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Abstract: - The efficient management of battery state of charge (SOC) is crucial for maximizing the performance, range, 

and longevity of electric vehicle (EV) batteries. This paper presents a novel approach for estimating the optimal state of 

charge of electric car batteries using an Extended Kalman Filter (EKF). The EKF is a recursive algorithm that combines 

measurements from various sensors with a dynamic battery model to estimate the current SOC and predict future SOC 

values with high accuracy. The paper provides a detailed explanation of the EKF algorithm and its application to battery 

SOC estimation, highlighting its ability to handle nonlinearities, uncertainties, and measurement noise inherent in battery 

systems. Furthermore, this research presents a simulation-based validation of the proposed EKF approach using real-world 

driving data from electric vehicles. The simulation results demonstrate the effectiveness of the EKF algorithm in accurately 

estimating the SOC of electric car batteries under various operating conditions, including different driving patterns, 

temperatures, and battery degradation scenarios. 

Keywords: Battery state of charge (SOC),Electric vehicle (EV) batteries, Extended Kalman Filter 

(EKF),Battery management systems, Dynamic battery model 

 

Introduction 

When it comes to resolving global environmental issues, electric vehicles (EVs) are essential. Most wealthy and 

developing nations have included electric cars (EVs) into their policies to reduce carbon emissions and provide 

affordable, zero-emission vehicles as a response to climate change, innovations in renewable energy, battery 

chemistry, fast urbanization, data collection and analysis, and energy security. The all-electric battery electric 

vehicle (BEV), which can be recharged by plugging it into an electrical outlet, is a convenient one-stop solution 

for this[1][2]. Among the several battery types available, lithium-ion batteries provide the most benefits for 

electric vehicle applications, including a long service life, minimal maintenance requirements, and a high energy 

density. The Li-ion battery has many benefits, but it is very vulnerable to overcharging and deep discharging, 

which may shorten its life and potentially trigger an explosion or fire[3]. Because of this, a SOA is required 

while using the battery. Nevertheless, a BMS is required to ensure a safe charging and discharging level. 

Hardware and software are the two primary categories into which BMS's operational components fall[4]. Figure 
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1 shows the overall structure of BMS. The software is the brains of the operation, as it manages the hardware 

and uses input from sensors to make choices. Online data processing is going to catch most of the errors. 

Intelligent data analysis is necessary for the delivery of battery problem notifications[5]. In order to uncover the 

pre-alarm before the defect occurs, data collecting is of utmost importance. The hardware parts carry out their 

functions in accordance with the instructions provided by the software. Using sensors, one may measure the 

voltage and current of a battery. In order to avoid thermal runaway, detect defects, and analyze and monitor 

battery performance, a reliable battery model is required[6][7]. It is also important to monitor State of Charge 

(SOC) using accurate estimate techniques because of the critical role it plays in controlling battery functioning. 

A battery's charging pattern may be optimized by using an appropriate optimization algorithm once the 

algorithm has learned the battery's behaviors[8]. Because it affects battery accessibility and protection directly, 

battery charging is an essential component of BMS. A well-planned charging procedure reduces stress on the 

battery, keeps temperature fluctuations to a minimum, and maximizes the efficiency with which energy is 

converted. Then, a data collecting system may save all the battery's parameters[9]. The system controller then 

checks the recorded data against the battery's safe operating limits. A safety module safeguards the battery from 

potential harm in the event of an unexpected operating state. An efficient communication network connects the 

battery to the BMS and serves as a user interface[10]. 

 
Figure 1. Overview of the software and hardware components of BMS 

 

Although they are simple in concept, the majority of cell balancing circuits that rely just on voltage end up 

underperforming. Active cell balancing is set up for improved performance based on an average SOC. Before 

implementing a cell balancing approach, it is crucial to estimate the single cell SOC. This is because fault 

detection relies on the cell balancing strategy that is based on SOC and voltage. Consequently, the SOC is fed 

into processes that determine power consumption, balance cells, and identify problems. Electric vehicle (EV) 

battery life forecast, cell balance, power demand, energy management, thermal management, and driving range 

calculation all rely on each condition[11]. There is a strong correlation between SOC and other states, making it 

the most crucial parameter to detect and regulate in most research estimating SOC of a battery cell. Also, 

capacity fading, temperature, internal resistance, and SOC are all factors that are gradually altering the State of 

Health (SOH). Charging method, heat transmission, and electrochemical battery characteristics all contribute to 

intermediate-scale variations in the State of Temperature (SOT)[12]. Despite the fact that SOE and SOP may 

change rapidly, SOC is a major determinant of both. Hence, while estimating other states, SOC estimate is 

crucial. 
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Importance Of State Of Charge Estimation 

There are a variety of estimating techniques employed, but model-based approaches have recently been 

recognized as the gold standard. Since the accuracy of the model has a direct impact on state prediction, 

building a battery model should be the first order of business. Thus, to accurately predict a battery's SOC, one 

needs a well trained battery model in addition to an appropriate SOC estimation method. Because of this 

interdependence, it is critical to choose an appropriate battery model and state-of-charge estimate method when 

designing a BMS. In order to avoid thermal runaway, detect defects, and analyze and monitor battery 

performance, a reliable battery model is required[13]. The behavior of the battery is shown by analyzing and 

describing the standard models and the parameters linked to them.  

Therefore, model-based methods for estimating SOC often make use of Electrochemical Models (EMs) and 

Equivalent Circuit Models (ECMs). While EMs outperform ECMs in terms of accuracy, they still fail to provide 

an optimal balance between complexity and precision. For real-time BMS operations including state estimation, 

cell equalization, and charging management and optimization, ECMs are often used models instead of EMs due 

to their simpler parameterization and implementation requirements[14]. Because of its great precision, 

simplicity, and outstanding modeling needs, Two RC-ECM is a suitable model for web-based applications. At 

each stage, SOC updates the time-variant parameters since the model parameters are highly reliant on SOC. 

Both online and offline methods have been used to identify the model parameters for online SOC estimation. 

Because online SOC estimate algorithms are computationally difficult and time-consuming to conduct, most 

researchers choose offline identification approaches. To improve the model-based SOC estimate technique's 

accuracy for real-time EV applications, however, the model parameters need to be determined online. 

Consequently, in order to estimate SOC, the parameters of the battery model are determined using the VFFRLS 

method[15]. 

 

Significance of Kalman Filter 

Since the battery model and state-of-charge estimate approach are interdependent, it is important to choose the 

correct one when designing a BMS. Because of its accuracy, robustness, self-correction capability, and 

convergence rate, the Kalman Filter (KF) family algorithm is superior than Artificial Neural Network (ANN) for 

SOC estimation. A state-space model of the battery must be first created before a KF-based approach can be 

employed for SOC estimation. The model ties SOC to quantifiable factors like voltage and current by using 

SOC as a state variable. An improved version of KF that accounts for the battery's nonlinear nature shows great 

promise for state-of-charge estimation. The EKF is chosen because of its balance between complexity and 

accuracy, even if the Particle Filter (PF) and the Unscented Kalman Filter (UKF) have been created and provide 

excellent results for SOC estimate. Just because other sophisticated filters increase computing complexity while 

also improving accuracy[16]. An accurate but not too complex technique is required for the severe operating 

conditions of an electric vehicle. 

 The filter performance is affected by specified settings of the system noise, even though EKF has its benefits. 

So, it's worth investigating how the process noise covariance matrix (Q) and the measurement noise covariance 

matrix (R) affect SOC estimation with the use of Kalman filter techniques. To examine the impact of these 

matrices on SOC estimation, several combinations of noise covariance matrices are used. Poor convergence rate 

and estimate mistakes might be caused by inaccurate battery modeling and noise covariance matrices. The noise 

covariance matrices (Q & R) are often fine-tuned by hand using the time-consuming trial-and-error technique. It 

gets more difficult to manually tune these matrices as the system order grows[17]. In order to address this, SOC 

estimation makes use of adaptive filtering techniques such as the Adaptive Unscented Kalman Filter (AUKF) 

and the Adaptive K-Filter (AEKF). These strategies, however, increase both the computing complexity and the 

amount of initial predictions that need to be made. Additionally, an optimization technique is required for these 

approaches to choose the size of the moving window, which is crucial. In order to focus only on state 

estimation, one needs be familiar with process and measurement noise, according to Kalman theory[18]. The 

adaptive approach or filter tuning aims to collect the filter statistics Q and R by running a filter on measurement 

data. Consequently, adjusting the filter is crucial for accurate and fast SOC estimate of Li-ion batteries. The 

suggestion of filter tuning is explored for every possible formulation or version of the Kalman filter, including 

EKF, UKF, and PF. In order to get near-ideal solutions, the best tuning that is practically possible is needed. 

Without correct tuning, it is hard to determine whether the performance of Kalman filter variants is a result of 
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their formulation. Therefore, independent of the battery model and filtering approach, filter tweaking is crucial 

for improved state estimation[19]. 

 

Modeling And State Of Charge Estimation Of Lithium-Ion Battery In Electric Vehicle 

Electric vehicle (EV) models must prioritize extending the driving range and optimizing the run time of the 

batteries. This opinion holds that BMS is crucial for the reliable and secure functioning of batteries, particularly 

when it comes to electric vehicles employing Lithium-ion (Li-ion) batteries. Estimating SOC is a crucial 

function of BMS. If you want an accurate state estimate, you need a battery model that is well-parameterized. 

Why? Because avoiding thermal runaway and other issues with a well-modeled battery requires constant 

monitoring and analysis of the battery's activity. It is also important to monitor State of Charge using accurate 

estimate techniques because of the critical role it plays in controlling battery functioning. Consequently, for 

accurate SOC estimation, it is necessary to use a well trained battery model in conjunction with the appropriate 

SOC estimation approach. This study examines the merits and shortcomings of popular battery models by 

concentrating on these characteristics. These models include the electrochemical model, the equivalent circuit 

model, and the data-driven model. Also included are the usual procedures for estimating a battery's state of 

charge, including direct and model-based approaches. In order to create an appropriate BMS for EVs, we 

thoroughly examined the three most different battery types and categorized the various SOC estimate methods, 

paying close attention to details like accuracy, setup effort, computing complexity, implementation simplicity, 

and real-time applications. Battery modeling and state-of-charge (SOC) estimation for Li-ion battery cells are 

the primary areas of emphasis in this study. 

 With reliable SOC estimate, electric vehicle users may rest easy about their vehicles' range. Estimating the 

battery's status requires a reliable battery model. The creation of an accurate battery model is the first step in 

BMS design. Many battery models with varying degrees of accuracy have been created up to this point[19]. The 

electrochemical, equivalent circuit, and data-driven models of batteries are the most notable ones. Battery 

behavior may be described using electrochemical models that employ partial differential equations to account 

for variables such as electrolyte content, anode and cathode electrode size, and the electrochemical process 

occurring inside the battery. Finding a plethora of data—electrolyte potential, solid potential, open circuit 

potential, overpotential, electrolyte concentration, solid concentration, battery cell current, temperature, etc.—

requires more computing power and time, despite the fact that EM delivers correct battery parameters. It also 

has a hard time finding a home in real-time apps. According to its physical mechanism, 

Optimal performance, range, and battery life in electric cars (EVs) are dependent on proper state of charge 

(SOC) management, which is becoming more important as EVs gain in popularity. To avoid wasteful 

deterioration and maximize battery life, an accurate SOC estimate is required[20]. Using an Extended Kalman 

Filter (EKF), this research presents a new method for determining the ideal battery charge level for electric 

vehicles. To accurately assess the present state of charge (SOC) and forecast future SOC values, the EKF 

recursive algorithm integrates data from several sensors with a dynamic battery model.  

The effect that SOC estimate has on the general efficiency and performance of EVs is where its importance 

resides. By accurately estimating SOC, sophisticated battery management systems can maximize the vehicle's 

range while guaranteeing the health and life of the battery via optimized charging and discharging procedures. 

However, estimating SOC in EV batteries is difficult because of measurement noise, uncertainties, and 

nonlinearities that are unique to battery systems. This article explains the EKF method and how it is used to 

estimate the state of charge in batteries. We emphasize the EKF's capacity to efficiently manage these issues by 

repeatedly revising SOC estimations according to sensor readings in real-time and the battery's dynamic 

behavior. The EKF method ensures precise tracking of SOC changes over time by integrating data from several 

sources, such as battery voltage, current, temperature, and other pertinent factors. 

In addition, we showcase a validation of the suggested EKF method using simulation, utilizing electric car 

driving data collected in the actual world. Electric vehicle battery state-of-charge (SOC) estimation using the 

EKF method was successful over a range of operating situations, including varying driving patterns, 

temperatures, and degradation scenarios, as shown in the simulation results. In real-world electric vehicle 

applications, our findings prove that the EKF-based SOC prediction method is reliable and resilient. 

In electric cars, the energy storage devices that are housed in the batteries are closely monitored and controlled 

by the battery management system. Improving the efficiency of electric cars' battery management systems is 



J. Electrical Systems 20-6s (2024): 1352-1358 

1356 

crucial as it regulates the lifespan of the expensive battery, which is becoming more critical as battery 

technology continues to advance. Particularly in the areas of battery modeling and state of charge estimate, this 

chapter has addressed the most crucial facts of the battery management system. Battery modeling may be made 

more accurate and simpler by choosing the right model type and using a parameter identification approach. The 

literature on state of charge estimation suggests that, with the right choice of battery model, parameter type, and 

parameter identification technique, an adaptive filter-based approach to SOC estimate may produce accurate 

findings. To provide a balance between accuracy and complexity, state-of-charge estimation based on artificial 

intelligence requires a proper training approach, a large amount of data collection, normalization, and an 

algorithm for tuning hyperparameters. The majority of the battery management system's critical technologies, 

however, were developed and proven in controlled laboratory settings. However, it is impossible to extend the 

guarantee since real-world performance differs from laboratory findings. Customers of electric vehicles need a 

simple and precise technique for state of charge estimate if the manufacturers are serious about calming their 

fears about the battery pack's range and avoiding cell inconsistencies. Validation of the method under the 

dynamic settings of an EV is essential. 

 

Battery Modeling and Parameter Identification Using Variable Forgetting Factor Recursive Least Square 

Algorithm 

The transportation industry's huge drive for hybrid and battery-powered cars and the demand for longer-lasting 

portable electronic devices have heightened interest in the complicated field of battery modeling. In this 

research, we will use a form of recursive least square methods to determine the model parameters and analyze 

battery properties. Few models are as widely used as the electrochemical, black-box, and comparable circuit 

models. The electrochemical model describes the internal electrochemical process of a battery and how it 

behaves in relation to the anode and cathode sizes, electrolyte concentration, and other parameters. The model is 

realistic and easy to understand, however it's not practical for use in online design processes. A large number of 

factors, some of which are difficult to identify, and complicated electrochemical processes contribute to the high 

computational complexity of this model's implementation. The nonlinear mapping between a battery's input and 

output may be approximated using existing samples and black-box models. Many different types of artificial 

neural networks, support vector machines, recurrent neural networks, deep neural networks, etc., are used to 

construct black-box models. It takes a lot of training data for this model to show how batteries behave without 

understanding battery chemistry. This model works well with Li-ion batteries, but it takes a long time to train 

and uses a lot of computing power.  

Furthermore, developing an appropriate training method and choosing hyperparameters need meticulous 

consideration. The amount and quality of the training data determine how much computing and model accuracy 

this model requires, however. The mapping learning process is therefore less efficient. Therefore, it is ideal to 

have a mapping learning algorithm that can handle a lot of training data quickly. 

For web-based apps, ECM is the way to go since it meets all of the most important modeling criteria in terms of 

precision, setup effort, computational complexity, and implementation simplicity. This model explains the 

battery's dynamic behavior and has a clear structure. The design of control systems may benefit from battery 

models that are not too complicated. Battery models shouldn't be very computationally expensive since control 

systems need to work on embedded computers in real-time. Most of these devices use one or two RC-ECMs and 

are circuit-based. The Rint model, the PNGV model, the combination model, and the RC (resistor-capacitor) 

network-based model are some of the similar circuit models for Li-ion batteries. The preferred ones are the ones 

with one or two RC networks.  

More model parameters in more complicated ECMs increases the likelihood of over-fitting, which in turn 

reduces accuracy. This means that the model structure and parameters have a significant impact on ECM 

accuracy, and that improving model accuracy requires using the right model structure and parameters. 

Nevertheless, the battery's characteristics change based on temperature, SOC, and C-rate, thus they must be 

adjusted. The model parameters are identified using the VFFRLS approach described in [7] since they are time-

variant. An method called fixed Forgetting Factor Recursive Least Square (FFRLS) is used to compare the 

developed approach to. 

 

Proposed Battery ECM-Based SOC Estimation 
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In addition to guaranteeing the vehicle's operational range, SOC estimate helps with energy and power 

computations. Consequently, it is not an easy process to get an accurate SOC for a moving vehicle. When trying 

to estimate SOC that is not immediately measurable by any sensor or device, a more complex estimation method 

is necessary.  

 
 

 Figure 2 ECM based SOC estimation 

 

A simple, accurate battery model is necessary for the model-based state-of-charge estimation method. SOC is 

determined by dividing the battery's current by its useable capacity. 

 

Here,  represents the starting SOC, battery current is represented by  and usable capacity is 

represented by . 

The model-based SOC estimate method's block diagram is shown in Figure 2.  

An input current, either continuous or pulsed, is supplied to the battery cell. The current and voltage at the cell's 

terminals are used to measure sensor noise and process noise. In Figure 2 Filter/Observer might be seen as a 

controller from a control theory perspective.  

 

Conclusion 

This work has presented a novel approach for estimating the optimal state of charge (SOC) for electric car 

batteries using an Extended Kalman Filter (EKF). The EKF algorithm, known for its recursive nature and ability 

to handle nonlinearities and uncertainties, offers a robust solution for SOC estimation in electric vehicle (EV) 

batteries.Through a detailed explanation of the EKF algorithm and its application to battery SOC estimation, we 

have highlighted its effectiveness in combining measurements from various sensors with a dynamic battery 

model to accurately estimate the current SOC and predict future SOC values. By iteratively updating SOC 

estimates based on real-time sensor data, the EKF algorithm enables precise monitoring of battery performance 

and health. 
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