiness, and surprise. These emotions were further categorized into two types: positive emotions, 

which entail feelings without negativity such as happiness or neutrality, and negative emotions, encompassing 

sensations of depression and frustration, including anger, sadness, and fear. 

III. PROPOSED METHODOLOGY 

The proposed method APINN-SHO-MSS-ERVRT is discussed in this section. This model composed to 

detect the facial expression from input data. Block diagram of APINN-SHO-MSS-ERVRT technique is 

presented in Figure 1. The proposed APINN-SHO-MSS-ERVRT takes the extracted data from the VR devices. 

This process consists of four steps: dataset preparation, pre-processing, classification, and optimization. Thus, a 

full explanation of all steps is provided below, 
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Figure 1: Block diagram of proposed APINN-SHO-MSS-ERVRT technique 

A. Data Acquisition 

The information are collected from head-mounted display in real time basis dataset. A system for 

recognizing gestures has been developed to capture emotional cues from players using a HMD. Additionally, an 

adaptive music generator has been implemented to tailor the game experience based on these emotional inputs. 

The latter system serves as an emotional regulator, modifying the soundtrack to enhance or diminish a detected 

emotion. Recognizing dynamic gestures, characterized through a succession of motions made over time at a 

particular spatial position, poses a particular challenge. The time-dependent data stream generated by the HMD 

proves valuable in predicting outcomes in this domain, where a continuous flow of data is present. 

B. Pre-processing using data-adaptive Gaussian average filtering(DAGAF) 

DAGAF is used in this part to pre-process the input data. To enhance virtual presence in virtual reality 

applications, it is necessary to recognize emotional inputs and feed them into an adaptive music system [28]. 

Because head-mounted displays (HMDs), which are increasingly used in virtual reality (VR), may provide a 

very rich stream of information regarding a player's position, posture, and rate of acceleration when moving, a 

room-scale VR environment was chosen for this study technique. This filtering approach is moving average 

process performed to data, weights of average filter are created using a Gaussian window. Gaussian function 

with a standard deviation on its distribution is given in equation (1).  

( ) ( ) ( ) 221 2

2  −= bGa                                           (1) 

Where  is the analogous continuous-time Fourier transform (CTFT).In the discrete time domain, the 

Gaussian function becomes aG  assuming sample interval   equal to 1, is integer which is followed by 

Fourier transform shown in equation (2). 
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Where, the Gaussian distribution's standard deviation and the parameter α are inversely related. Making 

values at end point ( )N lesser than 5% of maximal window value yields parameter  in this research. The 

maximum may be seen at b , when  0l has a value of 1 and is shown in the following equation (3). 
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The spectrum obtained from above equation has a bell-shaped centre at ( )L can be considered as a low 

pass filter when given the reasonable values N and . DAGAF average filters the spatial data using a 

normalized discrete truncated Gaussian window, provided in order to preserve the data during the filtering 

process and given in equation (4). 

   

  −=

=
N

Nw

M

wL

nl
nl                               (4) 

Where the above equation defines Gaussian average filter and it is in fact low pass filter. Where, is then 

assuming Gaussian average filter  nlM has been found and that the missing temporal h to be analyzed is 

represented as  wL . The moving-average technique that follows can be used to get the instantaneous mean in 

DAGAF and shown in equation (5). 

      10, −+= 
−=

Hhforhnrnlhn

N

Nn

Mi                            (5) 

A system for recognition that gathers data from a virtual world and identifies pertinent feelings. Initially, the 

gesture recognition component of the system processes the input it receives from the head-mounted display 

used to play the game. The processed data in one-decomposition iteration is indicated as  nlM , while the data 

to be analysed is represented by  hg i . This method involves first extending the data by a "reflection" extension, 

and then reflecting the expanded segment in a filtering process with regard to a fixed value. Then the 

contemporaneous mean in DAGAF is then obtained by extending the data using the following equation (6). 

      10, −+= 
−=

Hhforhgrnlhg b

N

Nn

Mi               (6) 

Due to the symmetric structure of the Gaussian average filter  nlM , the instantaneous mean calculation in 

equation is essentially the convolution total of  br . To identify the relevant emotion in the traffic data will be 

recovered in the data domain by directly multiplying the spectrum of  br and the data bank of  Ml .Using the 

above equation the input data is pre-processed imbalance ratio through duplicating instances in minority class 

DAGAF filtering method. After the data pre-processed is then further given for classification process in the 

following section. 

C. Classification Using Augmented Physics-Informed Neural Networks (APINNs) 

This sector discusses the use of APINN for facial cue recognition in the identification of basic human 

emotions. Several techniques have gained significant prominence among these, playing a crucial role in various 

virtual reality (VR) research endeavours [29]. They have proven instrumental in diverse applications, including 

the detection of faces and facial expressions, tracking human body movements, visualizing data, and 

recognizing speech. Neural network optimization should abide by data and physical rules as prescribed by a 

partial differential equation (PDE) in order to approximate its solution is the driving force behind the Physics-

Informed Neural Network (PINN). This entails reducing the training loss, which is represented as follows and is 

made up of a residual loss and a boundary loss: 
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Let am represent the boundary training points, rm represent the residual training points, and The PINN 

model V .  approximates the ground truth PDE solution. In the first term, In the first semester, PINN studies 

boundary conditions; in the second term, it studies the physical laws that PDEs explain. 

Since XPINN's interface losses might not always guarantee continuity across different sub-PINNs, bigger 

mistakes could be seen close to the interface. This challenge arises from the difficulty in accurately enforcing 

residual continuity conditions for partial differential equations (PDEs) that involve higher-order derivatives. 

The presence of these higher-order derivatives makes it challenging to maintain precise continuity conditions. 

As a result, making sure that first-order derivatives continue amongst various sub-PINNs is proposed as a 

resolution to this issue: 
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Where q represent the problem dimension. While 
j represent the parameters for subdomain j and 

ij
KIZ ,

represent the kth interface points. 

When the enhanced PINN is parameterized by  , its output is expressed as; 
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Where ( )( ) jZD represent the jth entry of ( )ZD and  represent the collection of all parameters in g , D

and jF . Both g and jF are trainable in APINN, while D can be either trainable or fixed. If D represent the 

trainable model of APINN. The jF , g , D sub-modules are all nonlinear fully-connected neural networks, 

making the APINN model nonlinear. Additionally, the APINN is a universal approximator.  

Returning to the APINN paradigm, we can identify the function class of APINN as 

 ( ) ( )( )
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Here,   represents all neural networks, and the function class of the gating network is denoted as G . 

Since multilayer neural networks are a subset of the model APINN and are by nature universal approximators, 

APINN must likewise be a universal approximator. 

There are three possible approaches to constructing the APINN model. The first and simplest option 

involves excluding parameter sharing in APINN, resulting in the model becoming: 
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The goal of each sub-PINN's parameter sharing is to increase parameter efficiency. By using the shared 

network as the identity mapping and applying the aforementioned equation jF  networks. APINN stands out as 

a widely employed computing system for gesture recognition, particularly with devices capable of extracting 

substantial data, including position and rotation information. Given each sub-PINN's contribution to the target 

function as a whole, it makes intuitive sense that the functions that each sub-PINN learns should be somewhat 

similar. Our model explicitly utilizes this intuition by include network sharing, resulting in enhanced parameter 

efficiency. Facial expressions related to human emotions, such as fear and neutrality, are predicted using 

APINNN with the equation mentioned above. Notably, APINN lacks an inherent optimization structure for 

refining weight parameters to achieve more accurate predictions of facial expressions for human emotions. To 

address this, an optimization algorithm is employed, as detailed in the following section. 

D. Stepwise process for Sea-Horse Optimization Algorithm 

In this section, optimization using SHO is discussed. Here the proposed method is utilized to classify the 

facial expression of human emotion. Drawing inspiration from the way seahorses navigate, hunt, and breed in 

the ocean, the Sea-Horse Optimizer (SHO) is developed [30]. The SHO algorithm incorporates the principles of 

exploration and exploitation, mirroring the social behaviour of seahorses in their movement and search for prey. 

The algorithm's design is influenced by the phases of seahorse breeding, with the final phase initiated once the 

two components have concluded. A detailed modelling of the SHO method is presented as follows: 

Step 1: Initialization 

Initialize population of SHO weight parameter values of APINN. It expressed in equation (12) 
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Here Zs  denotes the SHO population matrix, n is denoted as the size of population, H is the dimension of 

variables, correspondingly. 

Step 2: Random Generation 

Following initialization, input fitness function developed randomness via SHO method 

Step 3: Fitness Function 

An initialization value, result is random solution. Assessment of fitness values utilizes outcomes of weight 

parameter optimization . It expressed in equation (13), 

][Optimizingfunctionfitness =
                                                                                     

(13) 

Step 4: Seahorse Movement Behaviour 

The movement pattern of seahorses serves as a reference for the normal distribution. Two examples are 

provided to help achieve a balance between exploration and exploitation, each having a boundary point set at 0. 

Case 1: Exploration 

In order to expand the local solution zone, the agent continuously modifies the rotation angle as it spirals 

towards the 𝑋𝑒𝑙𝑖𝑡𝑒. Mathematically, exploration ( ) can be expressed as follows: 
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(14) 

Where  represent the random value between 0 and 2. 

Case 2: Exploitation 

The seahorse uses a Brownian motion to improve its traversal in the presence of ocean waves by replicating 

the motion length of another seahorse. This process can be expressed as follows: 
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(15) 

Where j represent the Brownian motion's random walk coefficient. 

Step 5: Seahorse Foraging Behaviour 

When seahorses search for food, two potential outcomes exist: failure and success. The success condition is 

established when 1.02 r , indicating that the seahorse travels more quickly than its prey. On the other hand, if 

the answer varies, a failure condition happens. The conditions for success and failure in seahorses' quest for 

food can be expressed as follows: 
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(16) 

Where S represent the maximum number of iteration. 

Step 6: Seahorse Breeding Behaviour 

During the breeding period, seahorses are categorized into two gender groups: male and female, each 

comprising an equal composition of 50%. 
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Where sortZ represent the ascending order of fitness value. Father and Mother  were chosen randomly. In 

the SHO algorithm, each pair produces one child. 

( ) FatherMotherj ZrZrZ +−= 31
                                                                                            

(18) 

Where 3r represent the random number and male as well as female randomly chosen members represented 

by FatherZ and MotherZ  respectively. 
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Step 7: Termination 

Check the termination criteria, if it met the condition means optimal solution is obtained, otherwise repeat 

the process. The weight parameter is  from APINN is optimized with SHO, for effectively for classify the 

facial emotional expression as fear and null. Figure 2 illustrate the flowchart of SHO. 

 
Figure 2: Flowchart of SHO 

IV. RESULT AND DISCUSSION 

This section discusses the experimental results using the proposed approach. The proposed technique 

simulated utilizing python based numerous performance measures comprising accuracy, precision, sensitivity, 

specificity, computational time and ROC. Obtained results of proposed APINN-SHO-MSS-ERVRT technique 

are analysed with existing approaches such as GERR-NN-AMSVR [21], ER-VR-EEG [22] and MTS-VRS-CDI 

[23] respectively. 

A. Performance measures 

Performance of proposed approach articulated utilizing the accuracy, ROC, precision, specificity and 

sensitivity performance measures. For that, following confusion matrix is necessary. 

• TP: “Instances that are actually positive then categorized as Null”.  

• FP: “Instances that are actually negative but categorized as Null”.  

• FN: “Instances that are actually positive but categorized as Fear”.  

• TN: “Instances that are actually negative then categorized as Fear”. 

1) Accuracy 

It is accurate to predict emotion rather than their status rate. Accuracy serves as a proxy for the overall 

correctness of the information gathered. It represents the ratio of true positives, true negatives to all occurrences 

in dataset. It is given in equation (19) 

FnFpTnTp

TnTp
Accuracy

+++

+
=

                                                                                         

(19) 
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Here, true positive refers to properly anticipated emotion as null. False positive, or incorrectly diagnosed as 

null, is known as FP. TN stands for true negative, or accurately estimated emotion as fear. False negative, or 

incorrectly projected emotion as fear, is FN. 

2) Precision 

The degree of accuracy of the data that was obtained is measured by precision. It is proportion of "true 

positives" to all "positive instances," where "true positives" refers to the number of correctly returned results. 

The precision is computed using the following equation (20),  

FpTp

Tp
ecision

+
=Pr

                                                                                                         

(20) 

3) Specificity 

The percentage of true negatives that the method correctly identifies is called specificity. It is determined by 

equation (21), 

FpTn

Tn
ySpecificit

+
=

                                                                                                       

(21) 

4) ROC 

ROC can be stated as ratio among changes in single variable relative to corresponding change in another, 

graphically; rate of change represents slope of line. It is given in equation (22) 
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B. Performance analysis  

Figure 3 to 8 portrays model result of APINN-SHO-MSS-ERVRT method. Then, the proposed APINN-

SHO-MSS-ERVRT technique analyzed with existing method likes GERR-NN-AMSVR, ER-VR-EEG and 

MTS-VRS-CDI models respectively. 

 
Figure 3: Performance analysis of accuracy 

Figure 3 displays performance analysis of accuracy. Here, proposed APINN-SHO-MSS-ERVRT method 

attains 90% higher accuracy for fear: 97% higher accuracy for null is analysed with existing technique likes 

GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI methods respectively. 
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Figure 4: Performance analysis of precision 

Figure 4 displays performance analysis of Precision. Here, proposed APINN-SHO-MSS-ERVRT method 

attains 99% higher precision for fear: 96% higher precision for null is analysed with existing technique likes 

GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI methods respectively. 

 
Figure 5: Performance analysis of sensitivity 

Figure 5 displays performance analysis of sensitivity. Here, proposed APINN-SHO-MSS-ERVRT method 

attains 96% higher sensitivity for fear: 96% higher sensitivity for null emotion is analysed with existing 

technique likes GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI methods respectively. 

Figure 6 displays performance analysis of specificity. Here, proposed APINN-SHO-MSS-ERVRT method 

attains 97% higher specificity for fear: 96% higher specificity for null emotion is analysed with existing 

technique likes GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI methods respectively. 
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Figure 6: Performance analysis of specificity 

 
Figure 7: Performance analysis of computation time 

Figure 7 displays performance analysis of computational time. Here, proposed APINN-SHO-MSS-ERVRT 

method attains 70s lower computational time for fear and null emotion is analysed with existing technique likes 

GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI methods respectively. 

 
Figure 8: Performance analysis of ROC 
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Figure 8 portrays ROC analysis. The proposed APINN-SHO-MSS-ERVRT technique then provides a higher 

ROC in 0.87%, 0.88% and 0.89% than the existing GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI 

method. 

V. CONCLUSION 

In present study, an augmented physics-informed neural networks and seahorse optimization algorithm for 

music scene simulation and emotion regulation in virtual reality technology (APINN-SHO-MSS-ERVRT) is 

successfully executed. The proposed APINN-SHO-MSS-ERVRT method is executed in python utilizing head-

mounted display (HMD) in real time basis dataset. This paper mainly proposes a method based on the APINN 

to better achieve for classify facial expression for emotion as fear and null. The results demonstrate the 

capability of APINN-SHO-MSS-ERVRT in providing an immersive and emotionally impactful VR 

environment for music scene simulation and emotion regulation. This research not only contributes to the 

advancement of VR technology but also offers a promising avenue for the development of more realistic and 

emotionally engaging virtual experiences in the field of music and entertainment. Performance of proposed 

APINN-SHO-MSS-ERVRT approach contains 97% high accuracy is analysed with existing methods likes 

GERR-NN-AMSVR, ER-VR-EEG and MTS-VRS-CDI method respectively. 
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