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Abstract: - The transition to renewable energy (RE) sources is critical for addressing global energy demands and environmental concerns. 

This review paper focuses on the pivotal role of Machine Learning (ML) and Deep Learning (DL) in optimizing and predicting the 

performance of RE systems, particularly solar and wind power. We explore various applications of these advanced technologies in 

forecasting energy demand and consumption, predicting the output power of renewable systems, and optimizing the operation and 

maintenance of these systems. The paper also delves into the significance of Explainable AI (XAI) in enhancing the transparency and 

understandability of AI models in energy applications. Our comprehensive analysis reveals that while ML and DL offer transformative 

potential in the RE sector, challenges such as data complexity, system integration, and model interpretability remain. Concluding, this work 

aims to provide a foundation for future research and development in this rapidly evolving field, asserting that the continued advancement 

and integration of AI technologies in RE systems is essential for achieving a sustainable and efficient energy future. 
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I.  INTRODUCTION 

RE systems, particularly those focused on electricity generation, are increasingly adopted in various advanced and 

emerging economies. This uptick in usage is driven by concerns about energy stability, environmental changes, and 

the need to address air pollution [1, 2, 3]. The promise of achieving energy independence, reducing greenhouse 

gases, and improving air quality are strong motivators for the shift towards RE sources [4, 5]. However, it’s 

important for policymakers to also consider the broader economic impacts of these new technologies [6]. In recent 

years, there’s been a significant focus on the job creation potential of these RE systems, attracting interest from a 

diverse group of professionals from industry, academia, engineering, government, civil society, and private sectors 

[7, 8, 9, 10]. Particularly, wind and solar energy (SE) generation methods have gained both local and global attention 

due to the increasing concerns about the sustainability of nuclear and fossil fuel sources [11, 12, 13]. The main 

drivers for adopting wind and solar technologies include environmental benefits like reduced carbon emissions, 

lower capital investment requirements, diversification of fuel sources, energy independence, improved energy 

efficiency, and the potential for enhancing power quality and reliability.  In some cases, these technologies can also 

defer the need for grid expansion by generating power closer to where it’s needed [14]. However, there are 

challenges to address: the variability of wind and solar power generation, the precision of forecasting, geographical 

disparities in resource availability, and the need for additional investment to  integrate  these  intermittent sources 

into the power grid effectively [15, 16].  For example, California’s energy plan aims to source 33% of its energy 

needs from renewable sources by 2020, with a significant portion expected to come from wind and solar [17]. 

Addressing these challenges requires innovative solutions, often utilizing optimization and AI methods to analyze 

and solve complex parameters [18, 19, 20, 2, 22]. Other concerns include the availability and quality of power, 

resource location, and cost issues. 

In numerous countries around the world, access to electricity remains a significant challenge, with some areas 

having no power generation or experiencing weak power supply [23]. This issue of energy accessibility is a major 

concern across various nations. One of the lowest recorded power consumption rates globally is just 208 kWh per 

capita [24].  Looking at the electricity production data from 2010 the total generation capacity was 5823 MGW, 

with a vast majority, 96.05%, coming from thermal sources, and the remainder being hydroelectric [24]. RE sources, 

which are becoming increasingly important, include Solar, PV, Wind, biomass, and geothermal energy [25]. Given 

this context, it becomes strategically essential to explore if alternative energy sources like Wind and Solar can meet 
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a portion of Bangladesh’s energy needs in a cost-effective manner [26]. The prediction of power generation is a 

vital and economically savvy approach for integrating renewable sources like Solar and Wind into electrical grids 

[27]. While forecasting for green energy, particularly for large-scale producers, is a standard practice in the power 

industry, solar power forecasting, especially for distributed Solar and PV systems, is relatively new and poses 

unique challenges. Accurate forecasting is possible by leveraging real-time metrics and detailed static data. [28]. 

 

Fig. 1: Renewable energy and intelligent Techniques 

This paper aims to address the gap in comprehensive understanding and critical analysis of the integration of 

renewable energy systems, particularly solar and wind power, into the existing energy infrastructure. Motivated by 

the urgent need to transition to sustainable energy sources, our work delves into the intricate challenges and 

opportunities presented by these technologies. We critically evaluate the economic, environmental, and technical 

aspects of renewable energy adoption, emphasizing the role of advanced technologies like AI and ML in enhancing 

efficiency and reliability. Our contribution lies in providing a detailed assessment of current methodologies and 

practices, identifying key areas for improvement, and proposing innovative solutions for more effective integration 

of renewable energy sources. By doing so, we offer a clearer, more nuanced per- spective that is vital for 

policymakers, industry professionals, and researchers in making informed decisions and fostering the growth of 

renewable energy globally. This paper serves as a compre- hensive resource for understanding the current landscape 

of renewable energy, its challenges, and the potential pathways to overcome these obstacles for a sustainable future. 

II. ENERGY CONSUMPTION AND DEMAND FORECAST 

A. Machine Learning and deep learning overview 

Machine learning and deep learning, two key components in the field of artificial intelligence, have gained 

substantial momentum in recent years. Their evolution has been significantly in- fluenced by the widespread 

availability of vast datasets and the advancements in computational capabilities. These technologies are now 

integral in various sectors like healthcare, finance, and retail, reshaping how these industries operate.  This article 

seeks to offer a detailed exploration of machine learning and deep learning, highlighting their distinctions and 

similarities. It will delve into the specific methodologies employed in each area—machine learning harnessing sta- 

tistical techniques and deep learning utilizing neural networks for handling large data volumes. Furthermore, the 

article will examine the diverse applications of these technologies across dif- ferent industries and assess their 

societal impacts. This comprehensive analysis aims to provide readers with a clear understanding of the capabilities 

and limitations of machine learning and deep learning [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].  

The rapid evolu- tion of artificial intelligence has been significantly propelled by the rise of machine learning and 

deep learning technologies. Known for their proficiency in analyzing extensive datasets, making predictions, and 

unlocking new insights, these technologies are at the forefront of a data-driven revolution. With the continuous 

growth of data generation and the advancements in computational power, the transformative potential of machine 

learning and deep learning in various industries is becoming increasingly evident. This article aims to offer a 

comprehensive exploration of these technologies, delving into their applications and societal impacts. It will cover 

the fundamental principles of machine learning and deep learning, differentiate between the two, and showcase 

their diverse applications, thus illuminating the immense possibilities they hold for the future [45, 46, 47, 48, 49, 

50, 51, 52, 53, 54]. 



J. Electrical Systems 20-3 (2024): 566-582 

568 

Machine learning and deep learning have catalyzed significant breakthroughs in research and innovation, 

particularly in sectors like healthcare, finance, and transportation. Their capability to process and analyze large 

datasets has already manifested in advancements in areas such as medical imaging analysis, natural language 

processing, speech recognition, and autonomous vehicles. These technologies are pivotal in understanding complex 

systems, aiding in decision-making, and devising efficient solutions to real-world challenges [55, 56, 57, 58, 59, 

60]. While machine learning and deep learning are often mentioned interchangeably, they represent distinct facets 

of artificial intelligence. Machine learning is centered around algorithms that learn from data autonomously, without 

explicit programming. In contrast, deep learning, a subset of machine learning, leverages neural networks to mimic 

the human brain’s structure and function. These neural networks excel at learning from unstructured data,  making 

them particularly effective in complex tasks like image and speech recognition [61, 62, 63, 64, 65, 66, 67]. Despite 

their transformative potential, machine learning and deep learning are still in devel- opmental phases. Ongoing 

research and innovation are crucial to fully harness their capabilities and address challenges such as bias and data 

privacy.   Nevertheless,  the future looks promis- ing for these technologies, with continuous advancements and 

discoveries driving their evolution [68, 69, 70, 71, 72, 73, 74, 75].  

In this review, we critically analyze the specific roles and impacts of ML and DL in enhanc- ing the efficiency and 

predictability of RE systems, focusing on solar and wind power. While ML and DL have shown significant promise 

in various sectors, their application in RE systems presents unique challenges and opportunities. We delve into how 

ML algorithms can optimize en- ergy production and distribution by accurately predicting solar and wind power 

outputs, thereby addressing intermittency issues inherent in these energy sources. Similarly, DL’s advanced neural 

networks are crucial for processing vast amounts of unstructured data from weather patterns and energy 

consumption trends to improve forecasting accuracy and system reliability. However, this paper also brings to light 

the limitations and challenges faced in this domain, such as the need for large, high-quality datasets, the risk of 

model overfitting, and the complexity of integrating these AI technologies into existing energy infrastructures. 

Additionally, we explore the ethical consider- ations, including data privacy and bias in algorithmic decision-

making, that must be navigated to effectively implement ML and DL in RE systems. Through this critical analysis, 

we aim to provide a comprehensive understanding of how ML and DL can be strategically employed to advance 

solar and wind energy technologies, paving the way for a more sustainable and efficient energy future. 

B. Forecasting related works 

In the realm of energy systems (ES), ML and DL are extensively utilized for forecasting purposes. Applications 

[76, 77, 78]. A significant portion of the global energy consumption and waste is attributed to buildings, making 

the reduction of energy usage in these structures crucial for mitigating climate change impacts [79]. Consequently, 

a considerable amount of research focuses on predicting energy consumption and demand in buildings. The 

forecasting methodologies in this field are generally divided into three time horizons [80]. These predictions are 

vital at various scales, from individual households to national levels. Effective control and optimization of device 

performance not only aid in balancing supply and demand, particularly in the context of nearly zero-energy 

buildings, but also assist in planning and reducing costs in ESs [81]. Accurate information regarding residents’ 

electricity consumption is essential for enhancing load forecasting precision, ensuring stable power system 

operations, and facilitating energy management and planning [82]. In the field of ESs, recent research has focused 

on the use of ML and DL for predicting building energy consumption. Amasyali et al. conducted a comprehensive 

review of these methods, noting a predominance of studies on commercial and educational buildings with a focus 

on short-term forecasts. The study highlighted that while ML-based models generally perform well, each has its 

unique strengths and weaknesses, making them suitable for specific applications [83]. Deb et al. reviewed nine 

Time Series (TS) forecasting techniques in the context of building energy consumption. This paper made qualitative 

and quantitative comparisons of these techniques and emphasized the effectiveness of HMs, which combine 

different forecasting methods. One key finding is the potential of integrating TS prediction techniques with 

optimization methods [84]. Walker et al. employed ML algorithms like Boosted for hourly electricity demand 

prediction in commercial buildings.  Their study found that the Random Forest model outperformed others in terms 

of accuracy (ACC) and prediction error [85]. Grimaldo et al. combined the k Nearest Neighbor algorithm with 

visual analytics for energy supply and demand prediction. This approach provided accurate results and  allowed  

users  to explore various forecasting scenarios and understand consumption and production patterns [86]. Liu et al. 

evaluated the effectiveness of the SVM algorithm in predicting energy consumption and identifying consumption 
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patterns in public buildings. The study found SVM to be accurate and effective in distinguishing normal from 

abnormal energy consumption patterns [87]. 

Kaytez et al. utilized ARIMA and Least Square SVM to develop a Hybrid Model for predicting long-term power 

consumption in Turkey’s grid. Comparisons with Multiple Linear Regression and single ARIMA models showed 

this HM to have better ACC and prediction error rates [88]. Fan et al. introduced an innovative Hybrid Model. This 

model, tested with data from an Australian city, outperformed others though it had limitations in runtime 

performance [89]. Jamil et al. implemented an ARIMA model to predict power consumption in Pakistani 

hydropower plants, aiding in future energy supply, demand management, and planning. The model’s strong 

performance was validated against real data and used to forecast hydropower consumption up to 2030 [90]. Beyca 

et al.  analyzed natural gas consumption forecasting in a Turkish province.  The study found SVR to be more 

accurate than the other two models, providing valuable insights for developing countries with similar consumption 

patterns and consumer behaviors [91]. Wen et al. introduced a DL method, this model effectively compensating for 

missing data by learning from historical patterns [92]. Hagh et al. proposed a hybrid model combining SVM with 

faster clustering and Artificial NN to predict home appliance power consumption and peak customer demand. Their 

model achieved a high ACC of 99.2%, demonstrating its effectiveness with smart meter data [93]. Hafeez et al. 

introduced an innovative hybrid model for short-term electrical load prediction, incorporating Modified Mutual 

Information, a Deep Learning model called Factored Conditional Restricted Boltzmann Machine, and an 

optimization model named Genetic Wind-Driven Optimization. Compared to other models like ANN and LSTM, 

their approach showed superior performance in ACC, average runtime, and convergence rate [94]. Khan et al. 

developed a CSNN, integrating Cuckoo Search (CS) with ANN, enhancing ACC, convergence time, and 

compatibility for fore- casting power consumption in OPEC countries. This model outperformed others like 

Accelerated Particle Swarm Optimization Neural Network, Genetic Algorithm Neural Network, and Artificial Bee 

Colony Neural Network, proving more efficient and compatible with recent algorithms [95]. Kazemzadeh et al. 

proposed a HM for long-term prediction of peak electrical load and total demand. This HM demonstrated superior 

performance compared to the individual models of PSO-SVR, ANN, and ARIMA [96]. Fathi et al. reviewed energy 

performance prediction in urban buildings, considering building types, energy types, and forecasting horizons. This 

review highlighted ANN and SVR as the most frequently used algorithms for predicting buildings’ energy 

performance, particularly focusing on electrical energy consumption [97]. Table 1 provided detailed summary of 

ML and DL. 

Table 1: Summary of ML and DL Techniques in Energy Consumption and Demand Forecasting 

Authors Model/Method 

Used 

Application Key Findings 

Amasyali et 

al. 

[83] 

Various ML  methods Building energy 

consumption 

Focus  on   short-term   forecasts 

in commercial and educational 

buildings. 

Deb et al. [84] TS forecasting 

techniques (e.g., Fuzzy 

Logic, SVM) 

Building energy 

consumption 

Hybrid Models combining different 

forecasting methods are ef fective. 

Walker 

[85] 

et al. Boosted-Tree, Random 

Forest, SVM, ANN 

Hourly electricity 

demand in commercial 

buildings 

Random Forest outperforms in 

ACC and prediction error. 

Grimaldo et 

al. 

[86] 

k Nearest Neighbor 

with visual analytics 

Energy supply and 

demand prediction 

Accurate results; useful for 

exploring forecasting scenarios. 

Hagh et al. 

[93] 

Hybrid  SVM   and 

ANN 

Home appliance 

power consumption 

High ACC  (99.2%)  with  smart 

meter data. 

Hafeez 

[94] 

et al. Hybrid model 

(MMI, Factored 

CRBM, GWDO) 

Short-term electrical load 

prediction 

Superior in ACC, runtime, and 

convergence rate. 
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Khan et al. CSNN Power consumption 

in OPEC countries 

Outperforms in  ACC,  

convergence time, and 

compatibility. 

Kazemzadeh 

et 

al. [96] 

Hybrid Model 

(ARIMA, ANN, PSO-

SVR) 

Long-term load demand 

prediction 

Superior to individual models. 

Fathi et al. 

[97] 

Review (ANN  and 

SVR) 

Energy performance in 

urban  buildings 

Frequently used  for  predicting 

building energy performance. 

Liu et al. [87] SVM Energy consumption in 

public  buildings 

Effective in  distinguishing  

consumption patterns. 

Kaytez 

[88] 

et al. Hybrid Model 

(ARIMA, LS- SVM) 

Long-term power 

consumption in 

Turkey 

Better ACC than MLR and single 

ARIMA. 

Fan et al. [89] EMD-SVR-PSO- 

AR-GARCH Hybrid Model 

Power consumption 

forecasting 

Outperforms others but limited 

in runtime performance. 

Jamil et al. 

[90] 

ARIMA Hydropower consumption 

in  Pak istan 

Strong  performance,   used 

forecasting up to 2030. 

for 

Beyca et al. 

[91] 

MLR, SVR, ANN Natural   gas   

consumption in Turkey 

SVR is more accurate for 

developing countries. 

Wen et al. 

[92] 

DRNN-GRU Short-term residential load 

demand forecasting 

Surpasses traditional methods in 

ACC. 

III. PREDICTING SOLAR SYSTEMS 

With the rise of Solar Energy (SE), the need for accurately predicting the output power of solar systems has become 

increasingly crucial. The growing installed capacity of Photovoltaic Solar Energy (PV SE) necessitates reliable 

forecasting methods due to the inherently variable nature of SE [98, 99]. Traditional models often struggle with the 

complexity of Solar Radiation (SR) data, leading to a shift towards Machine Learning (ML)-based models for more 

accurate predictions [100, 101]. These models take into account a variety of factors such as cell position, solar cell 

type, and weather conditions, underlining the critical role of SR data in forecasting [102]. A study by Voyant et al. 

evaluated different ML methods for predicting SR, focusing on Neural Networks (NN) and Support Vector 

Regression (SVR), while also exploring methods like k-Nearest Neighbors (kNN) and Random Forest (RF). The 

study suggested that Hybrid Models, combining different ML techniques, could further enhance prediction 

performance [103]. Similarly, Huertas et al. explored four models, finding that a hybrid model with SVM 

outperformed single predictor models [104]. 

In a case study by Govindasamy et al. conducted in South Africa, various algorithms such as ANN, SVR, General 

Regression Neural Network, and RF were used to assess the impact of PM10 air pollution on SR. The ANN 

algorithm was found to be superior in terms of ACC and computational efficiency [105]. Gürel et al. compared an 

experimental model, ANN, Time Series, and a mathematical model using various climatic data, concluding that the 

ANN algorithm was most accurate for evaluating SR [106]. Alizamir et al. compared six ML-based models in the 

United States and Turkey for SR predic- tion.  The Gradient Boosting Tree model emerged as the most effective, 

outperforming others in terms of error rates and ACC [107]. Srivastava et al. reviewed four ML algorithms for 

predicting hourly SR, with the RF model deemed most effective and the CART as the least [108]. Benali et al. 

compared three models for hourly SR prediction, finding the RF model to be the most accurate, especially in winter 

and summer, while spring and autumn predictions posed more challenges due to diverse SR patterns [109]. In a 

study by Ağbulut et al., four ML algorithms and DL were employed to predict daily SR, using data like daily 

temperature extremes, cloud cover, and extraterrestrial SR. While all algorithms were effective, the ANN algorithm 

outperformed others, with kNN being the least effective [110]. 
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These studies collectively underscore the diverse methodologies and effectiveness of various ML and DL 

approaches in predicting solar radiation. However, a critical analysis reveals that while these models offer 

significant improvements over traditional methods, challenges such as data quality, model complexity, and 

computational demands persist. The varied performance across different geographic locations and seasons also 

highlights the necessity for tailored approaches. Future research should focus on refining these models, considering 

local environmental conditions and integrating real-time data for more accurate and robust predictions. Summary 

of ML and DL Techniques in Predicting Solar System Output Power is shown in Table 2. 

Table 2:  Summary of ML and DL Techniques in Predicting Solar System Output Power 

Authors 

Voyant et al. 

[103] 

Models/Methods 

Used 

NN, Support Vec- tor Regression, 

kNN, Random Forest 

Application 

Predicting SR 

Key Findings 

Hybrid Models may enhance 

pre- diction performance. 

Huertas et 

al. [104] 

Smart Persistence, 

Satellite imagery, NWP, 

 Hybrid Satellite-NWP 

with SVM 

SR predictions Hybrid model with SVM 

outper- 

forms single predictor models. 

Govindasamy 

et al. [105] 

ANN, SVR,  Gen- 

eral Regression Neural Network, 

Random Forest 

Impact of PM10 air 

pollution on SR 

ANN superior in ACC and 

com- 

putational efficiency. 

Gürel et  al. 

[106] 

Experimental 

model, ANN, Time Series, 

Mathemati- cal model 

Evaluating SR ANN algorithm  most  

accurate 

with climatic data. 

Alizamir et 

al. [107] 

Six ML-based mod- 

els including Gradi- ent Boosting 

Tree 

SR prediction in US 

and Turkey 

Gradient Boosting Tree most 

ef- 

fective in error rates and 

ACC. 

Srivastava et 

al. [108] 

MARS, CART, M5, 

RF 

Predicting hourly 

SR 

RF most effective, CART 

least 

effective. 

Benali et al. 

[109] 

ANN, RF,  Smart 

Persistence 

Hourly SR  predic- 

tion 

RF most accurate, especially 

in 

winter and summer. 

Ağbulut et 

al. [110] 

SVM, ANN,  kNN, 

DL 

Daily SR prediction ANN outperforms  others,  

kNN 

least effective. 

 

IV. PREDICTING WIND SYSTEMS 

The wind energy sector’s rapid growth can be attributed to the clean, inexpensive, and abundant nature of wind 

resources. However, the challenge in wind energy prediction stems from its nonlinear and random characteristics, 

posing difficulties in maintaining consistent power generation [111, 112]. In Europe, a notable shift towards 

offshore wind farms has been observed, offering advantages like abundant wind resources and larger generation 
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capacities [113]. Zendehboud et al. conducted a comparative study favoring the SVM model over others, such as 

the ANN, for WP prediction. They proposed hybrid SVM models to enhance ACC, indicating a potential direction 

for future research in this area [114]. Wang et al. emphasized the challenges of using a single model for WS 

prediction across different regions. They advocated for a more flexible approach that could adapt to regional 

variations, thereby improving forecast accuracy and providing more probabilistic information [115]. In their study, 

Demolli et al. employed five ML algorithms, finding that XGBoost, Support Vector Regression (SVR), and 

Random Forest were particularly effective, with RF emerging as the top performer. The study also noted the unique 

effectiveness of the SVR algorithm when standard deviation was excluded from the data, highlighting the sensitivity 

of ML models to input features. Furthermore, the adaptability of these ML models to new geographical locations 

was a significant finding, suggesting their broad applicability [116]. Xiao et al. introduced a self-adaptive Kernel 

Extreme Learning Machine (KELM), addressing the need for continual retraining of ANN models with updated 

data. This model’s efficiency in incorporating new information while retaining relevant old data marks a significant 

advancement in training efficiency, reducing retraining costs, and improving forecasting accuracy [117]. Cadenas 

et al. compared the ARIMA and NARX models for WS prediction. The study found that the NARX model exhibited 

less error compared to ARIMA, suggesting its potential superiority in certain contexts [118]. 

Further contributions to WP prediction include Li et al.’s use of the Improved Dragonfly Algorithm-based SVM 

for short-term WP forecasting [119], Tian et al.’s application for WS fore- casting [120], and Hong et al.’s 

deployment of the Convolutional Neural Network (CNN) model for next-day WS prediction [121]. Collectively, 

these studies underscore the diversity and complexity of ML and DL methodologies in wind energy prediction. 

However, a critical analysis reveals that the choice of model and its effectiveness significantly depend on the 

specific characteristics of the dataset and the geographical location. While advancements like the self-adaptive 

KELM show promise in addressing the challenges of model retraining, there remains a need for ongoing research 

to improve model accuracy, computational efficiency, and adaptability to varying environmental conditions. This 

review highlights the necessity for continuous innovation in ML and DL techniques to ensure reliable and efficient 

wind energy forecasting. The Summary of ML and DL Techniques in Predicting Wind System Output Power is 

shown in Table 3. 

Table 3: Summary of ML and DL Techniques in Predicting Wind System Output Power 

Authors Models/Methods 

Used 

Application Key Findings 

Zendehboud 

et al. [114] 

SVM WP prediction Favoring SVM for its speed, 

reli-ability, and ACC; 

suggestion for hybrid models. 

Wang et  al. 

[115] 

Hybrid Model (EWT, GPR, 

ARIMA, ELM, SVM, LS-

SVM) 

Short-termWS 

forecasting 

Improved forecast  ACC,  more 

probabilistic information. 

Demolli et 

al. [116] 

ML algorithms 

(LASSO, kNN, 

XGBoost, RF, SVR) 

Long-term WP 

pre- 

diction 

XGBoost, SVR, RF effective; 

RF 

best performer. 

Xiao  et   al. 

[117] 

Self-adaptive 

KELM 

WP 

forecasting 

Enhances training efficiency, 

re-duces retraining costs, 

improves ACC. 

Cadenas et 

al. [118] 

ARIMA, NARX WS prediction NARX shows  less  error  com- 

pared to ARIMA. 

Li et al. 

[119] 

Improved Drag-onfly 

Algorithm- based SVM 

Short-termWP 

forecasting 

- 

Tian  et   al. 

[120] 

LMD, LSSVM, 

Firefly Algorithm 

Short-termWS 

forecasting 

- 

Hong et  al. 

[121] 

CNN Next-day WS  

pre-diction 

- 
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V. OPTIMIZATION METHODS 

Optimization plays a crucial role in the design, analysis, control, and operation of various real-world systems. It 

involves selecting the most suitable goals, variables, and constraints to devise scalable algorithms that can find 

optimal or nearly optimal solutions efficiently. The field of optimization has evolved significantly, especially with 

advancements in ML [122, 123]. In EM, nearly every article published in the last two decades underscores the 

urgent need for more efficient energy production and utilization. This has spurred research into complex 

optimization problems in ESs, employing approaches like ML-based optimization, real-time algorithms, heuristic, 

hyper-heuristic, and metaheuristic methods. EM optimization is crucial across various domains [124, 125, 126, 

127]. Teng et al.’s research, for example, explored EM in electric vehicles and fuel cells to boost energy efficiency 

[128]. Perera et al.  investigated the use of SL and TL in optimizing ESs.   They proposed a HOA, named (SMANN-

AEM), which merges Surrogate Models with ANN and AEM to expedite the optimization process while retaining 

ACC. The HOA was found to be about 17 times faster than the traditional AEM, and using SMTL with HOA could 

reduce computational time by up to 84%, making it feasible for regional or national ES optimization [129]. Ikeda 

et al. introduced a hybrid optimization method using Deep NN for day-to-day activity optimization in building 

energy and storage systems. The method, which predicts optimal performance of integrated cooling tower systems, 

could potentially reduce daily operating costs by over 13.4% [130]. Zhou et al. proposed a multivariate optimization 

method using ANN and an advanced algorithm for a hybrid system. Their findings suggested that the ANN-based 

learning algorithm outperforms traditional methods in ACC and computational efficiency for optimization tasks. 

Moreover, teaching-learning methods showed greater strength than other methods like Particle Swarm Optimization 

in optimizing overall energy production [131]. Ilbeigi et al. presented a model using MLP and GA to optimize 

energy consumption in an Iranian research center. The MLP model simulated the building’s energy consumption, 

which was then optimized using GA, considering key variables. This optimization resulted in a significant reduction 

in energy consumption (about 35%) and demonstrated that the MLP model could accurately predict building energy 

consumption [132]. 

Naserbegi et al. explored the multi-objective optimization of a hybrid nuclear power plant using an ANN-GSA. The 

ANN, utilizing 10 thermodynamic inputs from the power plant, was employed to predict optimal performance for 

the optimization process. Their findings indicated the effectiveness of this approach for the given purpose [133]. 

Abbas et al. focused on optimizing the production capacity of RE systems with storage, employing an ANN-GA 

methodology. Their research demonstrated both high ACC and efficiency in computation time [71]. Similarly, Li 

et al. also applied the ANN-GA algorithm, but for optimizing engine efficiency, achieving results with suitable 

ACC and an acceptable computation period [134]. Xu et al.  introduced  a  novel  intelligent  reasoning  system  for  

evaluating  and  optimizing  energy consumption in industrial processes. This system comprised three methods were 

used for retrieving similar inputs. The system achieved an ACC of 91.7% and an optimization error below 13.5%, 

validated by experimental results. It also proved beneficial in reducing energy consumption, maintaining tool 

stability, and enhancing process efficiency [135]. Wen et al. utilized ANN for optimizing the design of wind turbine 

airfoils. By training data to predict the lift coefficient and the maximum lift-to-drag ratio of airfoils, their study 

presented new insights for airfoil optimization and significantly reduced the time required for optimization [136]. 

Monitoring and diagnosing faults in large-scale industrial processes and ESs is a critical challenge, with human 

errors accounting for approximately 70% of industrial accidents. Thus, developing efficient, reliable real-time DST 

for FDD is essential to enhance safety, environmental protection, and profitability [137]. The reliability, availability, 

and safety of equipment in ESs are paramount, necessitating effective monitoring and assessment tools [138, 139]. 

Faults in systems like wind turbines, which contain both mechanical and electrical components, require 

sophisticated detection technologies [140]. Effective fault analysis is crucial for minimizing disruptions and 

maintaining optimal performance in power systems [141]. The increasing use of AI and ML models aids in 

enhancing the speed and efficiency of these processes [142]. Yang et al. used in their work the SVR model for 

early-stage fault detection (FD) in wind turbines. They introduced penalty factors and slack variables in the SVR 

algorithm to improve its ability to filter unwanted signals and identify outliers, leading to better balance in false 

alarms and early FD [143]. Choi et al. utilized energy consumption forecasting to detect faults and abnormalities in 

tools. They applied a Random Forest algorithm to time series data, using outlier data detection when the model’s 

ACC exceeded a certain threshold. The model proved effective for this purpose [144]. Wang et al. proposed an 

intelligent FD method for wind. This method demonstrated 100% detection ACC, proving its effectiveness in 
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accurately identifying different states of rotary bearings [145]. Han et al. introduced a model using the Least Square 

SVM algorithm for FDD in chillers. This model outperformed Probabilistic NN and SVM in ACC, FD, and runtime, 

especially for system-level defects [146]. Helbing et al. reviewed Deep Learning-based methods for FD in wind 

turbines, examining most of the available methods [147]. Other studies using ML and DL for FDD include Wang 

et al.’s Hybrid Model with SVM- PSO for nuclear power plants [148]; Sarwar et al.’s use of the SVM algorithm 

for detecting high impedance faults in power distribution networks [149]; Eskandari et al.’s Ensemble Learning 

(EL) model for PV system FD [150]; Han et al.’s EL model for diagnosing building ES defects [151]; and Tightiz 

et al.’s application of the ANFIS model for diagnosing power transformer defects [152]. The Summary of ML and 

DL Techniques in Optimization and FDD in ESs is shown in Table 4. 

Table 4: Summary of ML and DL Techniques in Optimization and FDD in ESs 

Authors 

Teng et al. [128] 

Model/Method 

Used 

- 

Application 

Energy Manage- ment 

in EVs and fuel cells 

Key Findings 

Boosting energy efficiency. 

Perera et al. 

[129] 

SL, TL, HOA 

(SMANN-AEM) 

ES optimization HOA  significantly   faster   and 

more accurate. 

Ikeda et  al. 

[130] 

Hybrid method 

with DNN 

Building energy 

And storage sys- tems 

Reduction  in   daily   operating 

costs. 

Zhou et  al. 

[131] 

ANN and advanced 

algorithms 

Hybrid system  op- 

timization 

ANN-based  algorithm   outper- 

forms traditional methods. 

Ilbeigi et  al. 

[132] 

MLP and GA Energy consump- 

tion optimization 

Significant reduction  in  energy 

consumption. 

Naserbegi et 

al. [133] 

ANN-based GSA Optimization in hy- 

brid nuclear power 

plant 

Effective in  predicting  optimal 

performance. 

Abbasetal. ANN-GA RE system opti- 

mization 

High ACC and efficiency in com- 

putation. 

Lietal. 

[134] 

ANN-GA Engine efficiency 

optimization 

Suitable ACC  and  acceptable 

computation period. 

Xu et al. 

[135] 

ICBR, ANFIS, 

VPSO 

Industrial process 

energy optimiza- 

tion 

High ACC and optimization er- 

ror below 13.5%. 

Wen  et   al. 

[136] 

ANN Wind turbine 

airfoil design opti- 

mization 

Insights for airfoil optimization, 

time-efficient. 

Yang et  al. 

[143] 

SVR FD in  wind  tur- 

bines 

Improved early-stage FD. 

Choi  et   al. 

[144] 

Random Forest FD in tools via en- 

ergy consumption 

forecasting 

Effective for  detecting  outliers 

and abnormalities. 

Wang et  al. 

[145] 

Beetle Antennae 

Search based SVM 

FD in wind turbine 

bearings 

100% detection ACC. 

Han  et   al. 

[146] 

Least Square SVM FDD in chillers Superior in ACC and runtime for 

system-level defects. 

Zhao et al. Review of AI-based 

methods 

FD in building ESs - 

Helbing et 

al. [147] 

Review of DL- 

based methods 

FD in  wind  tur- 

bines 

- 

Wang et  al. 

[148] 

Hybrid Model with 

SVM-PSO 

FDD in nuclear 

power plants 

- 
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Sarwar et al. 

[149] 

SVM algorithm Detecting high 

impedance faults in 

power networks 

- 

Eskandari et 

al. [150] 

EL  (SVM,   Naive 

Bayes, kNN) 

PV system FD - 

Han  et   al. 

[151] 

EL model Diagnosing build- 

ing ES defects 

- 

Tightiz et al. 

[152] 

ANFIS model Diagnosing power 

transformer defects 

- 

VI. CHALLENGES OF RE AND THE ROLE OF EXPLAINABLE AI 

The integration of Renewable Energy (RE) sources into existing power systems, while crucial for a sustainable 

future, presents a myriad of challenges, prominently due to the intermittency and unpredictability of these energy 

sources. Solar and wind energies, heavily reliant on environmental conditions, lead to fluctuating energy 

production, posing significant hurdles in maintaining grid stability and reliability. While predictive models powered 

by Artificial Intelligence (AI) offer fore- casts for energy availability, their effectiveness is often hindered by the 

opaque nature of traditional AI models, which can undermine trust and understanding. Here, the application of 

Explainable Artificial Intelligence (XAI) emerges as a critical solution, enhancing transparency and reliability of 

these forecasts. XAI, by elucidating the decision-making processes of AI, mitigates the ambiguity surrounding 

predictive models, thereby fostering trust among grid operators and stakeholders. Furthermore, the complexity of 

merging RE sources with existing power grids requires sophisticated control and optimization strategies. AI models, 

though capable, often suffer from a ’black-box’ nature (figure 2), obscuring the understanding of decision-making 

processes. XAI ad- dresses this by shedding light on these processes, thereby assisting operators in comprehending 

and efficiently managing the integration of RE sources into the grid. 

 

Fig. 2: transparency design and post-hoc explanation [153]. 

Another significant challenge is balancing the supply from renewable sources with fluctuating demand. AI models 

are instrumental in predicting demand patterns and adjusting the supply accordingly. However, for effective 

management, the rationale behind AI-based decisions must be transparent. XAI plays a vital role in this context by 

providing clear explanations of AI decisions, thereby ensuring better decision-making in real-time energy 

management. Maintenance and reliability are also key for optimal performance of RE systems. AI-driven pre- 

dictive maintenance can preempt equipment failures, but the complex algorithms used are often difficult to interpret. 

XAI becomes indispensable in such scenarios, offering clear and understand- able explanations for maintenance 

decisions, aiding in the formulation of efficient and effective maintenance schedules. Moreover, with constantly 

evolving energy policies and regulations, AI’s assistance in com- pliance monitoring becomes essential. Yet, 

decisions made by non-explainable AI could lead to regulatory challenges. XAI offers the transparency and 

accountability needed, ensuring that AI- driven solutions are in alignment with regulatory standards. Finally, public 

perception and acceptance are vital for the adoption of AI-driven solutions in RE. XAI can significantly contribute 

to enhancing public trust by demystifying AI decisions, mak- ing them more transparent and understandable. In 

conclusion, while RE sources offer numerous benefits, their integration is fraught with unique challenges that can 

be effectively mitigated with the aid of XAI. By rendering AI algorithms in the energy sector more transparent and 

understand- able, XAI not only bolsters operational efficiency but also builds trust among various stakeholders, 

facilitating a smoother and more acceptable transition to renewable energy sources [154-156]. 
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VII. 7. CONCLUSION 

In summary, this review has systematically examined the crucial intersection of RE systems and the rapidly 

evolving technologies of ML and DL. The urgency for adopting renewable sources such as solar and wind power 

is underscored by escalating energy demands, environmental challenges, and the imperative for sustainable energy 

practices. Our in-depth analysis highlights the substantial advancements that ML and DL technologies bring to 

the RE sector, enhancing efficiency, reliability, and predictability. Key areas where ML and DL exhibit their 

strengths include the prediction and optimization of energy consumption and production. These advanced 

technologies offer sophisticated tools for accurately forecasting energy demands and optimizing energy outputs, 

which are vital for effective energy management and maintaining grid stability. The application of ML and DL 

extends beyond forecasting to encompass optimization of operational parameters, maintenance schedules, and 

even in the early stages of planning and design of RE systems. However, our review also draws attention to the 

significant challenges associated with deploying AI technologies within the energy sector. Complexities in energy 

systems, the inherent variability of renewable sources, and the necessity for accurate and reliable predictions 

present considerable hurdles.  Additionally, the integration of these technologies into existing energy grids 

necessitates a careful balance of technical, economic, and regulatory considerations. The role of Explainable AI 

(XAI) emerges as a critical component in this landscape.  As AI models increase in complexity, ensuring their 

transparency and understandability becomes paramount for building trust and encouraging broader adoption. XAI 

represents a crucial bridge between cutting-edge AI models and their practical, user-friendly application within 

the energy sector. 

Conclusively, the integration of ML and DL into RE systems heralds a promising path to- ward a sustainable and 

efficient energy future. While the journey is fraught with challenges, the continued research and innovation in this 

field are vital. It is crucial that future endeavors not only concentrate on technological advancements but also 

prioritize making these technologies accessible, comprehensible, and aligned with overarching sustainability 

objectives.  The potential of ML and DL in revolutionizing the RE sector is immense, but its realization hinges on 

a balanced approach that addresses technological capabilities alongside ethical, societal, and environmental 

considerations. 
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