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Abstract: The load balancing (LB) in FOG architecture is a formidable task with the availability of minimal resources. This field encounters 
enormous studies that portray the routing of task between the fog physical devices and cloud nodes. The presence of different types of 

heterogeneity devices are at helm of difficult scheduling process. To allocate LB based on the available resource we propose a novel Deep Neural 

Network (DNN) based Tuna swarm strategy based Bacterial Foraging optimization algorithm (TBFO) which employs three stages such as 
monitoring the fog resources, Classification based on deep learning technique and dynamic scheduler that are optimized. With the dynamic 

scheduling algorithm this work aims to provide LB in real time application. The first stage is to monitor the resources of server and amassed in 

fog resource table. The next step is to identify the unerring server and is effectuated with the proposed DNN technique. The last stage is to 

allocate the process to the selected server with the TBFO. It certifies the robust continuous services in the fog LB. Simulations are conducted 

and compared the outcomes with the existing works and ensures effective load balancing, make span and resource utilization. 

Keywords: Load balancing, Fog computing, deep Neural Network, Bacterial Foraging algorithm, and server allocation 

I. INTRODUCTION 

In a fog framework [1], load balancing helps to evenly distribute the strain on bandwidth to continue to offer 

amenities if a portion of service malfunctions. This is achieved by properly and allocating bandwidth when 

deploying and de-provisioning usage processes.  The process of dividing up communication over the network 

evenly among an assortment of assets for assisting a site is known as load balancing [2]. Many of clients must be 

processed concurrently by contemporary apps, and every client must receive accurate material, footage, pictures, 

and other content quickly and reliably. For service suppliers, the loud infrastructure offers an integrated framework 

for processing-intensive operations, this can be due to the broadband backbone's plentiful capabilities. Here, 

removing regional analysis reduces the cost of computing and energy usage at connected interfaces [3]. 

 Nevertheless, as a result of the longer route dissemination wavelengths between endpoints and physically 

sedentary obscure points, the use of clouds causes a surge in connection latency. An upon-request outstanding 

durability platform that can manage both the highest and lowest communication volumes [4] is made possible by 

distributing the load. The ideal period of operation would be attained if all users completed the final task 

simultaneously, so there could be no waiting around. It is to guarantee that, to satisfy demand, every process in 

the line is operating at the same speed. 

 Developing the perfect combination of goods to guarantee minimal stockpile and growing adaptability by cutting 

the conversion time are the main goals of load leveling. It increases reaction time and decreases latency among 

networks to enhance application productivity. Gradually divide the task among hosts to enhance the efficiency of 

the application, and minimize delays by rerouting customer inquiries to a computer that is nearby to the user's 

location. Such as making concurrent applications more complicated and overhead-prone, causing task completion 

and customer interaction to be unpredictable and inconsistent, relying on the accessibility and correctness of 

knowledge, and interfering with additional maximizing the efficiency. To achieve effective load balancing we 

propose an innovative approach known as TBFO based DNN. Some of the main points are, 

• The load balancing is achieved by balancing the requirements of server and to determine the incoming 

processes. It also considerate the requirements of CPUs per server. 
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•    The requirements of RAM, storage requirements and if physical server is used then it is necessary to 

determine the overall size and traffic of the network. The computing power of the system also determined. 

The roadmap of the work is: in section 2 the relevant works are explained with their demerits. The proposed work 

is explained in section 3 in a wider manner. In section 4 the results and performance are analyzed. The summary 

is attached in section 5. 

II. RELATED WORKS 

Karthik et al. [5] have described a fog computing-based whale optimization algorithm (FGWHO) employed to 

calculate the structure's generator location, energy production, and electrical consumption. The chosen controllers 

focused on expanding the connection's connectivity to achieve the ideal capacity. The infrastructure was built to 

determine interactions, vitality, and separation between networked devices. Network reliability was enhanced by 

the suggested method in the areas of efficiency, retention time, and residue capacity. However, it is inadequate to 

transfer the information between nodes.  

Liao et al. [6] have presented a cognition-centric fog computing resource balancing (CFCRB) scheme an 

intellectual balancing infrastructure with a perception platform that stores information concerning intellectual fog 

materials, processes policies, and monitors the consumption of services. The implementation of networked 

procedures involves the use of a multiagent integrity concept. These distributed processes can improve Internet 

of Things flexibility and resilience because they only require regional processing as well as interaction. Initially 

continue to anticipate that more effective protocols will enable the implementation of the system. Thus, it is 

impossible to carry out resource forecasting on hardware devices. 

Maswood et al. [7] have developed a Mixed-Integer Linear Programming (MILP) based optimization model a 

unified fog cloud framework for assisting applications that move quickly at a decreased running price by 

minimizing energy expenses and reducing delays. The dual goals of this system's combined ultimate function are 

load distribution and transmission price reduction. The findings of virtual reality demonstrate that this system can 

efficiently use a collaborative setting to reduce the price of transmission and regulate the burden. To determine 

the degree of preference, one gives strength elements to the various aims in the entire mission statement. This 

effort can assist fog firms in efficiently allocating the lack of funds. However, it is insufficient to examine the 

system on a broad scale. 

Siasi et al. [8] suggested deep learning network is made up of minimal and high-capacity cloud nodes that are 

situated close to the station. Predicting the subsequent inbound procedure and prefetching it onto the associated 

node is the intent. As a result, the identical task can be retained immediately by the server for additional requests, 

saving on goods, computational expense, and power usage. Additionally, this results in greater demands being 

fulfilled and more bandwidth. Furthermore, implementation expenses are significantly raised by the enlarged fog 

levels framework. 

Asghar et al. [9] highlighted a fog-based health monitoring system architectureto reduce network utilization and 

delay. Devices are used to send packets of the client's metabolic attribute statistics that are created by detectors to 

the cloud cluster. Receiving messages of information are processed by nodes located in fog to determine the extent 

to which an individual is critically ill. The number of new inquiries received by each mist cluster in immediate 

systems may differ, thereby causing an imbalance in the cloud stations' capacity. Thus, there is a lack of using 

varied data sets. 

2.1 Problem Statement 

From the literature review we have observed some of the shortcomings like not considering the priority and 

number of tasks, other factors such as response time and waiting time also not considered. To overcome these 

issues, we introduced a standardizing the resource attributes and the resources are split for the mitigation of scale 

of the resources. It also reduces the latency and therein accomplished the load balancing. 

III. PROPOSED METHOD 

               Load balancing is predominant task when there is restricted resources available and especially in the 
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Fog computing. The proposed load balancing employs three stages and are: (i) Fog Resource Monitor, (ii) DNN 

based classifier and (iii) TBFO based dynamic scheduler and is framed in figure 1. 

 

Figure 1: Stages employed in proposed load balancing approach in Fog computing 

3.1 Fog Resource Monitor 

It is a main stage for monitoring the server and its respective resources and stored it in Fog Resource table (FRT) 

for further processing. The FRT is usually placed in the server of the FRM and a sample FRT is displayed in table 

1 [10]. The classification of fog server as suitable or not can be effectuated based on the features such as Storage 

(ST), Computing (CM), and the RAM. Below are procedures that follow for the allocation of status for server and 

is listed below. 

Mean storage estimation (M_ST) 

Mean computing estimation (M_CM) 

Mean RAM size estimation (M_RAM) 

Application of rules, example (i) if STMST _ then set 1=ST , otherwise set 0=ST ,(ii) if 

CMMCM _ , set 1=CM , otherwise set 0=CM , (iii) if RAMMRAM _ , set 1=RAM , 

otherwise set 0=RAM . These are features indulged for the input of DNN. 

Table 1: Sample Fog Resource Table 

Si ST (GB) CM (MHz) RAM (GB) Characteristics Status 

S1 250 3500 4 Proper, in 

adequate 

Not suitable 

S2 200 6000 8 Proper, 

Adequate 

Suitable 

S3 40 2000 5 Inadequate, 

Improper 

Unsuitable 

 …. ….. ….. ….. ….. 

Sn …. ….. ….. ….. …. 
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3.2 DNN based Classifier 

The classification of fog server as suitable or not, has been effectuated with the proposed DNN based classifier 

and the details are elucidated in the following section. 

3.2.1 Deep Neural Network:  

For architecture construction, compose and extract the features. One fully connected output layer w4ith the 

hidden layers, one layer of input interprets the fully connected DNN [13]. Figure 1 depicts the DNN model. 

Figure 2 explains the structure of DNN. Optimize the features to provide feature vectors. Based on the input 

layers, receive the hidden layers depicts as follows;  

)(1),(1)(1 iii jii cwMG +=
     (1) 

Where, )(1 ic and ),(1 jiM are the DNN bias and weights and the hidden layer outcome is expressed by,  

)( )(1)( iiO GAFG =
                                  (2) 

Where, (.)AF denotes the DNN activation function. Mark and embed the data design with DNN. The feature 

vectors are optimized by requiring the optimizing DNN. 

Swiftly effectuate the process of training to perform predominant tuning of DNN. The extracting features are 

efficacy and enhance speed. Minimize or maximize the required optimization to deem the fitness value. The 

below expression defines the cost function. 
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Where, q ,
iq  and Z are original cost, evaluated cost and cost function mean value with L-loss of l. From this, 

predict the difference among predictions models as the loss function. The gradient descent utilized by acquiring 

biases and weights with the cost function Z is minimized. Below formula minimizes the cost function utilizing 

gradient descent. 
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Mitigates the cost function as well as update the bias and weights. The following formula calculates the )(MP

values.  

2
)(

EL

LMMP =
                                                                           (6) 

From this, 
2

E
 and L represent the Frobenius and controlling coefficient. The hidden layer output penalty 

sparsity is )(MP .  
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Figure2: The DNN structure 

3.2.2 Problem Definition 

This step is for the detection of features of the fog servers in order to label as suitable or unsuitable. This has been 

achieved with the features that are hoarded in the FRT. The basic steps involved in this classifier stage are (i) 

collection and cleaning of data, (ii) converting the labels that are read by the CNN i.e., with 1 and 0. Henceforth 

the estimation of M_ST, M_CM, and M_RAM are made. (iii) the training and testing of data are effectuated for 

the real time application. Based on the classification result the Fog suitable table (FST) is updated and is displayed 

in table 2. 

Table 2: Updated FST 

Si ST CM RAM Fitness Estimation(FEi) 

S2 4 7 7 5 

S4 3 5 6 6 

S7 7 7 5 7 

 …. …. …. …. 

Sm …. …. ….. …. 

The algorithm used for the classification of server using the proposed DNN is depicted in algorithm 1. 

Algorithm 1: Pseudocode for the DNN based classifier for the classification of fog servers as suitable or not 

Input of the classifier: Three learned attributes such as ST, CM, and RAM 

Output of the classifier: FST which is the updated version of FRT 

     Data collection using FRT 

For each server do 

     Estimate the mean storage M_ST 

     Estimate the mean computing M_CM 

     Estimate the mean RAM (M_RAM) 

     If STMST _   

              Set ST=1; 

     Else 

              Set ST=0; 

     If CMMCM _  

              Set CM=1; 

     Else 

              Set CM=0; 
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     If RAMMRAM _  

              Set RAM=1; 

     Else 

              Set RAM=0; 

Next 

     Train the learned attributes of DNN 

     Testing the DNN 

For each server 

     If (ST==1&&CM==1&&RAM==1) then: 

               Set status=1 

     Else 

               Set status=0 

     End if 

Next 

     FRT up-gradation 

3.3 TBFO based Dynamic scheduler 

This section is to present the dynamic scheduler that is used to allocate the input to the respective server. For this 

process we proposed a novel TBFO algorithm and are elucidated in the next section. 

3.3.1 Tuna swarm bacterial foraging optimization 

Various kinds of operations included in the E-coli foraging behavior named as bacterial foraging optimization 

(BFO) algorithm. Different stages of BFO [11] is explained as; 

• Chemotaxis 

Prior to changing the direction, bacteria stayed with longest time and this phase effectuates BF strategy. The step 

takes direction changing. At given ( )NMJLi ,, , N is the neglect dispersal with M reproduction and J chemotaxis 

when the bacterium location is L. Following formula computes the bacteria tumbling.  

)()(

)(
)(

ii

i
i

t 


 =

                                               (7) 

The vector I falls under 1 to P with )(i  is the random vector. From this, ykik ,.......,,2,1),( = each element 

by P is an entire number of bacteria falls under the interval of [0, 1]. Below expression frames the bacteria up-

gradation location.  

( ) ( ) )()(,,,,1 iiFNMJLNMJL ii +=+
    (8) 

From this, )(iF  is the swim moving step size.  

• Parabolic Foraging  

While attaining higher nutrients, chemical substances are released with bacterial to other bacteria. Repel when the 

situation is daunting. The swimming behavior of BFO is enhanced with tuna optimization with its foraging of 

parabolic. Reference point as the food with parabolic representation. 505 of probability selection simultaneously 

performed. Below expression describes its mathematical model. 
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Where,  tpLLL ,....,1= takes the bacteriumoptimization domainand 
i

hL is the ith bacterium with 

hthcomponentlocation. Here, )),,(,( NMJLLCC i
is the chemotaxis stage based on the communication of cell 

to cell. Below formula computes the swarming characteristics with tuna foraging of parabolic. 
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The random number is FT . 

• Reproduction  

Take the step of reproduction next to completing the phase of chemotactic. The positive number as P is considered.  

Without mutations, offsprings created and sP  is the satisfactory nutrients with the bacteria population [12].  

2

P
Ps =

      (12) 

A bacterium health is detected by using accumulated cost and unhealthy is lower nutrients that represented with 

higher value and it not fit for reproduction. Reversely organize bacteria depending upon the status of health. In 

similar position, place and divide health bacteria into two new bacteria with unhealthy bacteria loss their life.   

• Elimination-Dispersal 

The bacteria with kill wide range increase in temperature. Where, DEELR − perform possibilities. From the other 

living bacteria, replace to produce new bacteria. The pseudocode for the proposed TBFO based dynamic scheduler 

is illustrated in algorithm 2. 

Algorithm 2: Pseudocode for the TBFO based dynamic scheduling 

Input: FST with the details of suitable servers, input task to the server 

Output: Allocating to the input task to the suitable server 

Initialize the parameters of TBFO, bestY  and Best server (BS) 

Data collection from the FST 

FOR each server from the FST do 

     Estimate the FEi using the values of ST, CM, and RAM 

     If ( besti YFE  ) then 

            ibest FEY =  and iSBS =  

    End if 

FST up-gradation 

Allocation of task to BS 
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IV. RESULTS AND DISCUSSIONS 

This section is to extend the analysis of proposed analysis in the field of load balancing in the fog computing. the 

simulation tool, number of tasks used and server details are added in the section. 

4.1 Simulation details 

For demonstration we have indulged with NS2 simulator which is installed in system with the specification of 

with the specification of 2.83 GHz processor and RAM of 8 GB. For the experimental purpose we have taken 200 

fog servers and the incoming processes or tasks are around 180. The performance analyzes are explained below 

in a detailed manner. 

4.2 Performance Investigation 

Figure 3 represent the comparative figure of number of tasks with average resource utilization. The state-of-art 

methods such as Grasshopper optimization algorithm (GHO) [14], Gray Wolf Optimization (GWO) [15], Particle 

Swarm Optimization (PSO) [16] and Genetic Algorithm (GA) [17] are compared with proposed method to 

estimating the comparison with respect to the average utilization of resource. The number of task increase to 

increasing the average resource utilization. The GA outperforms minimum resource utilization. But, the resource 

utilization of proposed method is higher than that of GHO, GWO, PSO and GA by varying the number of task.  

 

Figure 3:Performance of number of tasks Vs average resource utilization  

Performance of number of tasks with average response time is plotted in Figure 4. The comparative models of 

GHO, GWO, PSO and GA with proposed approach to calculating the comparison with respect to the average 

utilization of resource. The number of task increase to minimizing the average response time and it is represented 

in milliseconds. The GA and PSO outperforms minimum resource utilization. However, an average response time 

of proposed approach is minimal that of GHO, GWO, PSO and GA with the variation of number of task.  
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Figure4: Performance of number of tasks Vs average response time 

The performance of number of tasks based on delay is plotted in Figure 5. The existing GHO, GWO, PSO, and 

GA comparative models with proposed approach to computing the comparison with respect to delay results. The 

number of tasks increases in order to reduce the delay performance, which is measured in seconds. Maximum 

delay is outperformed by the GWO and PSO. Though, with a variable number of tasks, the proposed approach’s 

delay is shorter than that of GWO, GHO, PSO, and GA 

 

Figure5: Performance of number of tasks Vs delay 

Figure 6 depicts the performance of a number of tasks depending upon energy consumption. The previous 

methodologies of GHO, GWO, PSO, and GA comparative models, as well as the proposed approach to compute 

the results of energy consumption and it is measured in terms of joules. The number of tasks is increased to reduce 

the en energy consumption model. The PSO and GHO consumes maximum energy. With a variable number of 

tasks, the proposed approach has a shorter consumption of energy than GWO, GHO, PSO, and GA. 
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Figure6: Performance of number of tasks Vs energy consumption 

Figure 7 displays the performance of several tasks based on the level of load balancing. Previous approaches of 

GHO, GWO, PSO, and GA comparison models with proposed approach are used to compute the outcomes of load 

balancing levels, which are quantified in percentages. To higher the level of load balancing, the number of tasks 

have been rose. The PSO and GA use the minimal level of load balancing. The proposed approach performs higher 

level of load balancing than GWO, GHO, PSO, and GA with a variable number of tasks. 

 

Figure7: Performance of number of tasks Vs load balancing level 

Figure 8 depicts the execution of various tasks based on the time plot. Previous methodologies of GHO, GWO, 

PSO, and GAcomparison models are employed in conjunction with the proposed approach to compute the results 

of time in milliseconds. The number of tasks is increased to reducing the time performance. The PSO and GA 

utilizing minimum of time performance. With a variable number of tasks, the proposed approach achieves a 

minimum level of time than GWO, GHO, PSO, and GA approaches 

 



737 

J. Electrical Systems 20-3 (2024): 727-738 

 

 

 

Figure 8: Performance of number of tasks Vs time in milliseconds 

Figure 9 illustrates the total cost based execution of numerous tasks. To compute the results of total cost, the prior 

methods of GHO, GWO, PSO, and GA comparison models are used in conjunction with the proposed approach. 

The quantity of tasks is raised in order to reduce total cost performance. The PSO and GA are utilizing the more 

cost performance. Considering a variable number of tasks, the proposed approach takes less cost than the GWO, 

GHO, PSO, and GA strategies. 

 

Figure 9: Performance of number of tasks Vs total cost 

V. CONCLUSION 

For the allocation of LB with the available resources the work in this article proposed an innovative DNN 

approach. This work involved three stages; the first stage was monitoring the resources of the server and filed it 

in the FRT. The next stage is to classify the servers as suitable or not suitable for the tasks to be performed and 

followed by the appropriate selection of server with the proposed TBFO algorithm.  This step also allocates the 

exact server for the application based on the requirement and available resources. The dynamic scheduling 

algorithm was used for the optimization purpose. Further, the simulation was fulfilled with the NS2 simulator and 

achieves continuous performance for the LB in fog computing. Finally we have analyzed the performance in terms 

of total cost, make span, and resource utilization. Our proposed work assured the robust and continuous 
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performance of LB 
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