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Abstract: - In this paper, Convolutional Neural Networks were used to enhance the visual fidelity of underwater images. The UWCNN is 

introduced in this article, which utilizes underwater scene priors and a CNN model to improve underwater photos. The UWCNN model 

proposes a method where the clear latent underwater image is immediately rebuilt using the underwater scene as training data, rather than 

relying on parameter guessing in an underwater imaging model. Our UWCNN model may be used for frame-by-frame augmentation in 

underwater videos because to its lightweight network structure and efficient training data. In this dataset for underwater image deterioration 

by integrating an underwater photography physical model with optical characteristics of underwater landscapes are provided which includes 

a wide range of water types and degradation levels. Alternatively, one might choose to go light. A Neural Network (CNN) model is constructed 

using the related training data in order to enhance the quality of underwater scenes. Ultimately, the UWCNN model is used to improve the 

quality of underwater videos. The efficacy of our technology is shown via the analysis of both authentic and synthetic underwater photos.    

Keywords: CNN, Photo enrichment, color balance, Image Processing 

Introduction 

The use of autonomous and remotely piloted underwater vehicles is vital for underwater scene perception and 

interpretation. It is usual to utilize these vehicles to explore and engage with marine habitats. Because of this, it is 

more difficult to accomplish tasks such as pattern recognition, object detection, and feature extraction from raw 

underwater photos and videos. The fact that most deep networks are trained using high-quality photographs or 

presume clear images as inputs is the reason. Dissolved organic compounds (DOCs), micro phytoplankton, and 

non-algal particles all degrade underwater photography because they absorb and scatter light. When it comes to 

underwater robot inspection and marine environmental monitoring, problems with absorption and dispersion make 

it difficult to understand and recognize images. When applied to underwater photos, standard image enhancement 

techniques [1][2] [15][16][8] have drawbacks as well. Due to insufficient training data, it is difficult to effectively 

improve underwater images and videos using deep learning. Classification, analysis, segmentation, and other 

current deep learning-based techniques are far more effective. In order to boost underwater vision quality and 

performance on high-level vision tasks, image synthesis and enhancement technologies must be developed. These 

absorption and dispersion issues impede underwater robot inspections and marine environmental surveillance. 

When photography underwater, traditional picture enhancing technologies have limits.  

Contributions: solution from start to finish, using a unique CNN architecture trained on underwater scenes 

previously, for the generation of underwater pictures. This technology precisely recreates the original colours and 

look of underwater photographs. Because of the network’s lightweight construction, the suggested approach may 

readily be expanded to video taken underwater. As a result, we are now offering an underwater photosynthesis 

technology that can mimic a wide spectrum of degraded underwater pictures. An underwater visual synthesis 

system capable of behaving many different situations has been developed to our knowledge. It is possible to utilize 

our picture synthesis to train networks and assess the quality of full- reference image synthesis. Reconstructing 

the clear latent underwater picture is possible thanks to an improved CNN model that minimizes multi-term losses. 
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Because of its light-weight network architecture and successful training data, the suggested model may be used 

to underwater video for frame-by- frame augmentation. Both synthetic and genuine underwater photographs and 

videos can benefit from our technique’s vast variety of color and visibility options. It is possible to get outstanding 

results using a lightweight network structure that incorporates prior information important to pattern recognition, 

visual interpretation, and so on. 

I. RELATED WORK 

This section largely introduces the generally used physical models for underwater image enhancement, which 

include the air scattering model, simplified underwater image production model, and an updated model. Deep 

network training data synthesis and design may be constructed on top of these models, providing insight into how 

underwater photos deteriorate. There are several types of underwater picture enhancement and restoration 

procedures that may be classified according to their perspectives. This work identified and assessed three types 

of approaches for underwater picture enhancement, restoration, and supplemental information. Because there has 

been limited research on underwater video improvement and restoration, we will focus on image processing 

approaches in this part. 

a). Underwater Image Enhancement Method: Li et al. [1] focused on image dehazing and colour correction as a 

stage of underwater image enhancement. To combine a colour-corrected and contrast-improved underwater 

image, Ancuti et al. [1] utilized an input. Four weights are used in the multi-scale fusion procedure to determine 

which pixel has the best chance of showing up in the final image. Multi-scale fusion using an image colour before 

to correct colour casts in the underwater image and a modified image dehazing algorithm to improve visibility, 

[2] describes a hybrid solution. It was proposed by Li et al. that a cross-domain mapping functions between 

underwater and air images can be used to correct underwater image colour. Using multiscale, dense concatenation, 

and residual learning techniques. inspired by generative adversarial networks, Guo et al. proposed a multiscale 

dense GAN for underwater image enhancement (GANs). Prior to this, Ancuti et al. [5] made significant progress 

by limiting the effects of over enhancement and overexposure. Li et al. [3] recently proposed a deep baseline 

model based on paired underwater photos and related reference images. The enhanced results yield a plethora of 

options for selecting these reference photos. restoration is also an option. 

b). Underwater Image Restoration Method: An inverse approach to the problem is frequently used by underwater 

image restoration algorithms, which first build physical models of the degradation before making model parameter 

estimates. With the help of a wavelength-dependent compensation strategy, the underwater images of Chiang and 

Chen [1] can be dehazed and artificial light influences removed. Colours associated with short wavelengths, such 

as red and orange, were retrieved using a Red Channel technique [10]. An improvement on the previous dark 

channel prior [16] was introduced by Drews et al. [18] with the UDCP underwater dark-channel prior. When white 

or artificial light is present in underwater scenes, the UDCP may be able to estimate medium transmission in some 

cases. To improve underwater images, Li et al. [19] combined a contrast-enhancing technique with a dehazing 

technique. With this technique, Peng and his colleagues corrected underwater photos using a combination of 

blurry images and light absorption. According to Li et al. [19], an underwater picture colour restoration model 

based on CNNs could be developed using poorly supervised learning from synthetic underwater photos. 

c). Deep Underwater Image Enhancement Algorithms: Using the underwater image creation model, the 

attenuation coefficients of various water types are used to synthesize ten types of underwater image datasets. A 

wide range of ocean and coastal water conditions are depicted in these underwater photo collections, from clear 

to murky. Finally, ten UWCNN models were trained for each of the ten types of underwater photos. The ’2 and 

SSIM loss functions are combined to learn the UWCNN model’s parameters. The UWCNN makes extensive use 

of the Tensor Flow framework’s kernel sizes and ADAM . [1] ’s underwater image formulation paradigm is used 

here. Models like this one are commonly used in underwater image restoration techniques.  

𝑈(𝑥) = 𝐼(𝑥) × 𝑇(𝑥) + 𝐵1 × 𝑇(𝑥)……………………………………….(a) 

Where, U(x) is obtained underwater image , A point in the underwater scene known as ‘x’ is where we want to 

find the clear latent image, or scene radiance, I(x) (images are denoted in strong capital letters for clarity). The 

wavelength of the red, green, and blue channels of light is B, as is the homogeneous global background light, as 
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is the wavelength of the red, green, and blue channels of light. As a rule of thumb, an underwater image’s colour 

cast and contrast reduction are caused by T(x), the scene’s relative radiance as seen by the camera after it has 

bounced off of the water’s surface at point x. It’s possible to think of T(x) as an expression of light’s wavelength 

divided by the scene point x’s distance (d(x)) from the camera. 

 

Fig. 1: Basic CNN Architecture [1] 

As illustrated in Fig. 1, wavelength-dependent attenuation coefficients of different media. It is possible to assume 

that before and after it travels through the transmission medium, a light beam’s energy is equal to the sum of its 

pre- and post-transmission values, E(x, 0, d(x) (x). This ratio, N, is the normalized residual energy ratio for each 

unit of propagated distance. Water’s value fluctuates depending on the wavelength of light it emits. Because of 

the lower refractive index and more absorption of light in open water, photos shot underwater tend to show red 

light as blue goes into much into on this. For example, dehazing and picture deblurring have been utilized, as well 

as super resolution for image deterioration. In a way, the underwater image degradation model is similar to the 

picture dehazing model, but it’s more sophisticated since light’s wavelength-dependent absorption and scattering 

qualities complicate the calculations even more. To replicate a blurred image, one may use convolutional 

operations inside an image deblurring model to get a low-resolution representation. Alternatively, down sampling 

can be employed to generate a low-resolution image.  

II. PROPOSED METHOD 

Convolutional neural networks (CNNs), also known as deep learning neural networks, are a subclass of CNN. For 

the sake of simplicity, consider CNN as a machine learning algorithm that can take an input image and determine 

the importance of various aspects and objects in the image (using learnable weights and biases), and then 

distinguish between them. The images are used to extract features by CNN. The following elements make up any 

CNN: The grayscale image that serves as the input layer. Second, the Output layer, which can be either a binary 

or multi-class label Neural Networks have three hidden layers: convolution, ReLU (rectified linear unit), and the 

pooling layers. Understanding that ANN, or Artificial Neural Networks, cannot extract image features due to their 

multi-neuron construction is critical. This is where a convolution and pooling layer combination comes into play. 

We also need a fully connected neural network to perform classification because the convolution and pooling 

layers are unable to do so. There are a number of advantages to the Convolutional independent network, such as 

multidimensional data input and fewer parameters. Overfitting can occur because of parts of connections within 

a fully associated layer, even though this is the system’s primary goal. The use of the denoising technique is 

anticipated to effectively decrease the amount of data, information, and the quantity of covered units. This will 

enable the framework to acquire an unparalleled elemental representation of the event data. As an example, input 

data degradation and shrouded unit layer yield pollution are both used in the reenactment, and a correlation is 

shown. CNN has been widely used to examine voice and image recognition. The multilayer neural system known 

as CNN was initially well-prepared. CNN uses weight sharing to reduce the model’s randomness and the weights’ 

overall volume. 

 

Fig. 2: CNN Network Model 



J. Electrical Systems 20-3 (2024): 593-605 

596 

 Fig. 2 illustrates the Convolution neutral network model process. CNN has been used to enhance underwater 

images. The color-corrected picture and transmission map may be estimated using the mappings learned by the 

suggested networks from the input underwater images. Additional labels are unnecessary on target scenes. 

Considerations: Unlike standard end to end strategies, which train the mapping function, here network is given 

priority to learn the difference between a synthetic underwater image and its class counterpart. In order to predict 

the latent image I which is given by following equation 

𝐼 = 𝑓1(𝑢)……………………………(b) 

Convolution filters are applied to various layers of an underwater image before the final loss layer is reached. A 

vanishing gradient is possible even though the network is not intended to very deep. Prior to applying loss function 

on the networks output(U), learning the residuals are mandatory by combining the network inputs with its 

output(U1) 

𝐼 = 𝑈 + 𝑈1 … … … … … … … … … … … … … … … . (𝑐) 

Where ‘I’ is the element wise addition operation. 

Next step is to consider enhancing units (E-Unit) which are designed in modular format. The initial operation of 

the convolution and ReLU pair is considered as Ith block size is z1, 0=r, if r and c stands for ReLU and Convolution. 

CNN Architecture: 

The layers of a convolution neural network are always fully associated. A huge parameter set that is unusable for 

learning is created if an image has a high goal and has many hidden units running, for example. The local gathering 

document is used by CNN to claim that an image is convolution. There are a lot of convolution bits. This field 

estimate with an extraordinary load between yield maps has been agreed upon by all of the components of the 

convolution. Any number of convolutions can be applied to the entire image. As a result, the parameters are 

determined by the size of the local collection, and the convolution bit length is thus increased. There are many 

layers of concealment in a CNN. For the convolutional layer, and thus the sub-examination, shrouded layers are 

an excellent analogy. All of the image’s convolutional parts are used in the convolution layer. Images are re-

created as a component map with an expanded component. Fig. 2 shows that the Convolutional Neural Network 

has some advantages, and that it can handle 2D images correctly, which is appropriate for advanced image 

processing, as shown. Discovering a better way to speed up the system’s learning process will be our side project. 

A Convolutional Neural Network consists of three main parts: The layer that pools resources. Layers that are 

completely interconnected. Layers of convolution. Image handling assignments include tasks such as enhancing 

images, they have a wide range of objectives Values of the components Corrupted photographs closely resemble 

their real-world counterparts, resulting in little changes in normal pixel values. This characteristic is unique. The 

first portion of this chapter examines the influence of varying degrees of model depth. The SSIM and Euclidean 

misfortunes are compared to determine their adequacy. In this study, a CNN model has been developed to assess 

the performance of low-light picture enhancement tasks. The model has shown advancements in super goals and 

image denoising techniques. The integration of the CNN pattern into our suggested CNN model, along with other 

conventional complexity upgrading procedures, may be achieved both inside deep learning-based approaches and 

in traditional contexts. 
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Figure 3: Proposed Methodology  

In this section, we will elucidate the intricacies of the suggested Unified Word Count Neural Network 

(UWCNN) model, followed by a postprocessing phase aimed at enhancing the already remarkable outcomes 

that as shown in figure 3. 

1. The model is composed of three E-Units, each consisting of three pairs of Convolutional Layer and 

ReLU Activation Function, along with an extra convolutional layer.  

2. A Kernel with dimensions of 3x3 and a dilation of 1x1 is present in each Convolutional Layer. 

3. The Concatenation Layer serves as a Pooling layer between each E-Unit.  

4. In the process of incorporating an image tensor into our model, it first encounters the first E-Unit.  

5. The Convolutional Layer is the first layer in this unit. The tensor of the picture is then convolved to 

provide a tensor A, which is subsequently stored.  

6. The tensor A is then passed via the second Convolution layer, resulting in the return and storage of 

another tensor B.  

7. In the 3rd Convolutional Layer of the 1st E-Unit, the tensor B undergoes convolution, resulting in the 

return and storage of a Tensor C.  

8. In the Pooling Layer, the tensors A, B, C, and the original image tensor are concatenated and then 

stored to generate a new tensor D.  

9. The Tensor D is then transferred to the second E-Unit.  

10. The procedure is iterated for the second and third E-Units alike.  

11. Following the 3rd Concatenation Layer, the output tensor is subjected to a Convolution Layer to 

provide an output.  

12. To minimise loss, the original image tensor is combined with the output, which is now referred to as 

imageconv10.  

13. The additional output corresponds to the output of a CNN.  

III. EXPERIMENTAL EVALUATION 

A comparison of current underwater image enhancing systems is made in this section, using both synthetic and 

real-world images. There is also a comparative study of several methods on underwater films. A number of 

strategies have been examined and contrasted, including: UDCP, RED , ODM , and UIBLA . We run the authors’ 

source code using the requested parameter to acquire the best results for an objective evaluation settings. When 

light-attenuation coefficients are not available in real-world photos, we apply each of the ten UWCNN models we 

learnt and provide the results that are more aesthetically attractive. We use ADAM to train our model, and the 

learning rate is set at 0.0002, 1 to 0.9, 2 to 0.999. Throughout the training process, we maintain a constant learning 

rate. The batch size has been set to sixteen. Over 20 epochs, optimizing a model takes about three hours. On an 
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Intel(R) i7-6700k CPU, 32GB RAM, and an Nvidia GTX 1080 Ti GPU, we use Tensor Flow as the deep learning 

framework. 

 

Fig. 4: Underwater Setup-RAIT 

Firstly, we will provide the results of enhancing underwater photographs using synthetic underwater images 

obtained from our test dataset. Our methodology effectively reinstates a visually pleasing texture and vibrant, but 

authentic, hues. To put it simply, our results look like ground truth when compared to other methodologies. To 

ensure that the recovered photographs are accurate, a synthetic test set of 2495 images is employed for each kind. 

Table 2 shows three separate measures for testing accuracy: MSE, PSNR, and SSIM. PSNR (Potential Signal to 

Noise Ratio) measures how near a picture is to the actual world compared to its MSE (lower PSNR). Higher SSIM 

scores are indicative of a more realistic picture structure and are thus considered in the analysis. The hue and 

texture of our completed items closely resemble those seen in natural environments.  

The results are summarized in the following table 1 & table 2 for different dataset. The bolded values indicate the 

best outcomes. It may be deduced that our technique demonstrates efficacy and durability, since it surpasses all 

other strategies examined in terms of metrics and types of deterioration. Our technique demonstrates superior 

SSIM responsiveness, surpassing the second-best methodology by a minimum of 10%. Similarly, our Peak Signal-

to-Noise Ratio (PSNR) exhibits superior performance (as shown by the Mean Squared Error (MSE) scores) 

compared to the methodologies that have been compared too. Genuine submerged photos are explored from 

different picture taker assortment caught utilizing optical camera and arrangement shown in Fig. 4. Here few 

different submerged photos at various depth have been picked from standard database available online and we 

have also consider our own picture of scuba images. The framework created ready to acknowledge png and jpeg 

organizations of pictures. (Hp CORE i3, CPU @1.70 GHz, Windows 7-64 piece) gadget used to run the 

framework utilizing MATLAB R2015a. 

1. Assessment of a real-life underwater image: 

In this section, proposed strategy has been tested using real-world underwater images. Fig. 6 shows the contrasts 

between our strategy and those of our rivals. Tones, brightness, and contrast may be seen in the underwater 

photographs utilized in this research. According to [2, 4], the histogram equalization approach produces better 

outcomes than the judgements that are tilted toward overexposure or over enhancing. A user survey was conducted 

in order to collect real-world feedback and measure subjective visual quality, with the aim of obtaining a more 

impartial evaluation. Collection of images and papers from the Internet was used for this project. Fig. 5 

demonstrates some of the findings from this dataset. All Figures depicts some of the associated consequences. On 

a computer screen, the findings of user research are presented in random order. There are 20 image processing 

experts in the room. A one -to-five scale is used by each participant to score the outcomes, with one being the 

worst and five representing the best. In Table 3 based on the average subjective evaluation. In terms of underwater 

photography, proposed UWCNN approach receives the best subjective visual scores, indicating that it has the 

potential to perform better. 

2. Evaluation Metrics: 

Underwater picture quality may be improved by the use of automatic assessment measures and assessments of 

the human visual system (HVS). SNR, PSNR, MSE, SSIM, and PCQI are four of the most often used metrics in 
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picture improvement and restoration, and two of them are especially created for underwater image enhancement. 

Specifically, the UCIQE and UIQM, Lastly, we thoroughly examine all the evaluation metrics and analyze their 

respective merits and drawbacks. The human visual evaluation and its relevance are also described in a report 

that we offer. Signal measurements such as Mean Square Error (MSE) and PSNR are the starting points for our 

discussion. It is the goal of the MSE to offer a quantifiable measure of how closely the two signals are related. 

The initial signal is usually one of the signals.  

3.  Human Visual System  

Human volunteers are utilized to assess the quality of the anticipated pictures in an attempt to add perceptual 

measurements because there is a shortage of genuine ground truth data. Depending on the competition, these 

human inputs may be crowd-sourced or provided by experts. However, no results have been obtained using any 

of these techniques. Prososed method’s findings to the most recent and most advanced approaches for increasing 

underwater image quality using synthetic and real-world photographs. In the absence of light-attenuation 

coefficients, UWCNN models are applied to real-world photos, and the more aesthetically pleasing results are 

given. Advancements includes, examining the possibility of choosing the optimal model using a classification 

process. A synthetic validation set consisting of 2495 samples of each kind was used to assess the accuracy of 

the recovered images. 

4. Parameters to be used to Quantify Accuracy of image: 

1. SNR: Signal-to-noise ratio (SNR) is used in imaging to characterize image quality. The sensitivity of a 

(digital or film) imaging system is typically described in the terms of the signal level that yields a threshold level 

of SNR. 

𝑺𝑵𝑹 = 𝟐𝟎 𝒍𝒐𝒈𝟏𝟎(
𝑨𝒗𝒆𝒓𝒂𝒈𝒆(𝑿𝒀)

𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅(𝑿𝒀)
)……………. (1) 

2. PSNR: The ratio between the maximum possible power to the power of corrupting noise is know as Peak 

Signal to Noise Ratio. It affects the fidelity of its representation. It can be also said that it is the logarithmic 

function of peak value of image and mean square error. 

𝑷𝑺𝑵𝑹(𝑿, 𝒀) = 𝟏𝟎 𝒍𝒐𝒈𝟏𝟎(
𝟐𝟓𝟓𝟐

𝑴𝑺𝑬(𝑿,𝒀)
)……………… (2) 

3. MSE: Mean Square Error 

𝑴𝑺𝑬(𝑿, 𝒀) = 𝟏/𝑵 ∑ (𝒆𝒊
𝟐) = 𝟏/𝑵 ∑ (𝒙𝒊 − 𝒚𝒊)

𝟐𝑵
𝒊=𝟏

𝑵
𝒊=𝟏 )   … … . (𝟑) 

4. SSIM: Symmetric Local SSIM statics are estimated using Gaussian weighting methods. To measure 

overall image quality, the mean SSIM index pools the spatial SSIM values 

SSIM:  SSIM= 1/M∑ 𝑺𝑺𝑰𝑴(𝒙𝒋 − 𝒚𝒋)
𝑴
𝒊=𝟏 … (𝟒) 

5. UICM: The underwater image colourfulness measure Overall colourfulness is given by 

UICM = √𝒖𝜶, 𝑹𝑮 + 𝒖𝜶𝒀𝑩−𝟎.𝟎𝟐𝟔𝟖 + √𝒖𝜶, 𝑹𝑮 + 𝒖𝜶𝒀𝑩𝟎.𝟏𝟓𝟖𝟔
   ………………(5) 

6. ENTROPY: Entropy is the fundamental concept of Shannon information theory [23,24]. It is usually 

considered in the framework of measure theory. Entropy provides information for the homogeneity of the existing 

distribution. 

𝑯(𝑭) = − ∑ 𝑷𝒊 𝒍𝒐𝒈𝟐 𝑷𝒊
𝟐𝟓𝟓
𝒊=𝟎 …………………     (6) 

7. BRISQUE: Blind / Referenceless Image Spatial Quality Evaluator (BRISQUE) no reference image 

quality score, BRISQUE analyses image naturalness (or lack thereof) by extracting point wise statistics of local 

normalised luminance signals. 

IV. RESULTS 

  

1. Qualitative Analysis 
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Fig. 5: Results-1 for standard datasets at various depth  

For qualitative evaluation, various datasets cosidering in Fig. 5, Fig 6, Fig. 7 and Fig. 8 are shown as, Sample of 

the data (a)Original underwater photos as input image (b) the UDCP test results and (c) the UWCNN output 

proposed method results, When the latent pictures are reconstructed, they are accurate and colorful since our 

methods eliminate all of the tones such as blue-green, blue-green, and greenish tones. 

Our technique keeps the original color distribution of the underwater picture, as seen in Fig. 5 and 6 (the reddish 

color around the coral in Fig. 5 and Fig. 11). Fig. 8 depicts a failed instance where it intensifies the greenish tint 

and yields unpleasant outcomes. Fig. 6 Color casts are eliminated and contrast and brightness are increased, 

resulting in a more pleasurable viewing experience. There are no extra colors introduced in this method (e.g., the 

reddish color around the coral in Fig. 6), but this method improves contrast and performs similarly to the ODM 

while preserving the original image’s true color distribution (see Fig. 5 and 6). Visual perception observed is very 

good here in this method which improve the quality of resulted image.  

2. Quantitative Analysis: Table 1, shows the MSE, PSNR, and SSIM to quantify accuracy. When the MSE 

(PSNR) is lower, images are in closer proximity to their tagged counterparts. The closer a picture is to the label 

in terms of structure and texture, the higher the SSIM score. The SSIM measure illustrates this point. What you 

see here are the averages. Values in bold indicate the most desirable results. 

 

Table 1: Parameter results for standard datasets-1 
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Table 2: Parameter results for standard datasets-2 

Table 2 uses the STRSIM, ENTROPY, BRISQUE, UICM to quantify accuracy and the STRSIM measure which 

is illustrated.  

 

Fig. 6: CNN Result bar Chart 

Fig 6 depicts the statistics of graphical representation for the data taken in fig 7 and its parameter values are shown 

in table 1 & 2. here, we found the most desirable results using this method for crucial images having depth more 

than 200 meter.     

 

Fig. 7: Result-1 for Scuba images 
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All Scuba image results are shown here in Fig. 7. From the results shown it is observed that using CNN we can 

reduced the color cast but the perceptible quality is not as good with this algorithm.  

 

Table 3: Results Considering own dataset Scuba images-parameter-1 

 

Table 4: Results Considering own dataset Scuba images-parameter-2 

 The parameter results are shown in Table 3 and table 4 for the Scuba images, it is shown separately since these 

are ours own contribution to perform image enhancement with UWCNN, Also Bar chart is shown in Fig. 8, It is 

clearly observed that BRISQUE function does well for UWCNN model. 

 

Fig. 8: CNN Results bar chart on Scuba Images 
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Fig. 9: UWCNN Bar chart of Three different datasets with all parameters 

In Fig 9 three different datasets are compared with UWCNN to get the optimized results CNN results-1 indicates 

Bar chart of three images, CNN parameter reults -1 indicates bar chart obtained for standard images, and Scuba 

parameter result-II indicates bar chart of Scuba images at different depth. To quantify accuracy  STRSIM, 

ENTROPY, BRISQUE, UICM parameters are considered. From these results it is observed that we can reduce 

color cast but the perceptible quality is not good for this algorithm. 

 

Fig. 10. Details of CNN Result 1- for four images with Parameter and bar chart 

It is observed in the Fig 10, CNN method at various depth extract the features but as we go beyond 200 meter 

depth the actual color perceptibility is not possible. 

 

 Fig.: 11 CNN Results-2 Compared with UDCP 
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Now we have considered standard dataset of 10 images and compared our results with UDCP, it is found that 

proposed method works well than UDCP specially for the Entropy, BRISQUE, and UICM, which shows that 

color casting is good by using this method than the UDCP. 

3. Future and Emerging Directions: In recent years, advances in deep learning algorithms have made underwater 

picture improvement a well-established study topic. When compared to other picture enhancing techniques like 

super-resolution, deblurring, and dehazing, the performance is still insufficient in many areas. The direction of 

underwater image enhancement still has plenty of space for development. we’ll take a look at some of the 

possibilities for the future, because of the scarcity of representative real-world underwater photos and the 

accompanying ground truth images, underwater image enhancement systems frequently use synthetic images for 

training. Testing rather than training models is the most typical use of the limited datasets that contain both 

underwater and reference photographs. In an effort to improve underwater photo enhancement models’ 

performance, and provide reliable feedback on the image quality of enhanced outcomes, this may be of use 

4.  Objective functions and evaluation metrics: Today’s algorithms are primarily dependent on image-enhancing 

methods’ goal functions. The ocean’s physical model properties are ignored, despite the fact that these functions 

generate excellent results. So, underwater image improvement has stalled since there are no appropriate metrics 

and failure scenarios to evaluate the results of the enhancements made. As an example, the visual findings shown 

in Figures 1-3 do not match the quantitative data shown in Fig.10. In Fig. 16 Detailed Results of three different 

images with different depth is shown and is observed that CNN does not gives good color casting for deep 

underwater images. For underwater image improvement research, additional specialized goal functions and 

assessment metrics are needed. 

V. CONCLUSION 

The efficacy and robustness of our system have been shown via evidence. This technique is made more effective 

by using just ten convolution layers and sixteen feature mappings for each layer. Therefore, the training and testing 

processes are completed in a shorter amount of time. According to the results of our network, residual learning, 

dense concatenation, and SSIM loss are all contributors to increased performance in terms of both quantity and 

quality. These are all elements that lead to enhanced performance. It is essential to take into consideration the low 

contrast of an indoor training dataset while developing new projects for study in the future. A single blind 

UWCNN model will be able to more effectively forecast the proper output with the aid of this particular measure. 

Pattern recognition and computer vision are two fields that make use of deep models. These models feature 

resilient network topologies and losses, both of which have the potential to be efficiently used to improve our 

strategic approach. 
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