
J. Electrical Systems 20-3 (2024): 814-822

814

1Qi Wu
2,*Shuo Wen
3Fangxiong Li
4Boliang Liu
5Wei Zhong

Web Attack Detection Based on
Honeypots and Logistic
Regression Algorithm

Abstract: - Web security has emerged as one of the most prominent concerns in the realm of cybersecurity. Traditional rule-based
methods for detecting web attacks often rely on manual rule definition and pattern matching, leaving them inadequate in accurately
identifying new and intricate attack patterns. In the face of these challenges, machine learning techniques have demonstrated
potential and advantages. This paper presents a web attack detection method based on honeypots and the logistic regression
algorithm. It involves the cleansing, filtering, and analysis of web logs captured by honeypots, followed by the vectorization of the
textual data contained in these logs. The logistic regression algorithm is employed to train and test the classification of the text
vectors, generating a logistic regression model. This model is then used to predict newly generated web logs, enabling effective
dynamic web attack detection. Experimental evaluations using collected datasets are conducted, comparing the proposed method
with the support vector machine approach. The results demonstrate that this method achieves rapid and accurate detection and
recognition of web attack behaviors while ensuring performance efficacy.

Keywords: Honeypots, TF-IDF, Logistic Regression, Feature Matrix.

I. INTRODUCTION

With the rapid advancement of the Internet, the construction of network security has entered a new era. Web
applications have found widespread application in various aspects of life, including education, research, and the
economy. However, it is unfortunate that many developers lack security awareness when crafting web
applications. They may prioritize application functionality at the expense of security considerations, resulting in
the presence of numerous vulnerabilities within web applications. Consequently, web applications often become
prime targets for attackers seeking to invade and disrupt, thus leading to a significant increase in various types of
web security concerns, becoming one of the most prominent issues within the realm of cybersecurity.

The harms and disruptive nature of web attacks are indeed significant, severely impacting users’ normal
utilization of the Internet. Web attacks are intricate and constantly evolving, gradually becoming more covert,
persistent, and industrialized. Simultaneously, the application of detection technologies to combat web
application attacks presents significant challenges for researchers in the field of security. Various types of web
attacks continue to emerge, which pose threats to user privacy and data integrity. In order to address these risks,
web attack detection systems have become increasingly vital. Traditional rule-based detection methods often
require manual rule definition and pattern matching, leaving them inadequate in accurately identifying new and
intricate attack patterns. Machine learning techniques have shown immense potential and advantages in the realm
of web attack detection.

This study primarily focuses on deploying honeypots for capturing web logs, and based on this, proposes a
web attack detection method that relies on honeypot log analysis and logistic regression algorithm. The method
involves the collection, storage, filtering, and cleansing of honeypot log data. Furthermore, effective logistic
regression algorithms are employed to analyze the honeypot log data. By analyzing the features of web requests
in the logs, these requests are classified as normal or malicious attacks, thus achieving web attack behavior
detection. This approach enables automatic learning and identification of malicious behavior within web requests,
enhancing the accuracy and efficiency of detection. The web attack detection system can dynamically monitor
and analyze incoming web requests to identify and prevent malicious attack behaviors. It provides a foundation
for subsequent attack tracing, defense, protection, and network threat assessment.

1 Guangdong Police College, Guangzhou, Guangdong, China
2 Guangdong Police College, Guangzhou, Guangdong, China
3Guangdong Police College, Guangzhou, Guangdong, China
4 Guangdong Police College, Guangzhou, Guangdong, China
5Guangdong Police College, Guangzhou, Guangdong, China
*Corresponding author: Shuo Wen
Copyright © JES 2024 on-line : journal.esrgroups.org

J. Electrical Systems 20-3 (2024): 814-822

815

II. RELATEDWORK

In previous research, scholars have conducted extensive studies on web attack detection. Two main
approaches can be identified: rule-based and machine learning-based detection [1]. Mahdavi et al. [2] employed
static analysis of application code to generate legitimate SQL statement templates. They then matched all SQL
statements against these predefined templates to identify whether they were legitimate SQL statements generated
by the application itself. ABIKOYE et al. [3] utilized KMP string matching algorithm to detect and prevent
attacks. JANA et al. [4] proposed a code-based SQL injection analysis method that assigns complex numbers to
each input element to analyze user inputs before submitting a query to the underlying database. They designed a
code checker based on assertion techniques to identify suspicious inputs. SQLBlock [5] presented a hybrid static-
dynamic analysis approach that restricts each PHP function's access to the database, providing better protection.
ALIERO et al. [6] proposed an automatic black-box testing scanner to detect SQL injection vulnerabilities. They
conducted experiments using various types of vulnerable websites, reducing the cost of manual detection.
HLAING et al. [7] introduced a query tokenization method for detecting SQL injection based on a predefined
dictionary. This approach matches the input strings with the contents of the corresponding dictionary to prevent
SQL injection attacks. Hankerson et al. [8] employed pattern matching based on predefined patterns. This pattern
matching method effectively addresses SQL injection issues with high efficiency, although it may require some
modifications to the application to a certain extent. Wang Weiping et al. [9] utilized regular expressions to
describe attack patterns, enabling injection attack checks on HTTP requests before they are processed by the
system module. Compared to keyword-based filtering, the approach based on regular expressions yields better
filtering effectiveness. Shi et al. [10] proposed a SQL injection detection method that matches SQL statements
with a knowledge base using pattern matching algorithms. For SQL statements that do not match, they do not
immediately classify them as illegal. Instead, they employ a dynamic feature filtering algorithm based on risk
values to perform in-depth feature inspection and identify true illegal SQL statements. They designed and
implemented a prototype system that exhibits good performance advantages. The majority of the mentioned web
attack detection models are rule-based, relying on pattern matching between attack sample features and feature
databases.

Rule-based detection approaches are convenient to implement; however, their effectiveness in detecting
unknown web attacks is inferior to that of machine learning-based detection methods [11]. Commonly used
machine learning algorithms for web attack detection include HMM, K-means, SVM, among others. Alwageed et
al. [12] employed an SVM-boosting algorithm framework to analyze the adaptability of various alternating
supervised learning (SVM-FS) hybrid methods for detecting FDI attacks using data obtained from smart grids.
Wu Shaohua et al. [13] extracted features related to SQL injection and XSS attacks, selected and summarized six
features, and trained and classified them using the SVM algorithm. The feasibility of their detection approach is
validated on the Weka platform. Rashid et al. [14] explored the impact of adversarial cyber attacks on machine
learning models. They proposed a method of using adversarial retraining to enhance the detection accuracy of
attacks. Zhu Jingwen et al. [15] proposed a SQL injection detection method based on Hidden Markov Models
(HMM). This method enables prediction of SQL injections based on custom logs without the need to capture
sensitive information submitted by users. By employing probability analysis and deviation analysis, the method
provides a comprehensive evaluation of the likelihood of SQL injection by users, thereby enhancing the attack
detection capability for target web applications. Delplace et al. [16] analyzed traffic data containing common
botnet activities and evaluated the detection effectiveness of five different machine learning algorithms. Random
Forest outperforms the other four models in eight out of thirteen scenarios. Yang et al. [17] introduced an
intrusion detection framework called LCCDE, which consists of three integrated learning models. The
framework utilizes prediction confidence to determine the model used for each prediction category.

The aforementioned machine learning-based methods for web attack detection, while capable of identifying
unknown web attacks, still fall under the category of static detection methods, requiring the assistance of web
application source code for detection. To achieve dynamic web attack detection, honeypots can be utilized to
capture and analyze web logs. Zhuge Jiawen et al. [18] provided a comprehensive discussion on the application
of honeypot technology in security threat monitoring research. Thanks to the efforts of open-source teams like
The Honeynet Project, honeypot technology has made significant progress in areas such as attack feature
extraction, forensic analysis, and network tracing. Zhai Guangqun et al. [19] developed a defense system that
combines intrusion detection with honeypot technology. By collecting intrusion information through honeypots
and analyzing the intrusion data using unsupervised clustering algorithms, they extracted new attack features.
Experimental evidence has shown that this approach improves the efficiency of detecting unknown intrusion

J. Electrical Systems 20-3 (2024): 814-822

816

attacks. Zhu Tao et al. [20] employed honeypot technology to construct a network attack log analysis system and
designed a storage format for attack log files. They used regular expression matching to identify five types of
keywords related to zombie network attack data and conducted analysis using a two-stage clustering algorithm.
The experimental results indicate that most of the selected attributes, except for the four attributes related to
packet size, exhibit strong clustering discrimination ability and can serve as important features for further
intelligent analysis. Unicorn [21] identifies the traceability diagram of the system's normal execution from logs,
thereby identifying abnormal behavior of APT attacks. ProvDetector [22] learns the path of the system's normal
execution to identify abnormal APT attacks. Mendon ç a et al. [23] proposed an intrusion detection system based
on convolutional neural networks. Jemal et al. [24] converted HTTP requests into code and classified them using
CNN to detect malicious requests.

III. APPROACH

The architecture of the web attack detection system implemented in this paper is depicted in Figure 1. The
system is divided into four major modules. The honeypot module is responsible for deploying a fictitious web
system and opening it up to external access, thus recording its access logs. The data preprocessing module is used
to normalize the logs. It first filters out irrelevant logs and then extracts relevant fields from the logs. Based on
this, the logs are labeled and the attack types are identified. The machine learning module receives the
preprocessed data and generates classification models for the logs, which are then validated. The attack detection
module is responsible for detecting newly generated logs, filtering out sensitive logs, and recording their key
information.

Figure 1: System Modules

A. Honeypot
The concept of a honeypot essentially encompasses a deceptive technique employed against malicious

attackers. In this system, strategically deployed host machines serve as enticing baits to lure potential attackers on
the internet, enabling the capture and analysis of their attack behavior. This facilitates an understanding of the
attack methods employed against the system, which in turn allows for the modeling of potential attack scenarios.
To ensure the effectiveness and diversity of attack samples, skilled individuals with expertise in attack techniques
are also invited to perform targeted attacks. This approach guarantees the universality of the attack detection
model.

J. Electrical Systems 20-3 (2024): 814-822

817

B. Honeypot Data Preprocessing
The raw samples of log data obtained from the honeypot contain a mixture of various information, including a

significant amount of noisy content. This noise can manifest in different forms, such as log format errors or logs
generated by web crawlers like Google or Baidu. Therefore, it is not advisable to directly feed the raw log data
into the machine learning module for model derivation. Training machine learning models with such raw data,
regardless of the algorithm used, can easily lead to substantial errors, deviating from the expected experimental
results. To address these challenges, a data preprocessing module is employed to handle the raw log data and
ensure its normalization.

This paper lies in the detection of SQL and XSS injection attacks. Therefore, the normalized data is
categorized into three classes based on the nature of the log data samples and the complexity of the attack
keywords used. These categories include legitimate requests, SQL injection attacks, and XSS attacks. The data is
manually labeled, with SQL injection and XSS attacks combined as attack requests.

C. Machine Learning Module
The collected log data samples mentioned above essentially consist of strings of varying lengths, which

makes it difficult to directly train them using machine learning techniques. To address this, it is necessary to
extract numerical features from these log data samples for training a classification model used for detection. The
training process is illustrated in Figure 2.

Figure 2: Model Training Flow Chart
In this paper, TF-IDF is first applied to vectorize the text. TF-IDF algorithm is a common text vectorization

technique, where TF stands for “Term Frequency” , DF represents the “Document Frequency” , which
indicates the number of documents in which a particular term appears. IDF, on the other hand, represents the
“Inverse Document Frequency” and is calculated as IDF=log(N/(1+DF)). The value of TF-IDF is obtained by
multiplying the values of TF and IDF (TF*IDF).

After vectorization, a feature matrix is generated for the classification model, which is then used to establish a
detection model using logistic regression. Logistic regression is a classification and prediction learning model
that assigns a “score” to each sample and sets a threshold. Samples that reach or exceed this threshold are
classified into one category, while those that do not are classified into another category. For example, let’s
assume that 0 represents normal web requests and 1 represents web attacks. The conditional probability P(Y=1|X)
represents the probability of an attack occurring based on the feature variables X. Using the logistic regression
algorithm, this can be represented as follows:

J. Electrical Systems 20-3 (2024): 814-822

818

� � = 1 � = 1
1+e−� � = 1

1+e− �0+�1�1+…+����
(1)

Where, X represents the feature vector of the URL field in the log, which is the TF-IDF feature matrix
calculated earlier. β0 is the intercept term, and β=(β0, β1, ..., βn) represents the regression coefficients of
the feature vector X. These coefficients can be obtained by training the model on a training set.

D. Attack Detection Module
The attack detection module performs data parsing and feature extraction on the logs generated during the

normal operation of the system. It feeds these features into the machine learning module’s model for detection,
distinguishing between sensitive logs and legitimate logs, and applies corresponding annotations. For sensitive
logs, key information is recorded to facilitate further detection. The detection process is illustrated in Figure 3.

Figure 3: Attack Detection Flow

IV. IMPLEMENT AND EXPERIMENT

The architecture of the web attack detection system implemented in this paper is depicted in Figure 1. The
system is divided into four major modules. The honeypot module is responsible for deploying a fictitious web
system and opening it up to external access, thus recording its access logs. The data preprocessing module is used
to normalize the logs. It first filters out irrelevant logs and then extracts relevant fields from the logs. Based on
this, the logs are labeled and the attack types are identified. The machine learning module receives the
preprocessed data and generates classification models for the logs, which are then validated. The attack detection
module is responsible for detecting newly generated logs, filtering out sensitive logs, and recording their key
information.

A. Honeypot Module
The present study involves the deployment of a honeypot on an open-source honeypot platform. The

honeypot is deployed on a Linux system and follows a B/S architecture, consisting of a management side and a
node side. The management side is responsible for generating and managing the nodes, as well as receiving,
analyzing, and displaying the data transmitted by the nodes. On the other hand, the node side receives control
commands from the management side and handles the construction of the honeypot services.

The deployed honeypot has the ability to collect data by recording information through the management side.
It enables the logging of access logs, ensuring the integrity of the log files by preventing attackers from deleting
logs on the node side.

The collected log sample, as shown in Table 1, illustrates a modest XSS attack scenario. It documents details
such as IP address, timestamp, request method, URL, and access status.

Table 1: Sample Honeypot Log

Logs 178.137.18.55 - - [30/Oct/2013:19:42:53 -0500] "GET /archiver/?tid-39 =;alert(1);// HTTP/1.0" 200
1127 "http://spechome.ru/?m=20120808" "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0)

Meanings

IP address: 178.137.18.55
Access time: Oct. 30, 2013

Make a GET request for website resources /archiver/ and submit the parameter tid-39 as alert (1); //The
access status is 200, the number of access bytes is 1127, the protocol version is HTTP/1.1, and the refer

field is http://spechome.ru/?m=20120808,the user agent is Mozilla 5.0

B. Data Preprocessing Module
The data preprocessing module begins by applying simple cleansing techniques to the log data, primarily

using regular expressions, supplemented by manual intervention. It aims to ensure proper formatting by matching

J. Electrical Systems 20-3 (2024): 814-822

819

the provided raw log data from the internet and the server log data obtained from our operations on Alibaba
Cloud. The regular expression used for matching is based on the Apache2 log format, and is as follows:

'''(?P<remote_addr>[\d\.]{7,}) - - (?:\[(?P<datetime>[^\[\]]+)\]) "(?P<request>[^"]+)" (?P<status>\d+)
(?P<size>\d+) "(?:[^"]+)" "(?P<user_agent>[^"]+)"'''

Once the log data has been matched using the regular expression pattern, it will undergo automatic filtering
and be placed into the preprocessing pool. Any logs that were not matched or identified as erroneous will be
categorized for manual intervention in the cleansing pool. Logs that significantly deviate from the required
format will be promptly discarded, while logs that can still be utilized will be placed into the preprocessing pool
for further processing.

Within the preprocessing pool, further cleansing of the data occurs, involving several steps such as removing
unique attributes, handling missing values, attribute encoding, data standardization, normalization, feature
selection, and principal component analysis. To begin, the preprocessing phase involves identifying and
removing duplicate data entries, thereby eliminating unique attributes. For samples that contain missing values,
the approach varies depending on the severity of the missing values. If a sample has substantial missing values
across all fields, rendering it insufficient for providing valuable labels, it is excluded from further processing.
However, if the missing values in a sample do not impact the training sampling significantly, it can be retained.
In cases where non-missing critical fields are present in a sample, the preprocessing phase initially reserves the
main components of the label attributes. Subsequently, based on the label attributes, corresponding information
from unrelated fields can be manually annotated and added.

Tables 2 and 3 present a partial display of logs that meet the requirements and those that do not. From Table 3,
it is evident that logs that fail to meet the requirements are typically excluded due to reasons such as inconsistent
timestamp format (Log 1), the absence of a timestamp field (Log 2), missing URL information (Log 3), being
identified as Google crawler agents (Log 4, 5), or lacking an IP field (Log 5).

Table 2: The Filtered Logs That Meet the Requirements

1

24.148.0.215 - -[21/Jul/2011:14:69:22 -0500] "GET /wp-includes/js/iquery/jquery.js
HTTP/1.1"20 72194 "http://www.npcassoc.org/wp-admin/install.php" "Mozilla/5.0 (Windows

NT 6.1: WOW64) AppleWebkit/534.30 (KHTML, like Gecko) Chrome/12日.742.122
Safari/534.30"

2

132.16.114.136 - - - "POST /wp-admin/install.php?step=2HTTP/1.1"200
86"http://www.npcassoc.org/wp-admin/install.php"Mozilla/5. (windows NT 6.1;

WOW64)AppleWebKit/534.3 (KHTML,like Gecko) Chrome/12.admin/install.php"Mozilla/5.
(windows NT 6.1; WOW64)0.742.122 Safari/534.30"

3
119.228.218.116 - -[29/Jul/2017:14:44:59 -0500] - 200 7547 "http://www.npcassoc.org/wp-
login.php" "Mozilla/5.0 (Window5 NT 6.1: WOW64) ApleWebkit/534.39 (KHTML. like

Gecko) Chrome/12.0.742.122 Safari/534.30"

4
89.25.39.0 - - [31/Jul/2010:22:26:38 -0500] "GET /ournal/table-of-contents/vol-2-no-

3HTTP/1.1"200 5710 "" "Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)

5 - - - [21/Ju1/2019:05:22:48 -51 404 5651 "'Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)"

Table 3: The Filtered Logs That Do Not Meet the Requirements

1
124.35.43.7 - [24/0ct/2019:20:18:15 +0800] "GET /coin_operated/ HTTP/1.1" 200 3477 "-"
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) Appleebkit/537.36 (KHTML, like Gecko)

Chrome/77.0.3865.120 Safari/537.36"

2

123.104.154.137 - - [20/Mar/2020:22:15:19 +0800] "GET /dff_php_frameworkapi-
latest/include/dff sku.func.php?dff configIdir

include=http://192.168.202.96:8080/frznctvhi0i5?/cacti/myphppagetool/doc/admin/index.php;
ptinclude-http://worldfile.com

3 197.187.102.123 - - [20/Mar/220:22:15:19 +0800] "GET /saint-80x37/

4 94.234.229.56 - - [20/Mar/2020:22:15:19 +0800] "GET /apbn/templates/head.php?apb
settings[template path]=@rfiurl

After data cleaning, the data can be standardized according to the following format: “ |Serial Number
(optional)|IP Address (required)|Date (required)|Request Method (required)|Request Resource Location
(required)|HTTP Protocol Version (optional)|Bytes Sent (optional)|Requesting Tool (optional)|”.

J. Electrical Systems 20-3 (2024): 814-822

820

To ensure the completeness of the attack samples, this paper introduces a portion of publicly available
datasets from the internet to supplement the samples. The introduced samples consist of normal samples, XSS
attack samples, and SQL attack samples from Internet.

Finally, all samples are labeled accordingly, as mentioned in section 3.2, to facilitate the establishment of the
model.

C. Machine Learning Module
1) Text vectorization

In this study, the initial step involves utilizing N-Gram to tokenize the URLs in the log data, thereby
vectorizing them. Once the tokenization process is complete, the TF and IDF values are computed. These values
are then multiplied together to obtain the TF-IDF value for each individual word.

Taking a simplified version of the log data containing SQL injection and XSS attack keywords as an example,
as shown in Table 4:

Table 4: Simplified Version of Log Data with Attack Keywords
line1 Script null ActiveXobject version alert version
line2 version alert Script alert Script ActiveXobject
line3 load_file load_file null load_file Concat null
line4 alert null alert null null null

For the mentioned lines and vocabulary, we can calculate the corresponding TF and DF values, as shown in
Table 5:

Table 5: Calculation of TF and DF for Simplified Log Data
Script alert ActiveXobject version load_file Concat

TF1 1/5 1/5 1/5 2/5 0 0
TF2 1/3 1/3 1/6 1/6 0 0
TF3 0 0 0 0 3/4 1/4
TF4 0 2/3 0 1/3 0 0
DF 2 3 2 3 1 1

With the TF data and the DF data for the documents mentioned above, we can calculate the inverse document
frequency (IDF) and TF-IDF using the formulas. The results are shown in Table 6:

Table 6: Calculation Results of IDF and TF-IDF

IDF=log(N/(1+DF)) log(4/(1+2))
=log(4/3)

log(4/(1+3))
=log(4/4)

log(4/(1+2))
=log(4/3)

log(4/(1+3))
=log(4/4)

log(4/(1+1))
=log(4/2)

log(4/(1+1))
=log(4/2)

TFIDF1 1/5*log(4/3) 1/5*log(4/4) 1/5*log(4/3) 2/5*log(4/4) 0 0
TFIDF2 1/3*log(4/3) 1/3*log(4/4) 1/6*log(4/3) 1/6*log(4/4) 0 0
TFIDF3 0 0 0 0 3/4*log(4/2) 1/4*log(4/2)
TFIDF4 0 2/3*log(4/4) 0 1/3*log(4/4) 0 0

The higher the TF-IDF value of a word in an article, the generally more important the word is within that
article. Therefore, by calculating the TF-IDF values for all the words in the article and sorting them in descending
order, the top few words are considered to be the keywords of that article.

After completing the description of text features using the TF-IDF algorithm, we obtain a sparse matrix as the
feature matrix required for generating a classification model. The sparse matrix is stored in the DOK (Dictionary
of Keys) format, where the row-column values serve as keys in the dictionary, and the matrix elements represent
the dictionary content. The format is [(m, n) tf-idf], where “m” represents the log number, “n” represents
the word number, and “tf-idf” represents the tf-idf value of the word with the corresponding number “n” in
the log with the number“m”.
2) Construction of classification model

This paper employs a logistic regression model as a classifier for determining the presence of attack behavior
in logs. The experimental setup is presented in Table 7:

Table 7: Experimental Environment
Operating System Ubuntu 20.04.1 LTS

Development Language Python 3.7.11
Machine Learning Library Scikit-Learn 1.3.0

Model Logistic Regression
The logistic regression model in this study utilizes L2 regularization, optimizing the loss function through

iterative updates using the second derivative matrix, known as the Hessian matrix. The classification is performed

J. Electrical Systems 20-3 (2024): 814-822

821

using the one-vs-rest (ovr) method. The model is trained by feeding it with input sample data and corresponding
label data. Subsequently, a separate test set and its labels are used to evaluate the model’s accuracy in predicting
outcomes. Based on the test set results, the model achieves a self-test accuracy of 91.90%.

After generating the model, it is further evaluated using a labeled test set to assess its performance. The
classification results align with the expected outcomes at a rate of 87.64%, providing compelling evidence for the
effectiveness of the generated model.

D. Attack Detection And Performance Evaluation
In this study, in addition to the logistic regression model, the Support Vector Machine (SVM) approach is

also employed to generate a classification model for comparison. The sample log data is vectorized, and different
amounts of data are fed into the two machine learning models. The experiments are conducted based on accuracy,
training time, and testing time as evaluation metrics. The results obtained are presented in Tables 8 and 9. It is
evident from the tables that the logistic regression method outperforms the SVM method in terms of both
accuracy and time consumption, making it more practical in this context.

Table 8: Calculation Results Using SVM
Data volume Accuracy Training time (μs) Testing time (μs)

1000 0.470000 35904 8976
3000 0.618000 314192 93748
5000 0.318000 945470 309201
8000 0.125000 535209 970370
10000 0.080000 662132 1539995
15000 0.044000 800504 1779567

Table 9: Calculation Results Using Logistic Regression
Data volume Accuracy Training time (μs) Testing time (μs)

1000 0.935000 38895 1031
3000 0.911000 45762 2047
5000 0.870000 206450 3192
8000 0.806000 506543 7037
10000 0.770000 688923 6570
15000 0.714000 981000 12939

V. CONCLUSION

A detection method for XSS and SQL injection attacks, based on honeypots and the logistic regression
algorithm, was designed in this study. The log samples captured by the honeypot were preprocessed, and selected
features were subjected to vectorization before being incorporated into the training of the logistic regression
model. The obtained attack detection model was experimentally validated and found to possess practicality in
terms of accuracy and performance. However, it should be noted that the method presented in this paper has
certain limitations. These include a single source for the training dataset, the need for expansion in the detectable
attack types, and further applications of the detection results. These aspects can be explored as potential research
directions in the future.

ACKNOWLEDGMENT

This paper is supported by The "New Generation Information Technology Innovation Project" of the China
University Industry, University and Research Innovation Fund(No. 2021ITA07007), Youth scientific research
project of Guangdong police college (No. 2022-QN04), Special Funds for the Cultivation of Guangdong College
Students' Scientific and Technological Innovation(“Climbing Program” Special Funds, No. pdjh2021b0357, No.
pdjh2022b0373, No. pdjh2024b276).Provincial undergraduate innovation and entrepreneurship training
program(S202311110030).

REFERENCES
[1] Chen Junxin. Research on XSS Attack Detection Technology Basedon Machine Learning. Hangzhou: ZheJiang University of

Technology, 2018.
[2] Roghaie Mahdavi, Abolghasem Saiadian. Efficient Scalar Multiplications for Elliptic Curve Cryptosystems Using Mixed

Coordinates Strategy and Direct Computations//Cryptology and Network Security-international Conference. DBLP, 2010:
184-198.

J. Electrical Systems 20-3 (2024): 814-822

822

[3] Oluwakemi Christiana Abikoye, Abdullahi Abubakar, Haruna Ahmed Dokoro, AKANDE NOAH OLUWATOBI, Aderonke
Anthonia Kayode. A Novel Technique to Prevent SQL Injection and Cross-site Scripting Attacks Using Knuth-morris-pratt
String Match Algorithm. Eurasip Journal on Information Security, 2020(1): 1-14.

[4] JANA A., MAITY D. Code-based Analysis Approach to Detect and Prevent SQL Injection Attacks//IEEE. 2020 11th
International Conference on Computing, Communication and Networking Technologies (ICCCNT), July 1-3, 2020,
Kharagpur, India. Piscataway, New Jersey: IEEE, 2020: 1-6.

[5] Rasoul Jahanshahi, Adam Doupé, Manuel Egele. You Shall Not Pass: Mitigating SQL Injection Attacks on Legacy Web
Applications//SIGSAC. The 15th ACM Asia Conference on Computer and Communications Security, October 5, 2020, Taibei,
China. New York: Association for Computing Machinery, 2020: 445-457.

[6] M. S. Aliero, I. Ghani, K. N. Qureshi, Rohani, Mohd Fo’ ad. An Algorithm For Detecting SQL Injection Vulnerability Using
Black-box Testing. Journal of Ambient Intelligence and Humanized Computing, 2019, 11(1): 249-266.

[7] HLAING Z. CS. S., KHAING M. A Detection and Prevention Technique on SQL Injection Attacks. 2020 IEEE Conference
on Computer Applications (ICCA), February 27-28, 2020, Yangon, Myanmar. Piscataway, New Jersey: IEEE, 2020: 1-6.

[8] HANKERSON Darrel, MENEZES Alfred, VANSTONE Scott. Guide to elliptic curve cryptography. Heidelberg: Springer-
Verlag Professional Comuting Series, 2004.

[9] WANG Wei-ping, LI Chang, DUAN Gui-hua. Design of SQL Injection Filtering Module Based on Regular Expression.
Computer Engineering, 2011, 37(5): 158-160.

[10] Congcong Shi, Tao Zhang, Yong Yu, WeiminLin. New approach for SQL-injection detection, Computer Science, 2012, 39(6):
60-64.

[11] W. Wang, J. Liu, G. Pitsilis, X. Zhang. Abstracting massive data for lightweight intrusion detection in computer networks.
Information Sciences, 2016(2): 1-14.

[12] Alwageed, Hathal Salamah. Detection of cyber attacks in smart grids using SVM-boosted machine learning models.Service
Oriented Computing and Applications, (2022): 1-14.

[13] WU S.H., CHRNG S. B., HU Y. Web Attack Detection Method Based on Support Vector Machines. Computer Science, 2015,
42(6A): 362-364.

[14] MM. Rashid, J. Kamruzzaman, MM. Hassan, T. Imam, S. Wibowo, S. Gordon, G. Fortino. Adversarial training for deep
learning-based cyberattack detection in IoT-based smart city applications. Computers & Security (2022).

[15] Zhu Jingwen, Xu Jing, Chen Liang, Li Jie. SQL injection attack detection based on hidden markov model. Computer
Applications and Software, 2023, 40(02): 331-344.

[16] Delplace A., Hermoso S., Anandita K. Cyber attack detection thanks to machine learning algorithms. arXivpreprint, arXvi:
2001. 06309, 2020

[17] Yang L., Shami A., Stevens G., et al. LCCDE: A decision-based ensemble framework for intrusion detection in the internet of
vehicles. Proc of the 2022 IEEE Global Communications Conf. Piscataway, NJ:IEEE,2022:3545-3550

[18] ZHUGE Jian-Wei, TANG Yong, HAN Xin-Hui, DUAN Hai-Xin. Honeypot Technology Research and Application. Journal
of Software, 2013, 24(4):825-842.

[19] ZHAI Guang-qun, CHEN Xiang-dong, HU Gui-jiang. Research and design on linkage system of Honeypot and intrusion
detected technology. Computer Engineering and Design. 2009, 30(21): 4845-4867.

[20] ZHU Tao, XIA Lingling, LI Penghui, Xu Zhongyi. Analysis of Botnet Attack Data Based on Log. Netinfo Security. 2022,
22(10): 82-90.

[21] X. Han, T. Pasquier, A. Bates, J. Mickens, M. Seltzer. UNICORN: Runtime provenance-based detector for advanced
persistent threats. In: Proc. of the Network and Distributed Systems Security (NDSS 2020) Symp. 2020. The Internet Society,
2020.

[22] Q. Wang, WU. Hassan, D. Li, K. Jee, H. Chen. You are what you do: Hunting stealthy malware via data provenance analysis.
In: Proc. of the Network and Distributed Systems Security (NDSS 2020). The Internet Society, 2020.

[23] RV. Mendonca, AAM. Teodoro, RL. Rosa, M. Saadi, DZ. Rodriguez. Intrusion detection system based on fast hierarchical
deep convolutional neural network. IEEE Access, 2021, 9: 61024-61034.

[24] Jemal I., Haddar M. A., Cheikhrouhou O., et al. Malicious http request detection using code-level convolutional neural
network. Risks and Security of Internet and Systems: 15th International Conference, CRiSIS 2020, Paris, France, November
4–6, 2020, Revised Selected Papers 15. Springer International Publishing, 2021: 317-324.

