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Abstract: - In response to the randomness and uncertainty of the fire hazards in energy storage power stations, this study introduces 

the cloud model theory. Six factors, including battery type, service life, external stimuli, power station scale, monitoring methods, and 

firefighting equipment, are selected as the risk assessment set. The risks are divided into five levels. Membership function is 

constructed using cloud model. The forward generator is responsible for calculating the complete coefficient matrix and the 

comprehensive evaluation matrix, while the reverse generator handles the same calculations separately. By utilizing fuzzy synthesis 

operators and cloud computing, the numerical attributes of the evaluation cloud model are derived, resulting in the creation of a visual 

representation that illustrates the fire hazard level for energy storage power stations. The results show that the cloud model can be used 

for fire risk assessment in energy storage power stations. Fuzzy variables can be accurately and clearly represented and corresponded 

to different safety levels. The effectiveness and feasibility of this assessment method have been verified through case analysis. 
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I. INTRODUCTION 

New energy technologies like wind energy and solar energy have given rise to the emergence of large-scale 

energy storage plants. As of the end of 2022, the cumulative installed capacity of the global power storage projects 

has reached 237.2 gigawatts, indicating a yearly growth rate of 15%. The cumulative installed capacity of new 

energy storage, at 45.7 GW, had doubled compared to the previous year, with an annual growth rate of 80%. 

However, as the number of energy storage power stations continues to increase, fire and explosion incidents have 

become frequent. Overcharging, overdischarging, and overcurrent can lead to thermal runaway, further resulting 

in catastrophic explosions and casualties [1]. Just since August 2017, South Korea has experienced nearly 30 

incidents of fire accidents in lithium battery energy storage projects. In China, incidents of energy storage fires and 

explosions have occurred in places such as Shanxi, Jiangsu, Guangdong, and Beijing [2]. For example, on April 16, 

2021, a fire broke out at the Nansihuan Energy Storage Power Station in Fengtai District, Beijing, resulting in 

casualties. Currently, energy storage technology and industry are still in the early stages of large-scale application, 

lacking effective regulation, technical support for fire safety, and mature performance indicators, planning designs, 

technologies, and management. Therefore, this poses significant challenges to the assessment of fire hazards in 

energy storage power stations. Gao et al. [3] focused on the reliability and safety of current energy storage systems. 

Based on previous research on safety-related technologies, they proposed measures to improve the reliability and 

safety of energy storage systems, including establishing reasonable management systems and standards, enhancing 

the inherent safety of batteries, implementing module control technology, early accident prediction and alarm 
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technology, and efficient firefighting technology. The causes of fires in energy storage power stations were 

analyzed by Kang [4] from the perspectives of battery technology, types of accidents in electrochemical energy 

storage power stations, and the stages of project engineering. Xiao et al. [5] established a risk assessment system 

from six aspects: battery basic information, battery operating conditions, external stimuli, operating environment, 

safety monitoring and protection systems, and human factors. The analytic hierarchy process and the entropy 

weight method are used to identify the subjective and objective weights of the indicators in the risk evaluation 

system and to evaluate the risk level of the energy storage power station. Wang et al. [6] selected 43 charging stations 

and conducted a comprehensive assessment of their overall situation using the analytic hierarchy process. Based 

on the results, they made improvements and provided supervision to ensure charging safety. Liang Yunhua et al. 
[7] analyzed the causes of lithium battery thermal runaway based on relevant accident cases of chemical energy 

storage power stations, and summarized the deficiencies and fire safety risks of current fire protection systems in 

chemical energy storage power stations. Fang et al. [8] provided safety risk suggestions for energy storage power 

stations, covering aspects like site selection, energy storage battery systems, environmental control systems, 

monitoring systems, protection systems, fire alarm and extinguishing systems, equipment selection, and installation 

and commissioning. Xu et al. [9] summarized various accidents in battery energy storage power stations and 

analyzed the primary safety risk factors, including fire, explosion, poisoning, electric shock, burns, etc., within 

battery energy storage power stations. From the above analyses, it becomes evident that accidents in energy storage 

power stations persist, and scholars have developed a relatively comprehensive understanding of the factors 

affecting fires in such stations. However, there has been limited systematic and comprehensive evaluation of the 

numerous influencing factors. This limitation primarily stems from the complexity of energy storage power stations 

themselves and the variability of factors that impact batteries, resulting in significant fuzziness surrounding these 

influencing factors. Uncertainty exists in the risk assessment process, whether it is the selection of the risk set, 

calculation of weight coefficients, or the formation of comprehensive judgment matrices [10], making it difficult to 

express using quantitative methods. Traditional methods such as the analytic hierarchy process and fuzzy 

mathematics have been widely applied in coal mining engineering practice and theoretical research, but these 

evaluation methods have inherent fuzziness. Cloud model theory, with its strong visual and quantitative 

representation, has been widely applied in various aspects of risk assessment, combining qualitative and 

quantitative approaches, and has shown good effectiveness. 

II. BASIC THEORY OF CLOUD MODEL 

A. Definition and Numerical Characterization of Cloud Models 

The distribution of x over a domain U is called a cloud if the quantitative value x ∈ U is a stochastic realization 

of the qualitative concept C and the determinism of x with respect to C, μ(x) ∈ [0, 1], is a stable trend, and each x 

is called a cloud droplet (x, μ(x)). In cloud modeling, the qualitative concepts are represented by three numerical 

features: expectation (E), entropy (N) and hyper entropy (H). The expected value E in the cloud model represents 

the most representative point of the qualitative concept. The entropy N quantifies the uncertainty of the qualitative 

concept, reflecting not only the dispersion of the cloud droplets, but also the range of values that are acceptable as 

part of the concept within the domain. The hyper entropy H reflects the degree of aggregation of cloud droplets in 

the cloud model. 

B. Cloud Generator 

This study primarily employs forward and reverse cloud generators [11]. Forward cloud generator is a direct 

process of transforming qualitative concepts into quantitative values. By inputting the expectation, entropy, hyper-

entropy, and the number of cloud droplets into the generator, the quantitative value in the domain of the 

characterized cloud droplets and the degree of conceptual representation are obtained. The forward cloud generator 

satisfies the conditions that the distribution follows a normal distribution with a mean of μ and a variance of. For a 

normally distributed random number, the distribution satisfies a normal distribution with a mean of μ and a variance 

of, and it also satisfies the degree of concept representation for the qualitative concept [12]. 

                                                               𝜇 = 𝑒𝑥𝑝{−(𝑥 − 𝐸)2/[2(𝑁′)2]}                                                                (1) 

In contrast to the forward cloud generator, the reverse cloud generator is an indirect process that converts 

quantitative values into qualitative concepts [13]. The generator utilizes statistical cloud drops to compute the 

expectation, entropy, and superentropy of a cloud model, providing an effective method for fuzzy synthesis and 

evaluation. If the sample size of x is n, the operation mechanism of the generator consists of two steps: firstly, the 
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mean and variance of the sample x are calculated, and then the expectation, entropy and superentropy of the cloud 

model are obtained as follows: 

                                                                    {

𝐸 = �̅�;                         

𝑁 =
√𝜋/2

𝑛
∑ |𝑥 − 𝐸| 𝑛

1

𝐻 = √𝑠2 − 𝑁2          

                                                                          (2) 

III. CLOUD MODEL CONSTRUCTION 

A. Risk Set Factors are Determined 

The evaluation results of energy storage power stations crucially depend on the selection of risk factors in the 

risk assessment. Based on engineering practical experience and relevant literature [14,15], this study selects six risk 

factors: battery type, service life, external stimuli, power station scale, monitoring methods and means, and 

firefighting equipment (as shown in Figure 1) to constitute the set of fire hazard factors for energy storage power 

stations and they are categorized into four levels of hazard. 

 
Figure1: Set of Risk Factors for Energy Storage Power Stations 

The risk assessment of energy storage power plant fires based on cloud model can be divided into three steps 

(as shown in Figure 2): 

Step 1: Select risk factors (Table 1) for the evaluation of the energy storage power plant as the assessment 

object and clarify the evaluation criteria. Then, establish the set of fire risk factors and the set of risk level comments 

for energy storage power plants. 

Table 1: Risk Factors of Energy Storage Power Station 

Primary index Secondary index Pointer code 

Type of battery A 

Lithium ion cobalt acid battery A1 

Ternary lithium battery A2 

Lithium iron phosphate battery A3 

Too acidic lithium-ion batteries A4 

Charge and discharge frequency 

B 

 0~500 times B1 

500~1200 times B2 

1200~2000 times B3 

2000~25000 times B4 

Stress ability C 

Temperature resistance C1 

Extrusion degree C2 

Voltage interval C3 

Current interval C4 

Power station scale D 

Installed capacity D1 

Battery management system D2 

Plant cost D3 

Monitoring method E 

Cell voltage monitoring E1 

Cell temperature monitoring E2 

Gas concentration monitoring E3 

Optical fiber pressure detection E4 

Insulation detection E5 

Ultrasonic inspection and measurement E6 

Fire-fighting equipment F 

Fire sensor F1 

Fire pipe  F2 

Fire sprinkler F3 

Fire power distribution F4 

Step 2: Combine historical data, literature, and on-site surveys to obtain a set of weights corresponding to the 

risk factor set using the expert scoring method. Then, each factor in the risk set is scored and the inverse cloud 
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generator is used to obtain the coefficient matrix and the combined evaluation matrix represented by the numerical 

features of the cloud model. 

Step 3: Fuzzy synthesis operators and cloud computing are employed to obtain the digital features of the 

evaluation cloud model from the coefficient matrix and comprehensive evaluation matrix. Clouds of various 

evaluation comments and “cloud droplets” diagrams of the evaluation cloud model are generated using the forward 

cloud generator for intuitive comparative analysis, thereby determining the level of fire hazard for the energy 

storage power plant. 

 
Figure 2: Fire Risk Assessment Steps of Energy Storage Power Station Based On Cloud Model 

B. The Fire Risk Evaluation Cloud Model of Energy Storage Power Station was Established 

First, the energy storage power plant is described in terms of risk levels using the cloud model, assigning a set 

of comments. Each comment is assigned a value within a bilateral boundary [Amin, Amax], and the digital features 

of each comment’s cloud model can be calculated as follows: 

                                                                   {
𝐸 = (𝐴𝑚𝑎𝑥 + 𝐴𝑚𝑖𝑛)/2
𝑁 = (𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛)/6
𝐻 = 𝑘                                  

                                                                     (3) 

In Equation (3), Amin and Amax represent the lower and upper limits of the comment values for a certain risk 

level, respectively. The constant k is adjusted based on the fuzzy threshold of the risk factor set [16]. 

Considering the distribution of the total risk values of fire hazards in different sections and the level of risk 

acceptance, the risk levels of the energy storage power plant fire hazards are divided based on the accumulated 

experience of decision-makers [17]. Then, evaluation comments and evaluation ranges are assigned to different risk 

levels as follows: 

Extremely Safe (Level 1): The evaluation range is [0, 2), indicating that the probability of fire occurrence in 

the energy storage power plant is almost nonexistent, and no measures need to be taken to reduce the risk. 

Relatively Safe (Level 2): The evaluation range is [2, 5), indicating that the probability of fire occurrence in the 

energy storage power plant is low and acceptable, but the risk is not significant. Mainly periodic inspections, 

standardized electricity usage, and other measures are taken to address the risk. 

Moderately Unsafe (Level 3): The evaluation range is [5, 7), indicating that there is a probability of fire 

occurrence in the energy storage power plant, which is allowed to exist. Proper protection measures such as 

identifying and eliminating hazards and improving equipment are needed to reduce the risk. 

Extremely Unsafe (Level 4): The evaluation range is [7, 8), indicating that the probability of fire occurrence in 

the energy storage power plant is extremely high and unacceptable. Due to the ambiguity and uncertainty of 

accidents, the consequences of the risk are severe. The probability must be reduced to a reasonable and acceptable 

range. Measures such as equipment replacement and timely cessation of use are necessary to address the risk. 

Based on this, the cloud model is used to represent these four levels of fire hazard for the energy storage power 

plant, replacing constants to construct the membership functions. Table 2 presents the evaluation cloud model 

concerning the risk levels of fire hazards in the energy storage power plant, which is derived from the categorization 

of risk levels and Equation (1). 

Table 2: Cloud Model for Evaluation of Fire Risk Level of Energy Storage Power Station 

Risk grade 
Parameter 

(E,N) H 

Extremely low (1,0.333) 0.1 

Low (3,0.333) 0.1 

Medium (5,0.333) 0.1 

High (7,0.333) 0.1 

Extremely high (9,0.333) 0.1 

The cloud map of fire risk level of the energy storage power station is obtained by using the forward cloud 

generator, as shown in the Figure 3: 
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Figure 3: Cloud Diagram of Fire Risk Level of Energy Storage Power Station 

C. The Weight Coefficient Matrix and Comprehensive Evaluation Matrix are Calculated 

The risk set M is established as = [𝑚1, 𝑚2, . . . , 𝑚𝑞] , where q is the number of risk factors for energy storage 

power plant fires. The corresponding weight set and evaluation matrix for the risk set are 𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑞] and 

𝑅 = [𝑟1, 𝑟2, . . . , 𝑟𝑞]
𝜏
, respectively. In this approach, the cloud model is used to calculate the coefficient matrix and 

the comprehensive evaluation matrix instead of the membership function. The weights are determined by 

consulting domain experts and assigning scores to determine the importance of each factor. Similarly, based on the 

evaluation criteria for the fire factor risk level of the energy storage plant, the inverse cloud generator is utilized to 

solve the comprehensive evaluation matrix and calculate the expected value, entropy, and hyper entropy of the 

cloud model. 

The following are the coefficient matrices and comprehensive evaluation matrices for the fire risk factors of 

the energy storage plant: 

                                                        𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑞] =

[
 
 
 
𝐸𝑎1 𝑁𝑎1 𝐻𝑎1

𝐸𝑎2

𝐸𝑎𝑞

𝑁𝑎2 𝐻𝑎2

. . .
𝑁𝑎𝑞 𝑁𝑎𝑞]

 
 
 
Ʈ                                                     (4) 

                                                            𝑅 = [𝑟1, 𝑟2, . . . , 𝑟𝑞] =

[
 
 
 
𝐸𝑟1 𝑁𝑟1 𝐻𝑟1

𝐸𝑟1

𝐸𝑟𝑞

𝑁𝑟2 𝐻𝑟2

. . .
𝑁𝑟𝑞 𝐻𝑟𝑞]

 
 
 
Ʈ                                                    (5) 

The interpretation of the coefficient parameters ai (Eai, Nai, Hai) can be understood based on the significance of 

the cloud model feature parameters. Due to the randomness and uncertainty involved in obtaining the weight 

coefficients [18], the assigned score Eai for the i-th specific risk factor mi of the energy storage power plant may vary. 

Due to the influence of subjective factors, different experts’ assessment scores for the same factor generally fall 

within the range [Eai-3Nai, Eai+3Nai]. Conversely, Hai more intuitively reflects the randomness of the evaluation [19]. 

D. Generate Evaluation Clouds and “Cloud Droplet” Graphs for Each Evaluation Cloud 

The digital feature B of the cloud model for fire risk assessment of energy storage power station is obtained 

through fuzzy synthesis operators and cloud computing, namely: 

                                                                      𝐵 = 𝐴ο𝑅 = (𝐸,𝑁,𝐻)                                                                        (6) 

Where ο is the comprehensive computing operator and the symbol of cloud computing, there are: 

                                                              𝐸 = 𝐸𝑎1𝐸1 + 𝐸𝑎2𝐸2+. . . +𝐸𝑎𝑞𝐸𝑞                                                               (7) 

                               𝑁 = {|𝐸𝑎1𝐸1[(𝑁𝑎1/𝐸𝑎1)
2 + (𝑁1/𝐸1)

2]1/2|
2
+ |𝐸𝑎2𝐸2[(𝑁𝑎2/𝐸𝑎2)

2 +

(𝑁2/𝐸2)
2]1/2|

2
+. . . |𝐸𝑎𝑞𝐸𝑞 [(𝑁𝑎𝑞/𝐸𝑎𝑞)

2
+ (𝑁𝑞/𝐸𝑞)

2
]
1/2

|
2

}

1/2

                                                                         (8) 

                               𝐻 = {|𝐸𝑎1𝐸1[(𝐻𝑎1/𝐸𝑎1)
2 + (𝐻1/𝐸1)

2]1/2|
2
+ |𝐸𝑎2𝐸2[(𝐻𝑎2/𝐸𝑎2)

2 +

(𝐻2/𝐸2)
2]1/2|

2
+. . . |𝐸𝑎𝑞𝐸𝑞 [(𝐻𝑎𝑞/𝐸𝑎𝑞)

2
+ (𝐻𝑞/𝐸𝑞)

2
]
1/2

|
2

}

1/2

                                                                         (9) 

In conclusion, “cloud droplets” diagrams for the evaluation cloud and each comment cloud model are generated 

using the positive cloud generator, facilitating a comparative analysis. The comment cloud model that best matches 

the evaluation cloud model is chosen as the outcome of the risk assessment, determining the fire hazard risk level 

in the energy storage power plant. 
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IV. EXPERIMENTAL VERIFICATION 

A. Instance Selection 

A large-scale shopping mall in Beijing, with a total floor area of approximately 154,000 square meters, is an 

internationally standardized one-stop shopping center. The mall has over 400 merchants. Due to its extensive floor 

area and diverse range of merchants, the shopping center has various energy storage power systems, all of which 

have certain fire hazards. Moreover, the mall experiences a high volume of foot traffic, so any accidents such as 

fires would result in severe casualties and economic losses. Given this background, this paper selects the shopping 

mall as the research subject and adopts the expert scoring method to analyze the risk level of fire hazards in its 

energy storage power systems. 

B. Risk Level Assessment of Fire Hazards in Energy Storage Power Plants Based on Cloud Model 

Since the selected factors have different impacts on the risk levels of fire hazards, it is necessary to assign 

weights to each risk factor. After collecting samples for risk assessment of fire hazards in energy storage power 

plants, expert opinions are consulted to score each factor based on their importance, obtaining the weight set 

corresponding to each risk. The generation of weight clouds for each risk factor and the calculation of the 

coefficient matrix A are carried out using the inverse cloud generator. Combining the evaluation criteria for the risk 

levels of fire hazards in energy storage power plants, on-site investigations, and consultations with relevant experts, 

evaluation vectors for each factor in the risk set are obtained through value assignment and scoring. The inverse 

cloud generator is used to compute the expected value, entropy and hyper entropy for each risk factor to derive the 

comprehensive evaluation matrix R. 

By using fuzzy synthesis operators [20] and cloud computing, the digital features B of the evaluation cloud model 

for fire risk in energy storage power plants are obtained. With the help of positive cloud generator, six risk 

assessment levels and assessment results are represented using MATLAB [21] as shown in Figure. From the results 

in the figure, it can be concluded that the risk level of fire hazards in the energy storage power plant of the shopping 

mall aligns closely with the low-risk level, indicating that the risk level is categorized as low risk (Level 2, as is 

shown in Figure 4). 

 
Figure 4: Case evaluation results 

V. CONCLUSION 

In this study, cloud modeling was used to analyze the fire risk of energy storage stations. The conclusions are 

as follows: 

(1) The risk of energy storage stations can be analyzed in terms of battery type, service life, external stimuli, 

station scale, monitoring methods and means, and fire protection equipment. 

(2) Using fuzzy synthesis operator and cloud computing, we extracted numerical features for evaluating the 

cloud model. Subsequently, a positive cloud generator was employed to create evaluation clouds and “cloud 

droplets” that represent the assessment of fire risk in energy storage stations, offering an intuitive visualization of 

the risk levels. 

(3) Cloud modeling can be applied in the field of fire risk assessment for energy storage stations. Fuzzy 

variables can be accurately represented by intervals, corresponding to different safety levels. The reliability of this 

method was also verified through case studies. 
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