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Abstract: - Human Activity Recognition (HAR) plays a significant role in several fields by automatically identifying and monitoring human 

activities using advanced techniques. It enhances safety, improves healthcare services, optimizes fitness routines, and enables context-aware 

applications in various fields. HAR contributes to a more efficient and intelligent interaction between humans and technology. It has emerged 

as an essential research domain with applications in healthcare, smart environments, and human-computer interaction. This study aims to 

provide a comprehensive survey of the evolving landscape of HAR, including key methodologies, techniques, and trends in existing research. 

The study discusses various applications of HAR and their significance in modern smart environments. The survey also highlights different 

types of HAR and data collection techniques. Additionally, it explores various methods for analyzing the collected data and provides a 

comprehensive analysis of existing human activity classification datasets. It offers valuable insights into understanding the strengths and 

limitations of various HAR techniques. The study also discusses various challenges and future directions for HAR.     
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1. Introduction 

The process of identifying and comprehending diverse tasks conducted by persons is referred to as human activity 

recognition [1]. This recognition is critical in human-to-human interaction and interpersonal relationships due to 

its complexity while conveying important 

information about a person's identity, personality, and psychological condition [2]. Humans' ability to identify and 

interpret the actions of others is a major subject of research in domains such as computer vision and machine 

learning. Several applications have been developed as a result of substantial research in these areas. Video 

surveillance systems, for example, benefit from identifying human actions to improve security and situational 

awareness [3]. Understanding human actions also helps in the creation of more intuitive and responsive interfaces 

in the field of human-computer interaction. Recognizing human actions is critical in robotics for defining human 

behavior and allowing robots to interact with humans in a more natural and adaptive manner. In conclusion, human 

activity recognition is critical in many sectors, enabling the development of sophisticated systems and 

technologies that improve human-computer interactions, increase security, and enable robots to properly perceive 

and respond to human activities. 

Human Activity Recognition (HAR) is the process of identifying and comprehending human actions from diverse 

sources such as photographs or sensor data. Despite its importance, HAR is a difficult process due to a variety of 

difficulties such as background clutter, partial occlusion, size and viewpoint shifts, illumination fluctuations, and 

intra-class variances. Furthermore, annotating behavioral roles takes time and requires event knowledge. Deep 

learning, feature engineering, sensor fusion, transfer learning, and temporal modeling are examples of HAR 

approaches. HAR has applications in a wide range of sectors, including healthcare, smart homes, sports, security, 

and human-computer interaction. Despite the difficulties, continuous research in this area is improving the 

accuracy and usability of HAR systems in real-world circumstances. 

1.1 Human Activities Levels 

Human activities exhibit a diverse range, varying from simple gestures to complex group interactions, as 

illustrated in Figure [4]. To effectively train machines for Human Activity Recognition (HAR), these activities 

are categorized into five distinct types or levels based on their complexity and duration. The ultimate goal of HAR 

is for systems to be able to accurately recognize and differentiate between those actions. Each activity category is 

described in detail below, including human-object interaction as well as human-human relationships merged under 

the term interaction. 

 

Figure 1: Different Levels of human activities [4] 
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• Gesture: Gestures involve basic hand movements or motions made by using other parts of the individual's 

body to communicate specific ideas or meanings. Examples include head shakes facial expressions, and hand-

waving. Gestures are typically brief and represent the simplest form of activity among the categorized types. 

• Action: Actions are relatively straightforward activities performed by humans, involving a sequence of 

gestures. Examples encompass actions such as knocking, swimming, and running. Actions are more complex than 

gestures and often comprise multiple coordinated movements. 

• Interaction: Interactions entail activities carried out by two agents, where one agent is human, and the 

second agent is either a person or an object. Depending on the nature of the agents involved, interactions are 

further classified into human-object interactions and human-human interactions. Human-human interactions 

include activities like hugging, shaking hands and wrestling, whereas human-object interactions involve 

interactions between a person and entities like mobile phones or laptops. 

• Group Activity: Group activities represent the most intricate form of human activities, involving the 

participation of more than two individuals and potential interaction with one or multiple objects. These activities 

consist of a series of actions, gestures, in addition to interactions. Examples include group study sessions, football 

matches, and presentations. Group activities encompass complex social dynamics and require recognition of 

various gestures, actions, and interactions within a collective setting.  

Understanding these levels of human activities forms the foundation for developing sophisticated HAR systems. 

By discerning the nuances between different activity types, researchers and developers can create intelligent 

algorithms and models capable of accurately identifying and categorizing human activities in diverse contexts. 

1.2 AI in HAR 

Artificial intelligence (AI) has undergone rapid advancement, revolutionizing numerous domains such as 

intelligent video surveillance systems, self-driving vehicles, assisted living, and human-computer interface 

systems. A fundamental task central to these applications is video-based human action recognition, a domain that 

has witnessed continuous evolution and improvement. The primary objective of human action recognition is to 

decipher human activities from video data [5]. Current research in this field explores diverse avenues, including 

the effective fusion of multi-modal information [6], learning without annotated labels [7], training models with 

limited data points [8] and the exploration of novel architectural designs [9].  

1.3 Applications of Human Action Recognition 

HAR is used in a variety of applications, including intelligent video surveillance systems, self-driving vehicles, 

assisted living, human-computer interface systems, healthcare and rehabilitation, sports and fitness, and gaming 

and entertainment. AI-powered HAR improves video surveillance capabilities by providing real-time analysis of 

human actions in security footage [10]. This technology aids in the detection of suspicious activity, the protection 

of the public, and the prevention of security breaches. HAR is critical in self-driving vehicles because it allows 

them to perceive and respond to human actions and gestures [11]. This skill guarantees that autonomous vehicles 

interact safely with pedestrians, bicycles, and other drivers on the road.  

HAR is used to monitor the actions of elderly or disabled people in assisted care facilities [12] [13]. AI-powered 

devices can detect falls, track movements, and provide prompt assistance, improving residents' quality of life 

while maintaining their safety. Human-computer interactions are made more natural and intuitive by HAR. AI-

powered interfaces provide hands-free control of devices by recognizing gestures, facial expressions, and body 

motions, resulting in a more smooth and user-friendly experience. HAR is used in healthcare to monitor patients' 

physical activities and rehabilitation programs [14]. AI algorithms assess patients' actions to ensure they follow 

recommended regimens, assisting healthcare providers in analyzing progress and changing treatments.  

HAR is used to measure athletes' movements [15] in sports training and fitness applications, delivering significant 

insights for performance enhancement. AI systems examine approaches, allowing instructors and players to fine-

tune their talents and avoid injury. HAR improves user experiences in the gaming industry by providing gesture-

based controllers and immersive interactions. Natural movements can be used by players to interact with games, 

producing a more dynamic and engaging gaming environment. Thus, AI-powered HAR not only improves the 

efficiency and safety of numerous industries, but also promotes creativity, providing the path for unique 
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applications and revolutionary user experiences across multiple disciplines. 

2. Literature Survey 

The evolution of Human Activity Recognition (HAR) technology has been instrumental in processing data 

sourced from an array of sensing devices, ranging from vision sensors to embedded sensors[16]. This advancement 

has spurred the creation of context-aware uses, particularly within evolving fields like the Internet of Things (IoT) 

as well as healthcare. Although previous studies have explored specific aspects of HAR, this comprehensive 

review takes a holistic approach. It delves into key themes within HAR and scrutinizes the most recent 

advancements in the field[17]. The review categorizes HAR methodologies into two primary groups including 

sensor-based as well as vision-based HAR, contingent on the type of data generated. Subsequently, it conducts an 

in-depth analysis encompassing datasets, pre-processing techniques, feature engineering, as well as the training 

process, particularly focusing on the integration of deep learning methodologies in HAR. The study not only 

highlights the current challenges faced in HAR but also provides valuable insights and recommendations for future 

research directions, ensuring a nuanced understanding of this dynamic field[18].  

2.1 Advances in Sensor Technology and Human Activity Recognition 

In the previous years, sensor technology has made remarkable strides in several areas including computational 

power and manufacturing costs with accuracy and size[19]. These developments have facilitated the integration 

of various sensors into smartphones and portable devices, enhancing their intelligence and utility. Simultaneously, 

the evolution of video surveillance technology resulted in improvements in the quality of video, simplified 

arrangement, reduced costs, and secure communication [20]. Consequently, a cumulative amount of applications 

applying Closed-Circuit Television (CCTV) systems in monitoring and security systems have emerged [21]. 

While sensors serve specific purposes, they universally collect raw data from their surroundings, which, when 

analyzed, yields valuable insights. HAR enables machines to monitor and grasp diverse human actions using 

sensors along with multimodal input data. [3]. Early HAR efforts, dating back to the 1990s, achieved over 95% 

accuracy in controlled data collection scenarios [7]. With the rapid advancements in smartphones, wearables, and 

CCTV systems, researchers have been motivated to enhance HAR systems for practical applications. 

HAR finds applications in behavior analysis [10], surveillance systems [8,9], gesture recognition [11–13], 

Ambient Assisted Living (AAL) [16,17], various healthcare systems [18,19] and patient monitoring [14,15]. For 

instance, patients with chronic conditions need to adhere to specific diets and exercise regimens [20]. Continuous 

activity tracking provides real-time feedback to patients and enables clinicians to monitor progress. Similarly, 

patients with cognitive impairments require continuous monitoring to detect unusual actions promptly, preventing 

adverse outcomes [21]. In tactical situations, real-time response to the actions of soldiers, their positions, as well 

as essential signs is crucial for skill development and safety. This feedback also aids commanders in decision-

making during training and combat scenarios [22]. 

However, HAR poses challenges due to the lack of standardized procedures for associating collected data with 

specific actions. Additionally, managing the substantial volume of collected data remains a significant technical 

challenge. Researchers continue to explore innovative solutions to address these complexities, striving to enhance 

the accuracy, efficiency, and applicability of HAR systems in various real-world contexts.  

2.2 Wearable Sensor HAR 

Wearable sensor technology entails integrating intelligent electronic devices into wearable items or directly onto 

the body, allowing for the measurement of various biological and physiological signals such as blood pressure, 

heart rate, accelerometers, body temperature, and attributes such as location and motion. The sensors exchange 

data with assimilation devices such as cellphones, laptop computers, or specialized embedded systems. The 

accumulated raw signals are routed to application servers enabling continuous monitoring, visualizing, and 

evaluation [17]. While smartphones with gyroscopes, cameras, and accelerometers can help with activity 

recognition, their efficiency is restricted for complicated activities [9]. As a result, more sensors or specialized 

sensing devices are required to improve recognition accuracy. Numerous machine learning techniques have been 

presented in the literature for processing features acquired from raw data in order to detect human actions. Existing 
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approaches, on the other hand, frequently rely largely on heuristic handcrafted feature extraction [22], restricting 

their application. This review looks at new approaches that use wearable sensor technologies and powerful 

machine learning algorithms to recover the accuracy and variety of human activity recognition systems. 

 

Figure 2: Wearable sensors and devices  

Several studies have explored sensor-based HAR, considering it as a time series classification task utilizing data 

from diverse sensor devices like electrocardiography (ECG), inertial measurement units (IMU), heart rate 

measurement (HRM) and electromyography (EMG), [37]. A general-purpose framework by Bulling et al. treats 

individual sensor data frames as statistically independent [38]. Traditional HAR approaches in addition to deep 

learning-based techniques categorize existing research. To maintain spatial data in signal frames, Hammerla et al. 

[41] presented an empirical cumulative density function (ECDF) attribute. This method is protracted by Kwon et 

al. [9] incorporating temporal structures into ECDF, enhancing activity recognition. Anguita et al. [40] utilized 

smartphone-based model with multi-class SVM for six-class locomotion activity recognition. Bhattacharya and 

Lane [45] also presented a model optimization strategy for wearable devices constrained by resources. Recurrent 

deep learning methods, especially LSTM units, have excelled in HAR, with Ordóñez and Roggen [11] introducing 

DeepConvLSTM, combining LSTM with CNN layers for capturing short-term as well as long-term sequential 

associations. Deep learning methods [42, 43, 44] have gained traction, with Yang et al. [10] proposing a CNN-

based approach for human activity recognition, employing manifold convolutions as well as pooling filters beside 

sequential magnitudes [10]. Alsheikh et al. [44] developed a hybrid technique employing deep belief networks in 

conjunction with hidden Markov models for feature extraction.  

2.3 Subject-independent HAR  

In addressing interpersonal variability in HAR, researchers have explored various strategies. One approach 

involves increasing the training data from diverse subjects, although this is often impractical due to the cost and 

complexity of collecting and annotating data from diverse individuals. To mitigate this challenge and overcome 

cross-domain HAR difficulties, transfer learning algorithms were explored encompassing cross-subjects [54][55], 

cross-locations[53] and cross-sensor-modalities [52]. Domain adaptation, a subdivision of transfer learning, 

measures and aligns heterogeneity of data circulation [56]. Transfer learning utilized by Zhao et al. [58] includes 

embedded decision tree algorithm, integrating decision trees with k-means clustering for recognition of 

personalized activities based on mobile phone data. A cross-person activity recognition by Deng et al. utilizes a 

condensed kernel extreme machine learning, classifying target samples and high-confidence samples, and then 

integrating them into the training dataset [57].  
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Recent advancements include multi-tasking in addition to GAN approaches (generative adversarial learning) to 

tackle issues in the distribution of diverse data. Chen et al. [18] presented the METIER model, a deep learning-

based multi-task approach for user recognition and activity. This model shares parameters between user 

recognition and activity modules, improving activity recognition through a common attention device. Sheng et al. 

[19] introduced inadequately supervised multi-task depiction, utilizing Siamese networks as well as a temporal 

backbone model using the convolutional network. According to Bai et al. [20], a discriminative adversarial multi-

view network employing CNN extract multi-view feature utilizing WGAN and Siamese network design to reduce 

deviations between various subjects’ features. 

Additionally, attention and transformer-based models [50], well-known for their success in skeleton-based HAR 

[32], natural language processing [67], and computer vision [31], have been applied to enhance HAR techniques 

[31][32]. Particularly, Miao et al. [69] introduced DynamicWHAR, a framework using GCN for dynamic inter-

sensor correlation learning. Dynamic features were extracted from multi-sensor information through modeling the 

dynamic connections between distinct sensors. 

2.4 Human Activity Recognition Enhancing Techniques 

1. Machine learning and deep learning  

Signal processing technology has traditionally been critical in interpreting raw data from sensors [66], whereas 

computer vision (CV) technology has been used for preprocessing and extracting handcrafted features from 

images or movies [9]. These techniques were critical in feature engineering because they generated sensor-specific 

or signal-specific features, which were then trained using machine learning (ML) algorithms to make classification 

decisions. However, the human examination of datasets to identify acceptable features, as well as the subsequent 

feature extraction procedure, caused difficulties, particularly when dealing with new datasets or sensors, resulting 

in complexity and lack of scalability [67]. 

Deep learning has evolved as a dominating study area in recent decades, reaching human-level performance in a 

variety of domains, including HAR. Deep learning excels at handling large datasets by spontaneously extracting 

abstract features from sensor inputs or image sequences, removing the need for manual feature engineering. This 

breakthrough beat previous machine learning methods that relied on handcrafted and domain-related features 

[12][68]. Consequently, deep learning has paved the way for novel HAR solutions, allowing for the use of bigger 

datasets and the construction of real-time systems of HAR. 

Hassan et al. introduced a HAR framework using deep learning based on smartphone sensors, outperforming 

traditional multiclass ML techniques such as Support Vector Machines (SVM) as well as artificial neural networks 

(ANN) [69]. A study [70] used a convolutional neural network model (CNN) for extracting simple statistical and 

local data, attaining advanced real-time performance at a reduced computational rate. Furthermore, a method using 

deep bimodal learning for detection of human fatigue expression demonstrated excellent results, beating earlier 

algorithms including a recognition rate of more than 96% [71]. 

Deep learning advances have had a tremendous impact on the field of HAR, resulting in improved performance, 

and the development of real-time systems using greater datasets. In terms of learning algorithms, feature 

engineering, and data pre-processing, the important alterations between deep and learning machine learning 

approaches in HAR highlight distinct advantages and challenges in each methodology. In traditional machine 

learning, data pre-processing is crucial and demands meticulous normalization techniques for optimal 

performance. Feature engineering relies heavily on manual extraction, often requiring tailored approaches for 

specific applications. This method struggles with the intricacies of complex activities and frequently needs 

additional processes like dimensionality reduction and feature selection. On the contrary, deep learning eliminates 

the need for intricate data pre-processing, as it can automatically learn abstract features from input including raw 

data. Deep learning techniques excel in identifying temporal and spatial, dependencies with measure invariant 

features autonomously, making them well-suited for intricate and varied datasets. While machine learning can 

operate effectively with smaller training datasets and consumes limited computational resources, deep learning 

requires extensive datasets to avoid overfitting and involves high computational complexity. Furthermore, 

particular hardware is often necessary to hasten the training procedure in deep learning applications. Thus, the 
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trade-offs between the two approaches emphasize the need for careful consideration based on the specific 

requirements and complexities of the HAR. 

2. Ensemble Learning 

The rapid advancement of deep learning techniques has significantly influenced HAR, offering efficient feature 

learning capabilities through its layered structure. However, deep learning models often require substantial labeled 

data, which can be challenging to obtain. Moreover, their high computational demands hinder real-time activity 

detection [8]. To address these challenges, some studies have explored the integration of ensemble learning 

algorithms with traditional machine learning classifiers like Multilayer Perceptron, Logistic Regression, Support 

Vector Machine, K-Nearest Neighbor, and Random Forest. They employed a voting algorithm combining the 

strengths of all classifiers in HAR. The technique was introduced in a previous study [7], utilizing more efficient 

base classifiers and demonstrating superior performance and effectiveness in improving HAR accuracy while 

simplifying implementation.  

The complex deep models come with significant demands on computational power and memory resources. 

Additionally, existing studies make a common assumption that the data distributions among subjects in training 

as well as testing datasets are identical. In practical HAR scenarios, where individuals tend to perform the same 

activities in diverse manners, there are substantial disparities in data distributions among subjects. 

2.5 Hybrid sensors 

In recent years, researchers have endorsed the use of hybrid sensors, which combine different sensor types, to 

improve the accuracy and durability of HAR systems [18,69]. This novel approach has helped to improve the 

recognition rates of complex indoor activities. As illustrated in the image, a hybrid sensors framework was 

designed in [97] to successfully recognize complicated 21 activities in an indoor scenario. This approach 

comprises three separate sensing contexts such as body sensing, location sensing, and environmental sensing.  

Figure 3: HAR with hybrid sensor 

Wearable sensors that gather data about human movements and physiological signals are at the heart of body 

sensing. Environmental sensing combines data from sensors placed in the environment to provide insights into 

the conditions. Object sensors are used in location sensing to discern spatial information. Researchers are working 

on creating a complete and robust HAR system capable of reliably recognizing a wide range of actions in varied 

circumstances by merging these distinct sensor types. This method emphasizes the importance of hybrid sensors 

in furthering the field of HAR and solving the obstacles provided by complex activity identification scenarios 

[18,69]. 

The obtained data is fed into a model for human activity classification, which includes position data gathered from 
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object sensors, while a mix of wearable and environmental sensors is used to observe human actions and perceive 

the surrounding environment.  

The table below summarizes the key characteristics of frequently used sensor-based HAR datasets. Wearable 

sensors like accelerometers, gyroscopes, and magnetometers are often used for training models. WISDM and UCI 

datasets are standard datasets that are frequently employed for assessing sensor-based HAR models. They were 

recently applied to assess the performance of deep learning models. The WISDM database approached 93% 

prediction accuracy, whereas the UCI dataset's classification accuracy topped 97% [70]. 

Table 1: publicly available sensor-based HAR datasets 

Dataset Activities Attr. Devices Sampling 

rate Hz 

Sensors 

HASC [101] 6 4 Smartphone 10-100 Accelerometer 

Gyroscope 

Magnetometer  

GPS 

UCI HAR [104] 6 561 Smartphone 50  Accelerometer 

Gyroscope 

UniMiB SHAR [98] 17 NA Smartphone 1-32 K Accelerometer 

UCI Heterogeneity 

AR [100] 

5 16 Smartphone & 

wearable sensors 

100-200  Accelerometer 

Gyroscope 

Real world [99] 8 7 Smartphone & 

wearable sensors 

50  Accelerometer 

WISDM [106] 6 46 Wearable sensors  20  Accelerometer 

UCI M-HEALTH 

[102] 

12 23 Wearable sensors 50  Accelerometer 

Gyroscope 

Magnetometer,  

GPS 

UCI 

OPPORTUNITY 

[105]  

6 242 Wearable sensors  NA Hybrid 

UCI AR-HOP [103] 7 9 RFID NA Object sensor 

3. Vision-based HAR 

Over recent decades, Human Activity Recognition using vision-based systems has extended substantial attention 

owing to its applications in real-world scenarios such as Closed-Circuit Television (CCTV) systems deployed in 

public areas, enhancing surveillance and safety measures. Studies on vision-based systems can be categorized 

according to the type of data utilized, which comprises RGB [12,107,108] as well as RGB-D data [9,25]. Studies 

have shown that these frameworks employing RGB-D data tend to achieve higher accuracy compared to those 

relying solely on RGB data [12,109]. This advantage arises from the additional information and depth channels 

provided by multi-modal data. However, despite the improved accuracy, RGB data are widely preferred in existing 

frameworks of HAR due to the challenges associated with computational loads for large datasets, higher prices 

and configuration intricacy, involved in implementing RGB-D data solutions in practical settings.  

The challenges posed by issues such as partial occlusion, background clutter, variations in scale, lighting, 

viewpoint, as well as appearance make it difficult to recognize human activities from video sequences or still 

images. A multiple motion recognition technique is required for numerous uses, involving human-computer 

interfaces, video surveillance systems, as well as robotics in behavioral character analysis. Human activity 

recognition techniques can be broadly classified into binary groups based on the use of data from various 

modalities. Furthermore, it is crucial to conduct a thorough examination of existing publicly available human 

activity classification datasets.  

Human Activity Recognition (HAR) datasets are critical for developing intelligent systems that can understand 
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and respond to human behaviors. These datasets provide critical information about three main aspects: the sensor 

device, the subject or actor, and the sensing environment. The dynamic and malleable character of these 

parameters, however, classic machine learning premise confronts the same domain of source and target data. This 

problem has been efficiently handled by the knowledge transfer paradigm, which has transformed the field. 

Knowledge transfer removes the limits imposed by this traditional machine learning theory, allowing significant 

insights learned in one area to be transferred and used in another. Considering the dynamic nature of sensors and 

settings, one of the key issues in HAR is the appropriateness of earlier training data for real-time recognition. In 

this setting, transfer learning appears as a powerful option, allowing for the exploitation of existing data samples 

and their integration into classification, regression, and recognition tasks. This method not only compensates for 

old data, but it also eliminates the requirement for the complexity of collecting new training data, alleviates a load 

of costly data labeling efforts, and considerably improves testing data correctness. Several studies investigate the 

transformational impact of knowledge transfer and transfer learning approaches in the field of Human Activity 

Recognition, delving into their applications, methodologies, and contributions to real-world settings.  

Figure 4. HAR approaches based on the information source 

3.1 RGB data  

A standard RGB image captures visible light using red, green, and blue channels, detected by cameras using 

standard CMOS sensors (complementary metal-oxide-semiconductor). For instance, in a study conducted by 

Zerrouki et al. [108], an effective AdaBoost algorithm was employed for Human Activity Recognition utilizing 

CCTV video footage. The researchers tested their framework using publicly accessible URFDD and the 

Universidad de Malaga datasets for fall detection. The outcomes of the experiments demonstrated the model's 

ability to achieve high classification accuracy when applied to RGB datasets. RGB data are readily accessible, 

cost-effective, and provide detailed texture information about the subjects. However, it is essential to note that 

these sensors have limited range, are sensitive to calibration, and are significantly influenced by environmental 

settings such as illumination, lighting, and the presence of messy backgrounds. 

3.2 RGB-D data 

With advancements in depth sensors as well as range imaging methods [110], Human Activity Recognition has 

significantly improved in accuracy. The figure illustrates that, in addition to capturing unique RGB data, depth 

information is also recorded in RGB-D cameras, enabling algorithms for more precise recognition of human 

activities. Moreover, from this depth data, skeleton data can be extracted to create a condensed representation of 
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the skeleton of the human body, as demonstrated in the figure. Skeleton data exist within a low-dimensional space 

[8], enabling HAR models to operate more swiftly. Utilizing 3D human joint data from depth cameras has become 

a promising research avenue due to its applicability in various fields. 

Figure 5: Skeleton model by Microsoft Kinect device  and skeleton detection 

Cippitelli et al. [112] devised a robust Human Activity Recognition (HAR) algorithm utilizing RGB-D skeleton 

data. Their model demonstrated exceptional performance on two standard datasets, namely CAD-60 and KARD. 

In a separate study, Jalal et al. [9] proposed a HAR system using RGB-D sequences captured by a Kinect device, 

integrating depth silhouettes and human skeletons as key features. Through extensive evaluations of three 

benchmark depth datasets, their method achieved top-tier results. RGB-D data offers several advantages over 

RGB data, including resilience to lighting variations, adaptability to illumination shifts, and effectiveness in low-

light conditions. Despite these advantages, RGB-D data have limitations such as low resolution, susceptibility to 

noise due to low sensitivity, and vulnerability to specific materials like light-absorbing and transparent substances.  

Table 2: Vision-based HAR - Publicly available datasets 

Name  ID  Videos Activities Year  Depth  

Kinetics-700 [113] V4  650,000 700 2019 Y 

NTU RGB+D [114] V10  56,880 60  2016 Y 

Berkeley MHAD [124] V13   660 11 2014 Y 

UTD-MHAD [122] V11  861 27 2015 Y 

HDM05 [130] V20  1500 70  2007 Y 
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SBU Kinect interaction [127] V16  300 7  2012 Y 

CAD-120 [125] V14  120 4   2013 Y 

HACS [115] V1  1,550,000 200 2019 N 

Hollywood2 [129] V19  3669 12  2009 N 

Moments in Time [116] V2  1,000,000 339  2019 N 

UT-Interaction [128] V18  180 10  2010 N 

AVA [5] V3  430 80   2018 N 

Sports-1M[123] V12  1,100,000 487 2014 N 

MultiTHUMOS [117] V5  400  65  2018 N 

UCF101 [126] V15  13,320  101 2012 N 

20BN-something [118] V6  220,847 174  2017 N 

ActivityNet200 [121] V9  19,994 200  2016 N 

Charades-Ego [119] V7  7860 157  2016 N 

HMDB51 [109] V17  7000 51  2011 N 

DALY [120] V8  8133 10  2016 N 

 

Figure 6: HAR data processing in sensor and vision approach  

4. Data processing 

Data pre-processing as well as feature engineering are critical steps in preparing raw sensor data for machine 

learning models in sensor-based Human Activity Recognition (HAR). Denoising techniques are used to reduce 

noise caused by a variety of causes such as miscalibration and environmental conditions. Noise reduction methods 

include low-pass filters, mean filters, and wavelet filters [133-135]. Furthermore, segmentation is critical because 

activities frequently exceed sensor sampling rates. Data streams are divided into segments that map to certain 

activities using segmentation techniques such as time-driven, event-driven, and action-driven windows [138]. 

Hammerla et al. presented real-time applications with a 1-second sliding window illustrating a 50% overlay, 

displaying superior performance in wearable sensor datasets [139]. Then, feature extraction methods are used to 

extract important information from pre-processed data. According to signal characteristics, time-domain features 

(TDFs) such as median, variance, and kurtosis, as well as frequency-domain features (FDFs) like spectral entropy 

and peak power, are extracted [9,141]. Wavelet transform (WT) has gained popularity due to its capacity to 

calculate wavelet energy in components, which provides useful characteristics for classification [142]. Wrapper, 

filter, and embedding approaches are used to pick a subset of important characteristics, improving classification 
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accuracy and decreasing dimensionality [147-149]. These techniques work together to improve sensor data for 

accurate HAR in a variety of applications. 

Diverse activities, lighting conditions, occlusion, complex backgrounds, and viewpoint fluctuations, provide 

problems in vision-based Human Activity Recognition (HAR), making segmentation and feature engineering 

critical for enhancing HAR performance [2]. An important procedure in vision-based HAR is segmentation, which 

includes extracting target subjects from picture or video sequences. Background creation and foreground 

extraction approaches are separated [150]. Due to shifting backgrounds, foreground extraction approaches, 

particularly with moving cameras or devices, are preferable. To extract objects, temporal, geographical, or 

spatiotemporal information is evaluated, giving important data for future feature-based analysis. Methods for 

extracting features are critical for converting raw visual input into usable information. Handcrafted characteristics, 

spanning global, local, and semantic techniques, are included in traditional methods [29,137]. Global features 

extract descriptors from videos or photos. Histogram of Oriented Gradients (HOG) and Discrete Fourier 

Transform (DFT) techniques were employed. While they are effective for preliminary studies, they struggle with 

occlusions and changing perspectives. Local features use techniques such as HOG, Scale-Invariant Feature 

Transform (SIFT), and Speeded-Up Robust Features (SURF) to focus on localized patches. These techniques are 

resistant to partial occlusions and noise. Semantic characteristics are designed to emulate human perception by 

including factors such as body postures, scenarios, visual features, and linked items. Pose estimation, appearance-

based methods (local and global aspects), and 3D approaches (using depth map data) all help to improve 

comprehension of human activities. These segmentation and feature engineering procedures are critical in the 

advancement of vision-based HAR, allowing for accurate recognition in a variety of demanding settings. 

4.1 Comparison 

Table 3: Comparing various HAR studies and their performances 

 Sr. 

No. 
Application 

Techniq

ue 

Datas

et 

Devic

es 
Performance Details 

Vision Based Model 

1 
Indoor HAR 

[199] 
5-CNNs 

V10, 

V14, 

V16 

RGB-

D 

95.11 % (V10) 

96.67 % (V16) 

Integrates distinct CNN classifiers 

Novel technique for skeleton data 

processing  

2 

Intelligent 

vehicles 

[219] 

Customi

zed 

CNN 

Self K 
Detection rate 

of 91% 

Customized CNN  

Recognize behavior of driver  

Unsupervised segmentation using 

Gaussian mixture technique 

3 HAR[200] 
RNN 

tree 

Self, 

V9 
NA V9-0.832% 

Tree structure of multiple RNN 

models  

Transfer learning  

Adaptability for addition of new class  

Big scale dataset  

4 HAR[211] AE V20 NA 

Better for data 

corrupted by 

noise 

Denoising tensor autoencoder 

(DTAE)  

Temporal corruption – different 

corruption ratios.  

Spatial corruption - diverse spatial 

noise, similar ratio for temporal 

corruption 

5 

Hybrid Video 

streaming[19

1] 

CNN 

and AE 
Self 

A, G 

and 

M 

97.8% 

Efficient and optimized  

Rapid dynamic frame skipping  

Video data  

State-of-the-art real-time data from 

CCTV 
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6 

Hybrid 

Surveillance 

[168] 

CNN 

and 

LSTM 

V15 NA 94.4% 
CNN-based optical flow  

Pre-trained MobileNet model  

Sensor Based Model 

1 
Mobile HAR 

[70] 

Customi

zed 

CNN 

S7, 

S10 
A 

S7 -97.62%, 

S10 -93.32% 

Narrow architecture of CNN  

Statistical and global features  

Time-series with Real-time data 

Cutting-edge performance  

UCI and WISDM HAR datasets 

2 

RNN Gesture 

recognition 

[220] 

LSTM 
S8, 

S9 

S A, 

G and 

M 

S9-80% 

RNN- hand activities of six 

categories  

Inertial sensors’ data  

No pre-processing 

3 
RNN HAR 

[221] 

Residual 

Bidir-

LSTM 

S7, 

S8 

A, G 

and 

M 

S7 -93.6%, S8 

-90% 

Increased speed  

Modifying LSTM  

Importance of window size for HAR 

4 HAR [190] 
Continu

ous AE 

Swiss

-roll 

A, G 

and 

M 

98.4% 

Continuous auto encoder  

Less training period.  

Feature extraction for Frequency and 

Time   

5 
Fall detection 

[192] 

Customi

zed AE 

DLR, 

COV 

A, G 

and 

M 

Decent 

balance 

among FPR 

and TPR  

Different auto-encoder models 

Wearable devices  

Threshold tightening method  

6 HAR [68] DBN S5 

A, G 

and 

M 

97.5% 
DBN framework 

Higher performance  

7 HAR [69] DBN S5 

A, G 

and 

M 

95.85% 

DBN 

Smartphone inertial sensors 

Beats traditional approaches  

Better than ANN and SVM 

8 

Hybrid 

Indoor 

HAR[222] 

CNN+L

STM 
S8 

I and 

3-axis 

A 

91% 

Deep learning  

Convolutional and LSTM recurrent 

layers.  

Fast Training  

Minimal pre-processing.  

Outperforms on the OPPORTUNITY 

dataset challenge. 

*(A - Accelerometer, I - Inertial, K - Kinect camera, G - Gyroscope, M - Magnetometer) 

Based on the comparison, the figure shows the performance of different models. 
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Figure 7: Performance of HAR models a) Vision HAR b) Sensor HAR c) Deep learning and Hybrid Model 

4.2 Research gap 

A comprehensive study of the HAR techniques shows that the existing techniques are inadequate due to the 

research gaps mentioned below and the need to enhance efficiency.  
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• Though there is a growing demand for real-time HAR applications in various fields, a research gap exists 

in developing efficient and accurate systems, limiting the practical implementation of HAR technologies in 

complex environments. 

• Inter-class variability poses a major concern in many existing HAR models due to a lack of accurate 

classification for activities that share similarities. Developing methods capable of robustly handling these subtle 

differences in activities remains a significant research gap in the field. 

• Integrating data from multiple sensor modalities or domains presents a research gap. HAR systems that 

effectively bridge Cross-Modal and Cross-Domain Recognition modalities are crucial for comprehensive activity 

recognition, ensuring seamless recognition across different types of data. 

• Current HAR systems often focus on short-term activity recognition, leading to a lack of understanding 

and recognition of common long-term activities in real-life scenarios. Further exploration is needed to develop 

models capable of recognizing prolonged and complex activities over extended periods. 

• The lack of robustness in uncontrolled environments of HAR systems, including varying lighting 

conditions, occlusions, and clutter, necessitates enhancements in robustness to ensure accurate recognition under 

diverse environmental conditions. 

5. Conclusion 

A comprehensive study on Human Activity Recognition is significant for providing valuable insights when 

selecting the proper technique from existing HAR techniques. The research extensively discovers HAR 

applications and the challenges faced in the field. By exploring various types of HAR techniques, including 

machine learning and deep learning approaches, the study sheds light on the diverse methods used for activity 

recognition. The research delves into both sensor-based and vision-based HAR, discussing data collection 

methods, sensor types, and hybrid techniques, offering a holistic understanding of the field's current landscape. 

The study emphasizes the importance of addressing existing challenges, such as inter-class variability, integration 

of data from multiple sensor modalities, and the robustness of HAR systems in uncontrolled environments. It also 

highlights the limitations of deep learning and machine learning techniques, underscoring the need for further 

research to enhance the efficiency and accuracy of HAR models. Furthermore, the study underscores the 

significance of recent advancements in HAR techniques, indicating their potential to revolutionize various fields 

of application. The availability of openly accessible datasets and the utilization of advanced models reflect the 

ongoing progress in HAR research. However, the study highlights that there is a need to bridge the gaps and 

improve the reliability of HAR systems, ensuring their seamless integration into complex real-world scenarios. 

Thus, the study not only provides valuable insights into the existing state of HAR technology but also acts as a 

catalyst for future research. By addressing the identified challenges and limitations, Human Activity Recognition 

enabled the development of more efficient, accurate, and adaptable systems for a wide range of applications. 

6. Future Directions 

Several fascinating potentials for future research arise from the expanding environment of Human Activity 

Recognition (HAR). Exploration of innovative sensor technologies, such as wearable devices and Internet of 

Things (IoT) sensors, is one important route for improving data gathering and activity recognition granularity. 

Integrating HAR with upcoming technologies like edge computing can enhance real-time, low-latency 

applications in a variety of applications. Furthermore, AI techniques will improve the transparency of HAR 

models, making them more interpretable for end-users and stakeholders. Collaborative efforts among researchers, 

industry experts, and policymakers are required to provide standardized datasets and evaluation standards, hence 

creating a more unified approach to HAR research. Also, integrating HAR with sectors such as healthcare, smart 

cities, and human-computer interaction will result in creative applications that will change the way we engage 

with technology and the environment. By embracing these future approaches, Human Activity Recognition makes 

significant contributions to society, enhancing the quality of life and propelling technological innovation forward. 
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