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Abstract: - The accurate classification of osteoporosis is a crucial requirement in the medical field for identifying patients with skeletal 

disorders associated with aging. Achieving improved accuracy and reduced computational complexity in classification algorithms is 

essential. To address this, our research proposes a novel classification method utilizing the Hybrid Gradient Particle Swarm (HSG) 

Optimization-based Deep Belief Network, integrating the Particle Swarm Optimization (PSO) algorithm into the Gradient Descent (GD) 

algorithm. The osteoporosis classification process comprises five key steps: Preprocessing, Active Shape Model-based Segmentation, 
Geometric Estimation employing the proposed template search method, Feature Extraction for extracting medical and image-level features, 

and Osteoporosis Classification using the HSG-based Deep Belief Network. The proposed template search method efficiently and 

automatically updates the geometric points of the femur segment. Experimental validation using a real-time database demonstrates the 
effectiveness of the proposed method in terms of accuracy, sensitivity, and specificity. The results indicate an accuracy of 0.9724, affirming 

the efficacy of the proposed algorithm in making precise decisions regarding osteoporosis classification. 
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I.  INTRODUCTION  

The examination of the National Health and Nutrition Examination Survey (NHANES III) indicated that around 

14 million women aged 50 years and above suffer from low bone density [9]. According to the World Health 

Organization (WHO), approximately 70% of women are affected by osteoporosis, posing a significant challenge 

in diagnosis and femur fracture prevention [7]. Osteoporosis, emerging as a global health concern, leads to 

substantial mortality and morbidity [13] [3]. Current diagnostic methods involve a prolonged preclinical phase 

and lack cost-effective therapeutic options [14] [3]. The condition severely impacts bone density, increasing the 

risk of fractures due to bone fragility [14]. Termed the "silent epidemic," osteoporosis often remains undiagnosed 

until fractures, particularly in the hip region, occur, significantly affecting the quality of life [13]. Fractures can 

also impact vertebrae, causing height loss, severe backache, and bone deformities. Early detection remains the 

primary means of addressing osteoporosis-related fractures [15] [3]. 

The objective of the proposed diagnostic method is to determine whether a patient is affected by osteoporosis, 

offering the possibility to increase bone mineral density and reduce the risk of fractures. Diagnosis typically 
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involves X-rays, assisted by CT images and volumetric Quantitative Computed Tomography (vQCT) techniques 

[8]. Clinical trials employ traditional methods to assess bone mineral content, analyzing bone size, shape, and 

structure parameters to reveal bone quality, particularly in evaluating the proximal femur, which presents 

challenges due to anatomical complexity [16] [10]. Image processing methods analyze proximal femur 

architecture to uncover femoral neck and trochanteric volumes for densitometry and geometry analysis [11]. 

Factors influencing fracture risk, such as areal bone densities, are associated with osteoporosis [12]. 

Patients with osteoporosis undergo non-invasive assessment of bone using Bone Mineral Density (BMD), which, 

when associated with femoral geometry, predicts breaking strength more effectively than BMD alone [17] [8]. 

BMD is obtained through various methods, including QCT, Dual-energy X-Ray Absorptiometry (DXA), and 

ultrasound, with DXA T-score being the WHO-defined measure for osteoporosis [18] [3]. BMD is measured in 

areal and volume density, where Areal Bone Mineral Density (aBMD) and Volumetric Bone Mineral Density 

(vBMD) are crucial parameters. aBMD is influenced by sex, body size, quality, geometry, and composition [17] 

[20] [19] [8]. While BMD comparison with reference mean BMD is common, BMD alone does not suffice to 

predict fractures [4]. 

This research aims to develop a technique for Osteoporosis classification based on femur bone volumetric 

estimation. The proposed method comprises five steps: pre-processing, femur boundary segmentation, femoral 

geometry measurement, feature extraction, and classification. The input X-Ray image undergoes pre-processing 

through ROI-extraction to enhance processing efficiency and reduce complexity. Femur boundary segmentation 

uses the active shape model on the pre-processed image to extract the femur. Femoral geometry measurement 

employs the proposed template search method to estimate geometric points using the femur. Important features, 

both medical and image-level, are then extracted from the detected geometric points. Medical level features 

include hip axis length, femoral neck axis length, femoral head diameter, femoral neck width, neck shaft angle, 

and shaft width. Image level features such as mean, variance, entropy, skewness, and kurtosis are extracted from 

the segmented image. The extracted features form a feature vector applied to the proposed Hybrid Particle Swarm 

Optimization with Gradient Descent based Deep Belief Network (HSG-DBN) for classification into three classes: 

normal, osteopenia, and osteoporosis. 

The contributions of this paper include the introduction of the proposed template search method, enabling 

automatic estimation of geometric points for effective extraction of medical features for Osteoporosis 

classification. Furthermore, the paper presents the use of HSG-DBN for Osteoporosis classification, integrating 

gradient descent and Particle Swarm Optimization (PSO) for optimal DBN training, with the optimization 

developed using the proposed HSG algorithm.  

The paper is organized as follows: Section 1 provides the background, Section 2 covers literature review and 

existing method challenges, Section 3 outlines the proposed method, Section 4 presents the results, and Section 5 

concludes the paper. 

Motivation 

The section depicts the literature review and challenges of the existing method.  

2.1 Literature Survey 

In their work [1], Jennifer S. Gregory and Richard M. Aspden devised Femoral geometry measurements to assess 

an individual's hip fracture risk. However, a drawback of this method lies in its limited accuracy in predicting 

fracture risk. Melih S. Aslan et al. [2] introduced a method called Probabilistic and universal shape model, which 

demonstrated robustness under varying noise levels and high reliability irrespective of bone diseases. Despite 

these advantages, the method entails high computational effort and is unable to mitigate misclassifications. Esther 

Pompe et al. [3] presented a Manual vertebral bone attenuation measurement method for estimating femur bone 

volumetric, ensuring early osteoporosis detection on low-dose chest CT with good reliability but offering lower 

precision. Sami P. Vaananen et al. [4] developed Statistical appearance models (sams) and Finite Element (FE) 

models for accurate reconstruction of femur shape, internal density, and thickness. However, the method lacks the 

potential to reduce computation time using graphical processor unit calculations. V. Sapthagirivasan et al. [5] 

introduced the Trabecular Enrichment Approach (TEA), effective for identifying women vulnerable to 
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osteoporotic risk but sensitive to manual control. Alexandra Hotca et al. [6] proposed the Bical (Bias Calculation) 

method, offering improved precision but facing challenges due to poor contrast and relatively low Signal-to-Noise 

Ratio (SNR). Furthermore, standard automatic segmentation algorithms struggle with disease detection. Ludovic 

Humbert et al. [7] devised a model named Statistical shape and appearance model with a 3D-2D registration 

approach, enhancing the osteoporosis detection process while maintaining DXA as the standard routine modality. 

However, the accuracy of the method remains poor, and it is time-consuming. Kiattisin Supaporn and 

Chamnongthai Kosin [8] introduced the Active contour model (ACM), effective in estimating Bone Mineral 

Density (BMD) for osteoporosis diagnosis from a single x-ray image. Nonetheless, the method comes with a high 

equipment cost. 

2.2 Challenges 

• The limitations associated with Quantitative CT (QCT) and DXA imaging include their reliance on high 

radiation doses and the substantial equipment costs, albeit these machines are commonly available in hospital 

settings [1] [8]. 

• DXA encounters challenges in analyzing calcifications, overlying soft tissue, and fails to capture 3D bone 

properties, leading to inaccuracies [8]. As a low-resolution technique, DXA falls short in assessing bone 

microarchitecture crucial for defining osteoporosis [6]. 

• T-score, Hip Structural Analysis (HSA), dual-energy x-ray absorptiometry (DXA)-based finite element 

analysis, and fracture risk assessment tool (FRAX) overlook the 3D distribution of cortical and trabecular bone 

mass in bone [14-16] [7]. 

• The automated point correspondence detection algorithm, Scale-Invariant Feature Transform (SIFT) [2], 

proves inadequate in detecting Vertebral Body (VB) height changes, resulting in the failure to scan patients at 

regular intervals for identifying corresponding points. 

• Trabecular Enrichment Approach (TEA) [5] faces challenges related to spatial resolution and struggles in 

finalizing the Region of Interest (ROI), crucial for locating the gap between the femur head region and the 

acetabulum. 

3 Proposed Method of Osteoporosis Classification Using The HSG-Based Deep Belief Network in X-Ray 

Images. 

Osteoporosis is a condition characterized by weakened bones, making them prone to fractures, a vulnerability 

easily identifiable through X-ray examinations. The affected bones exhibit larger spaces and holes compared to 

their stronger, normal counterparts, a result of hormonal changes affecting both men and women. Early and 

automatic detection of osteoporosis is crucial, and X-ray images of femur bones serve as a valuable diagnostic 

tool. The proposed classification method is based on femur bone volumetric estimation, involving five consecutive 

steps. In Step 1, interesting regions are extracted from the X-ray femur image through a segmentation process. 

This process delineates femur boundaries from the pre-processed X-ray image using the active shape model. The 

third step involves femoral geometry measurement, where femoral points are automatically marked using the 

proposed template search method. In the fourth step, features are extracted from the marked femur. Finally, 

classification is carried out using the proposed HSG-DBN, determining whether the patient is affected by 

osteoporosis or not, with the assigned class labels being normal, osteopenia, or osteoporosis. Figure 1 illustrates 

the block diagram of the proposed automated method for osteoporosis classification. 
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Figure 1. Block diagram of the proposed method of osteoporosis classification using Femur bone volumetric 

estimation 

3.1 Pre-processing 

The initial stage in Femur bone volumetric estimation is pre-processing, which prepares the X-ray image for 

subsequent processing by eliminating any complexities. This involves extracting regions of interest from the input 

X-ray image. 

3.2 Femur boundary segmentation using active shape model 

Active Shape Modelling (ASM), as described in [23], is a technique that characterizes object boundaries using a 

set of points, each representing a specific region within the object. Statistical analysis of these points yields the 

primary model of variation for a new shape. The initial approximation for any shape is established through training 

with a few images, determining the optimal orientation, shape, and position. When a new image is introduced, the 

shape of the image is extracted based on the prior training. ASM shares similarities with the active contour model 

but distinguishes itself through global shape constraints that elucidate the spatial location of the object. Particularly 

applicable to medical images, ASM excels in extracting shapes. In this paper, the femur's shape is acquired, 

facilitating the identification of significant femur points for subsequent feature extraction. 

ASM offers the advantages of detecting all edges and efficiently distinguishing bone structures from X-rays, 

surpassing other methods in this aspect. The extraction of bone shape is effectively handled, making ASM well-

suited for various bone orientations. The lines connecting statistical points do not contribute to the shape, and the 

distance between points is determined by Euclidean distance. Consequently, the distance between shapes relies 

on Euclidean distance, represented as: 

( ) ( )212
2

12 qqppE −+−=      (1) 

In the context of aligning two points, denoted as p and q, the computation of centroids plays a crucial role. 

Centroids are determined as the mean of the positions of these points. The shape size, defined as the square root 

of the Euclidean distance between the points and the centroid, serves as a significant parameter for alignment. 

This shape size facilitates the automatic initialization of a test input femur image. 

In the active shape model, the initial step involves learning the shape of the image through a training process. 

Alignment of various image shapes is necessary to generate the mean shape. Aligning the shape requires the 

extraction of all shapes within the x-ray at a specific orientation, allowing for the presence of the bone anywhere 

in the x-ray image. Orientation is a critical factor for locating the bone in x-ray images at varying angles, making 
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the method effective for bone segmentation. The desired shape is achieved based on its close match with the mean 

image, represented as: 

cuu +=
−^

      (2) 

where, 
^

u is the generated shape vector obtained using the active shape model, and 
−

u indicates the mean shape 

that is given as, 
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 symbolizes the Eigen vector of the covariance matrix M belonging to the training image shape points. The 

covariance matrix is given as, 
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The significance of Eigen vectors derived from the covariance matrix, particularly those associated with the largest 

Eigen values, lies in representing highly meaningful modes of variation. By varying the value of c in equation (2), 

the optimal set of shapes is generated. Following the completion of training, the test image's shape is sought by 

comparing it with the mean shape. The bone's shape is determined by identifying the image that aligns with the 

mean shape. The distance between the test shape and the mean shape is quantified as: 
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where, 
1−

mM is the covariance matrix and  
−

m is the mean profile. The minimum distance yields the best shape, 

and the method of shape segmentation seems to be highly robust. 

3.3 Femoral geometry measurement using the proposed template search method 

This section underscores the importance of identifying key points on the femur bone through the proposed 

template search method for the computation of various medical-level features from the femur segment. The 

template search method, as proposed, automatically computes significant points within the femur segment, 

presenting advantages over existing manual marking methods. In a previous study [1], femur segment geometry 

estimation was conducted manually, which at times lacked precision and required prior knowledge of individual 

femurs for accurate marking. The variability in femur structure among individuals contributed to the limitations 

of manual marking. Therefore, the introduction of an automatic method employing the template search method 

for landmark identification adds significant value to the research. Accurate estimation of femoral geometry is 

crucial for defining the risk of fracture and assessing bone strength. Figure 2 illustrates the geometric measurement 

facilitated by the automatic template search method, and the subsequent steps outline the process involved in 

measuring the geometry of the femurs. 

In the first step, the Circular Hough Transform is applied with the primary objective of detecting circular regions 

within the femur segment, aiming to identify the optimal center denoted as O in Figure 2. The Circular Hough 

Transform facilitates the localization of circular regions, enabling precise identification of the circle's center. 

Moving on to the second step, points B and G are determined. Using O as the center, a horizontal line is drawn 

across the optimal center, and the points where it intersects the femoral boundary are marked as B and G. This 

step involves establishing key reference points on the femoral boundary concerning the optimal center. 
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The third step involves marking the point A. By measuring the distance between points B and G and dividing it 

by 8, a distance measure 'x' is obtained. Point B is then extended outward to point A, situated at a distance of 'x' 

from B. This establishes the position of point A in relation to the initial reference points. 

Proceeding to the fourth step, a perpendicular bisector is drawn with O as the optimal center. This bisector is 

applied to the line segment connecting points A and G, resulting in the intersection points I and C. Additionally, 

a parallel line HD is drawn relative to the line IC, intersecting the femoral boundary at three points when a 

horizontal line is drawn from point H. This step enhances the geometric characterization of the femoral region. 

Finally, in the fifth step, the point J is located. Connecting points E and F, which form the femoral shaft, a line is 

drawn from the midpoint of EF to intersect with the line AG at point J. The optimization of these points is 

efficiently computed using the proposed template search method. This method automatically derives crucial points 

from the femoral boundaries, ensuring the accurate computation of medical-level features for subsequent analysis. 

 

Figure 2. Proposed template search method for measuring the femoral geometry 

3.4 Feature extraction using the medical level and image level features 

This section focuses on extracting features through both medical and image-level parameters. The geometric 

points, automatically detected through the proposed automatic template search method, contribute to obtaining 

medical level features. Simultaneously, the pixels encompassed by these medical level features form the basis for 

extracting image-level features. 

3.4.1 Medical level features: Effective classification heavily relies on medical level features, significantly 

contributing to improved classification accuracy. These crucial medical level features comprise hip axis length, 

femoral neck axis length (HAL), femoral head diameter (FHD), femoral neck width (FNW), neck shaft angle 

(NSA), and shaft width (w). Extraction of these features is accomplished using geometric points obtained through 

the automated template search method. 

a) Hip Axis Length (HAL): This refers to the distance between the greater trochanter (point A) and the inner 

pelvic brim (point G) as illustrated in Figure 2. HAL is a crucial measurement associated with bone health, where 

a longer HAL indicates a higher risk of fractures, serving as a reliable indicator of bone diseases. 

b) Femoral Neck Axis Length (FNAL): FNAL is defined as the distance between the greater trochanter (point B) 

and the apex of the femoral head (point G), as shown in Figure 2. This measurement is particularly relevant when 

femurs are isolated from connective tissues and lack association with the pelvic region. 
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c) Femoral Head Diameter (FHD): FHD measures the strength of the bone and corresponds to the distance between 

geometric points I and C in Figure 2. Maximizing the femoral head diameter is essential for enhancing bone 

strength. 

d) Femoral Neck Width (FNW): FNW is the narrowest distance across the femoral neck, perpendicular to the neck 

axis. This distance, depicted as the line between points F and G in Figure 2, is indicative of bone damage risk, 

with a lower FNW suggesting a higher risk. However, it's important to note that FNW is influenced by factors 

such as age, body size, and other parameters.  

e) NSA: The neck shaft angle, designated as J , represents the angle between the femoral neck axis and the shaft 

axis. The normal NSA is found to be about − 135120 in adults, and it varies for individuals based on their 

physical activity. 

f) Shaft width: The dimension of the femur immediately beneath the trochanter minor is identified as the shaft 

width. In Figure 2, the line EF illustrates the measurement of the shaft width. 

3.4.2 Image level features: Pixel-wise estimation is employed to derive image-level features, encompassing 

mean, variance, entropy, skewness, and kurtosis. The mean feature is mathematically expressed as follows: 


=

=
n

i
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n 1

1
       (6) 

where,  is the mean, i refers to the thi pixel of the femur image, and n be the total number of pixels in the 

image. The significance of computing the mean lies in the extraction of texture features from the femur image to 

enhance the classification accuracy. The determination of image variance is accomplished as follows, 
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where, V is the variance feature of the femur image. The entropy-based feature is computed as, 
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where, ( )iU  is the unique pixel values of the femur image. The entropy computation is based on the pixel 

intensity and the entropy value is large when the difference in the intensity of the neighboring pixels is large. 

Skewness is the measure of asymmetry and kurtosis is the measure of the heavy or light-tailed parameter based 

on the normal distribution. The skewness and kurtosis are denoted as, S and K . 

The feature vector of the femur image is the combination of the medical features and image-level features that is 

given as, 

 lj ffffF ,...,,...,, 21=       (9) 

where, l is the total number of features for an femur segment and is equal to 11 such that the dimension of the 

feature vector for the individual femur segment is given as,  111 . The features of the femur segment
 

1121 ....,,, fff are the HAL, FNAL, FHD, FNW, NSA, w,  ,V , ( )ie  , S , and K . HAL, FNAL, FHD, FNW, 

NSA, and w are the medical-level images and  ,V , ( )ie  , S , and K are the image-level features. 

3.5 Classification using the proposed GHS-DBN for Osteoporosis  

The proposed HSG-DBN is developed by training the DBN [21, 22] using the Particle Swarm Optimization 

Algorithm along with the Gradient Descent Algorithm based on the error estimate.  
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The PSO algorithm relies on the concept of musicians tuning their instruments to achieve harmony. During the 

search for optimal pitch, a solution vector is constructed, where individual decision variables explore solutions 

within a defined range. When a better solution is identified, it is stored in memory. The advantages of the PSO 

algorithm include: i) lower mathematical requirements compared to other optimization algorithms, eliminating 

the need to set initial values for decision variables, ii) no requirement for derivative information, iii) enhanced 

flexibility as it generates a new vector by considering all available existing vectors, and iv) efficient determination 

of high-performance spaces in less time. However, similar to other optimization problems, PSO has the drawback 

of converging to local optimal regions when dealing with multimodal issues. Gradient descent's simplicity and 

lack of a need for second derivative derivation contribute to fast computation and minimal storage requirements. 

Nevertheless, the scalability of the problem is a limitation for GD. The demerits of PSO and GD are balanced in 

the proposed HSG algorithm, which focuses on the optimal tuning of Deep Belief Network (DBN) weights. 

3.5.1 Architecture of DBN:  

The significance attributed to Deep Belief Networks (DBN) [22] lies in its capability to ensure robust classification 

of input data by efficiently utilizing hidden neurons. It possesses the inherent capacity to comprehend the 

intricacies within the data for achieving effective classification. To advance the classification process, the features 

extracted from the input image are input to the classifier, which then determines the class label using the GHS 

algorithm for training. The DBN architecture comprises multiple Restricted Boltzmann Machines (RBMs) and a 

Multi-Layer Perceptron (MLP) layer, with two RBMs employed in this specific configuration. The MLP layer 

mirrors a neural network structure with input, hidden, and output layers. The features undergo processing through 

the weights connecting these layers. The feature vector serves as input for RBM1, and the output from RBM1 

becomes the input for RBM2. The output from RBM2 serves as input to the MLP layer, ultimately determining 

the class label for the given input data. Figure 3 illustrates the DBN network architecture trained using the HS 

algorithm. The DBN output, represented by the class label, categorizes the input femur segment as normal, 

osteopenia, or osteoporosis, enabling the identification of individuals affected by osteoporosis. The automated 

detection method ensures prompt and effective decision-making in osteoporosis diagnosis. 

 

Figure 3. Architecture of DBN model 

The mathematical representation of DBN is given below: The input feature vector is the input to the input layer 

of RBM1, and the neurons present in the input layer is given as, 

( )111;1;},,,,,,{ 111
3

1
2

1
1

1 ==   gggggg      (10) 

yddddd y =  1};,,,,,{ 111
2

1
1

1       (11) 

where, 
1
N is the 

th input neuron of RBM1 and there are 11 input neurons that equals to the total number of 

input features corresponding to the individual pixels of the image.  
1
M is the 

th hidden neuron of RBM1 and 
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there are y number of hidden neurons in RBM1. Let q  and s represent the biases in the visible, and the hidden 

layer that is given as, 

},,,,,,{ 111
3

1
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1
1

1
= qqqqqq       (12) 
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2

1
1

1
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The biases in input and hidden layer of RBM1 are equal to the number of hidden and input neurons in the layer. 

The weights of RBM1 are given as, 

  yXX =  1;1;11
    (14) 

where, 
1
X is the weights between the 

th input neuron and the 
th hidden neuron and the dimension of the 

weights in RBM1 is given as,  y . Therefore, based on the biases and the weights, the hidden layer output 

from RBM1 is given as, 
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where,   is the activation function in RBM1. Hence, the output of RBM1 is represented as, 

yPP =  1};{ 11
     (16) 

The output from the RBM1 forms the input to RBM2, and the output of RBM2 is computed similar to the above 

explained equations. The output from RBM2 is denoted as 
2
P that forms the input to the MLP layer. The output 

from RBM2 is given as, 

yhQQQQQ z
y
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21      (17) 

where, y is the total number of input neurons in MLP. The hidden neurons of MLP is given as, 

=   1;},,,,,{ 21
zzzzz RRRRR       (18) 

where,  corresponds to the total number of hidden neurons in the MLP and
zX represents the bias of 

th hidden 

neuron and the output of MLP layer is given as, 

Dooooo z
D
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where, D is the number of output neurons in MLP layer weight vector between the input layer, and the hidden 

layers and is represented as, 

=  1;1};{ yXX mlpmlp
     (20) 

where, 
mlpX is the weight vector among 

th input neuron, and 
th hidden neuron. The output of the MLP hidden 

layer depends on the weight vectors of hidden neurons with the bias, which is given as, 
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where, 
z

 is the bias. The weight vector between the hidden and the output layer is indicated as M and is given 

by, 
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DXX PM =  1;1};{       (22) 

Thus, the output of MLP is computed as, 

IXO P =
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1
        (23) 

where, 
MX  denotes the weights between the 

th hidden and 
th output neurons, and I is the output from the 

hidden layer.  

a) During the training phase of the Restricted Boltzmann Machine (RBM) layer, the HSG algorithm is employed 

to advance the training process. This algorithm relies on minimizing energy, utilizing the weights associated with 

the minimum energy to update the RBM weights when computing the output. 

b) In the training phase of the Multi-Layer Perceptron (MLP), the training process is conducted based on the 

proposed HSG algorithm. The optimal weights are determined using the HSG algorithm by minimizing the error. 

The algorithm that results in the minimum error value is then utilized to update the weights of the MLP. The 

following steps outline the training process of the MLP. 

Step 1: Randomly generate the weight vectors MX and mlpX  as shown in equations (22) and (20), respectively. 

Step 2: Read the input vector 2
P obtained from the output layer of RBM2.  

Step 3: Calculate I and O based on equations (21) and (23), respectively. 

Step 4: Compute the error of the MLP layer that is obtained using the estimated and target output, given as, 

( )


=
 −


=

1

1
groundOavg

a     (24) 

where, O  is the attained output, and ground  is the expected output. Based on the minimum error, the weights 

are updated in DBN. 

Step 5: Determine the weight vectors in the visible layer, and the hidden layers using the partial derivative as 

given below, 

mlp

avg
a

mlp

X
X



 



−=       (25) 

M

avg
a

M

X
X







−=



        (26) 

where,  is the learning rate. 

Step 6: Determine the weights of the next iteration using the proposed algorithm as, 

( ) ( ) ( )  =+ 1,01 randtXtX mlpmlp
     (27) 

where, ( )rand is the random number that varies in the interval  1,0 , and ( )tX mlp
 is the weight of the input and 

the hidden layer of MLP in the tht iteration. Substituting the above equation in the weight update equation of 

Gradient search algorithm,  

( ) ( ) XtXtX mlpmlp +=+  1       (28) 
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( )
( ) ( )

2

11
1

+++
=+

tXtX
tX

mlpmlp
mlp 
      (29) 

( )
( ) ( ) ( )

2

1,0
1

mlpmlpmlp
mlp

XtXrandtX
tX




 ++
=+      (30) 

( )
( ) ( )

2

1,02
1

mlpmlp
mlp

XrandtX
tX




 +
=+      (31) 

where, ( )1+tX mlp
 is the weight of the input and hidden layer of MLP in the ( )tht 1+ iteration. The change in 

weights is denoted as, 
mlpX . The weight update of MLP between the hidden and output layer is given as, 

( )
( ) ( )

2

1,02
1

MM
M XrandtX

tX 


+
=+ 




     (32) 

where, ( )1+ tX M
  is the weight update between the hidden and the output layers of MLP in the ( )tht 1+ iteration 

and ( )tX M
 is the weight update between the hidden and output layer of MLP in the 

tht iteration or the previous 

iteration and X is the change in the weights between the hidden and output layer of MLP. The weight update 

follows the minimum error estimate. 

Step 7: Repeat steps 2 to 6, until the best weight vector is determined. 

4. Results and Discussion 

This section presents the outcomes and discussion of the proposed osteoporosis detection method, emphasizing 

the effectiveness of the approach through a comprehensive comparative analysis. 

4.1 Experimental setup 

The Osteoporosis classification technique proposed in this study has been executed in MATLAB, utilizing a real-

time database. The MATLAB implementation is carried out on a personal computer running the Windows 8 

operating system. 

4.2 Database employed 

The study utilized a real-time database constructed with data gathered from individuals residing in the Chennai 

locality. X-ray images from approximately 50 individuals within the age range of 25-81 years were collected for 

the purpose of osteoporosis classification. The database comprises a total of 50 women and 50 men, highlighting 

the significant impact of osteoporosis on elderly patients. Ethics approval for the study was obtained from the 

affiliated university. 

4.3 Experimental Analysis 

Figure 4 displays a representative outcome of the conducted experiment. The experiment involved the analysis of 

50 images, and within this set, this section illustrates the experimental results for a single image. The original 

image utilized for the analysis is presented in Figure 4a), followed by the application of the active shape model, 

as depicted in Figure 4b). Finally, Figure 4c) showcases the results of the geometric estimation achieved through 

the proposed template model. The identification of geometric points is crucial for subsequent medical feature 

extraction and, consequently, for extracting image-level features to facilitate effective classification. 
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a) b) c) 

Figure 4. Sample results of the experiment a) Input image b) Output from Active shape model c) detection of 

femur geometry using the proposed method 

4.4 Performance metrics 

The effectiveness of the proposed method is assessed through various metrics, including the error in femur 

volumetric estimation, classification accuracy, sensitivity, and specificity. 

4.5 Competing methods 

The comparison involves evaluating the proposed HSG-DBN method against existing approaches, specifically 

Deep Belief Network (DBN) [22], K-Nearest Neighbor (KNN) [24], Support Vector Machine (SVM) [25, 26], 

and Neural Network. In this analysis, the methods DBN, KNN, SVM, and NN are utilized as substitutes for the 

proposed HSG-DBN method employed in this research. 

4.6 Performance analysis of the proposed classifier based on the features 

Figure 5 illustrates the analysis of the proposed method based on the extracted features. For a training percentage 

of 0.9, the accuracy, as depicted in Figure 5a, achieved by the proposed method using femur (medical) features, 

image features, and combined features (medical + image) is 0.58, 0.8, and 0.9123, respectively. Figure 5b shows 

the sensitivity obtained by the proposed method with femur (medical) features, image features, and combined 

features, all yielding a value of 1. Furthermore, Figure 5c displays the specificity achieved by the proposed method 

using femur (medical) features, image features, and combined features, with values of 0.81, 0.87, and 0.965, 

respectively. Notably, the proposed method utilizing combined features outperforms in terms of accuracy, 

sensitivity, and specificity. 

  
a) b) 
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c)  

Figure 5. Performance analysis based on features a) accuracy b) sensitivity c) specificity 

4.7 Performance analysis of the proposed classifier based on volumetric estimation error 

Figure 6 illustrates the volumetric estimation errors obtained from the proposed method for 50 images. In Figure 

6a, the volumetric estimation errors for the first 25 images are presented, while Figure 6b displays the errors for 

images 25-50. Specifically, the volumetric errors for images 25 and 50 are measured at 0.8 and 1.231, respectively. 

The volumetric analysis involves a comparison of medical features derived from the proposed template method 

with the original features, emphasizing the need for minimal error in this process. 

  

a) b) 

Figure 6. Volumetric analysis a) for images 1-25 b) for images 25-50 

4.8 Comparative Analysis based on training percentage 

Figure 7 illustrates the analysis based on varying training percentages. For a training percentage of 0.9, the 

accuracy of different methods, including the proposed HSG-DBN, DBN, KNN, SVM, and NN, is determined to 

be 0.9724, 0.821, 0.9, 0.41, and 0.42, respectively. As depicted in Figure 7a, the accuracy of all methods 

demonstrates an increasing trend with higher training percentages, and notably, the proposed HSG-DBN exhibits 

the highest accuracy among them. 

Examining sensitivity for the same training percentage, the proposed HSG-DBN, DBN, KNN, SVM, and NN 

exhibit values of 1, 1, 0.953, 1, and 0.599, respectively (Figure 7b). Similar to accuracy, sensitivity increases with 

higher training percentages, with the proposed HSG-DBN outperforming other methods in achieving greater 

sensitivity. 



J. Electrical Systems 20-3 (2024): 789-806 

802 

Furthermore, for a training percentage of 0.9, the specificity values for the proposed HSG-DBN, DBN, KNN, 

SVM, and NN are determined as 0.981, 0.91, 0.93, 0.712, and 0.7, respectively (Figure 7c). The trend across 

methods indicates an increase in specificity with higher training percentages. Notably, the proposed HSG-DBN 

demonstrates superior specificity compared to the other methods under consideration. 

 

 

 

Figure 7. Comparative analysis of classification methods based on training percentage a) accuracy b) sensitivity 

c) specificity 
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4.9 Comparative Analysis based on kfold 

Figure 8 presents the analysis based on k-fold validation. The accuracy values for various methods, including the 

proposed HSG-DBN, DBN, KNN, SVM, and NN, are observed as 0.888, 0.777, 0.444, 0.23, and 0.7111, 

respectively, for a k-fold value of 5. As depicted in Figure 8a, the accuracy of these methods exhibits an increasing 

trend with the rise in the k-fold value from 1 to 5. Notably, the proposed HSG-DBN demonstrates a higher 

accuracy compared to other methods. The sensitivity values for the methods (proposed HSG-DBN, DBN, KNN, 

SVM, and NN) are found to be 1, 1, 0.777, 0.7, and 0.656, respectively, for a k-fold value of 5. Illustrated in 

Figure 8b, the sensitivity of these methods shows an upward trend as the k-fold value increases from 1 to 5. The 

proposed HSG-DBN stands out with a higher sensitivity compared to alternative methods. 

Examining the specificity values for the methods (proposed HSG-DBN, DBN, KNN, SVM, and NN) with a k-

fold value of 5, they are determined as 0.87, 0.82, 0.66, 0.63, and 0.81, respectively. Shown in Figure 8c, the 

specificity of these methods follows an increasing pattern with the elevation of the k-fold value from 1 to 5. 

Notably, the proposed HSG-DBN exhibits a higher specificity compared to the other methods. 

  

a) b) 

 

 

c)  

Figure 8. Comparative analysis of classification methods based on kfold a) accuracy b) sensitivity c) specificity 

4.10 ROC analysis 

In Figure 9, the ROC analysis for various classification methods is presented. At a 20% error rate, the True Positive 

Rate (TPR) for the proposed HSG-DBN is 0.8. In comparison, DBN, KNN, SVM, and NN achieved TPR values 

of 0.6, 0.31, 0.544, and 0.433, respectively. The proposed method demonstrates a superior TPR value for minimal 

error compared to existing methods. 
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Figure 9. ROC analysis 

4.11 Comparative discussion 

Table 1 presents a comparative analysis of the methods, showcasing the performance metrics of the proposed 

method alongside existing approaches. The proposed method achieved notable accuracy, sensitivity, and 

specificity values, measuring at 0.967, 1, and 0.981, respectively. In contrast, the existing methods, including 

DBN, KNN, SVM, and NN, demonstrated varying levels of performance. DBN, KNN, SVM, and NN attained 

accuracy scores of 0.821, 0.9, 0.41, and 0.42, respectively. Sensitivity values for DBN, KNN, SVM, and NN were 

consistently high at 1, 1, 0.953, 1, and 0.599, respectively. Specificity results indicated that DBN outperformed 

the other methods with a score of 0.981, while KNN, SVM, and NN showed specificity values of 0.91, 0.93, and 

0.712, and 0.7, respectively. 

Table 1. Comparative discussion 

 
Proposed 

HSG-DBN 
DBN KNN SVM NN 

Accuracy 0.974 0.821 0.9 0.41 0.42 

Sensitivity 1 1 0.95 1 0.599 

Specificity 0.981 0.91 0.93 0.71 0.71 

 

5. Conclusion 

The primary focus of this paper is the osteoporosis classification method employing the HSG-DBN, an integration 

of gradient descent and PSO algorithms for training the DBN. This integration enhances the efficiency and reduces 

complexity in classification by utilizing an effective feature vector derived from femur image analysis, specifically 

through Femur bone volumetric estimation. The initial step involves segmenting the input X-ray image using the 

active shape model to extract the femur's shape. Geometric estimation is then performed using the proposed 

template search method, identifying significant points on the femur. These geometric points serve as the basis for 

extracting medical-level features and subsequently, image-level features. The resulting effective features are fed 

into the DBN, determining the class label and ensuring accurate classification and decision-making. Experimental 

validation using a real-time database confirms the effectiveness of the classification method, demonstrating 
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improved accuracy. The proposed method achieves an accuracy of 0.9724, sensitivity of 1, and specificity of 

0.981, substantiating its efficacy in osteoporosis classification. 

Data Availability statement : 

Upon corresponding author request. 
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