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Abstract: - People's opinions are analyzed via sentiment analysis in all fields. Reviews and tweets, among other formats, are used to express 

opinions. Irony, sarcasm, and other difficult-to-discern hidden meanings can occasionally be found in viewpoints. Artificial intelligence must 

be used to examine the sentiments as a result. We suggest a unique Bhattacharyya error constraint (BEC) based L2-norm linear discriminant 

analysis (LDA) because some of the earlier efforts lack optimization. There are some overfitting and class disparity issues in this. To address 

this, we used a brand-new method called Modified Wild Horse Herd Optimization (MHHO). The experiment is run to evaluate the 

performance of the suggested strategy and to compare it to other approaches already in use. We have used performance measures for 

comparison, and the results demonstrate that the suggested method successfully assesses the sentiment from the acquired dataset.   

Keywords: Linear discriminant analysis; sentiment; opinion; Horse Herd optimization; GloVe; FastTex; and WordVec. 

1. Introduction: 

To identify and extract information, expressions, emotions, views, and other relevant data, sentiment analysis [1], 

also known as opinion mining, is used. The organizations turn what people think of the product or service. 

Expressions are classified as positive, negative, and neutral. Social media [2] enables gathering public opinion for 
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specific information. The word list is used to produce positive and negative messages. Before analysis, the words 

are developed and formulated. Text analysis, Natural language processing [3], and other techniques are utilized 

in sentiment analysis to measure the information. Data mining [4], machine learning [5], and artificial intelligence 

[6] are used to extract information. Machine learning is the method utilized for sentiment analysis. Sentiment 

Analysis is used to examine the positive and negative texts. 

By using data from computer systems, machine learning [7] gets better in line with that. It performs some activities 

as a subclass of artificial intelligence (AI) [8]. Some operations can be carried out automatically. To address the 

difficulties encountered during the performance of deep and machine learning on the data. Linear Regression, 

Logistic Regression, Classification and Regression Trees, Naive Bayes, K-nearest Neighbors, Learning Vector 

Quantization, and Support Vector Machines are a few examples of machine learning approaches [9]. The 

foundation of linear regression [10] is supervised learning. It is anticipated that the target will carry out a 

regression task on linked variables. The categorization problems have been resolved by using logistic regression 

[11]. Based on a study of the algorithm, the likelihood is projected. Regression and classification trees [12] both 

specify the discrete value as an output value, but classification refer to the real value as the output value. Nave 

Bayes [13] predicts the classifier very quickly and predicts the problems more effectively. In K-nearest neighbors 

[14], the sign is represented by the letter "K," and the quantity of fresh data is categorized to address issues. 

Learning vector quantization [15] instantly selects training data and carries out various actions. To detect the line, 

Support Vector Machines [16] classify the N-dimensional data. The aforementioned algorithms are not 

sufficiently tuned, which has several drawbacks. When compared to the prior model, complexity and accuracy 

have decreased. While tweeting on social media, the various languages are not correctly recognized. In light of 

that, we put forth a brand-new Bhattacharyya error constraint (BEC) based L2-norm linear discriminant analysis 

(LDA) based optimization method that may be utilized to categorize feelings based on polarity, multilingualism, 

aspect-based reasoning, and emotions. The following is a list of our suggested word's main contributions: 

⮚ The Distributed Word Representation-based Domain-Specific Technique (DWR-DS) is used to map the 

obtained feature vectors from the acquired dataset. 

⮚ The mapped feature vectors are trained using the BEC-L2-norm LDA, which then classifies the 

comments as positive or negative depending on the many parameters described above. However, there are 

problems with class disparity. 

⮚ The MHHO algorithm, which is used for the optimized output, can get around this. Additionally, this 

improves the categorization output. 

The remaining portion of the work is structured as follows: Section 2 lists and reviews the relevant works. In 

section 3, the proposed method for sentiment analysis is briefly discussed. Section 4 conducts and completely 

explains the experimental analysis. Section 5 provides an overview of the article. 

2. Literature Survey: 

A new sentiment analysis model (SLCABG) is proposed by Yang et al. [17] and is based on a sentiment lexicon. 

Convolutional neural networks and bidirectional gated recurrent units are used together in this technique. The 

length is utilized as the input to examine the efficiency, while the number of iterations is used to assess 

performance. To improve the suggested method, the features are assessed. As a result, the prerequisites for 

sentiment refinement are improved in higher necessity. 

Rehman et al. [18] have presented a hybrid Convolutional Neural Network-Long Short-Term Memory to address 

the sentiment analysis difficulties (CNN-LSTM). To construct features for local data, the Word2Vec model is 

employed. a huge group of words culled from stored semantic information. Both convolutional and long short-

term memories are compared when the model is integrated to extract features and varying lengths. However, the 

level of intricacy needs to be raised. 

Deep transfer learning to recognize In Russia, Smetanin et al. [19] suggest a baseline for attitude analysis. To 

identify the language and carry out transfer learning, the model is supported. The text data is automatically 
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determined. There are solid baselines for transferring learning categorization. Different language models are 

supported by the discovered sentiment analysis datasets. However, these models specify the datasets. 

Highlighting the attributes of aspect-level sentiment detection has been proven by Nandal et al. [20]. Customer 

reviews on Amazon are evaluated for the identified data. The following pre-processing steps are utilized to extract 

the dataset: casing, stop-word removal, tokenization, and stemming. The sentiment analysis is used to build the 

strategy and is reviewed. Users can benefit from understanding the software's product. So the issues to be resolved 

are spam and sarcasm. 

To assess feelings A method dubbed "communalizing user data" is suggested by Chakraborty et al [21]. Social 

networks can be performed using Social Network Analysis (SNA). Retweets, likes, and shares allow the social 

network to gauge the product's quality. A significant factor is raising the standard of social media and networks. 

Recognizing the user's opinion is quite effective. As a result, future health issues should be addressed. 

Bidirectional Encoder Representations from Transformers (BERT) is a paradigm that Singh et al. [22] presented 

for sentiment analysis. There are two datasets in it. The BERT model is connected to the classification of emotions. 

The social network moves very quickly, and the classification of emotions is more accurate. Therefore, the 

complexity needs to be raised. 

3. Proposed machine learning-based approach for sentiment analysis 

This section explains the intended work. This makes use of the mapping of feature vectors with the assistance of 

the DWR-DS technique, and after that, the innovative Bhattacharyya error constraint (BEC) based L2-norm LDA 

does the sentiment classification from the reviews and tweets. However, there are concerns about the class 

imbalance that can be resolved with the MHHO method. By adjusting the parameters, this accepted algorithm can 

be utilized to improve the output that is categorized. Figure 1 explains the schematic overlay of our suggested 

strategy. 

 

Fig 1: Schematic overlay of the proposed approach 

3.1 DWR-DS 

Using the broad term distributed word representation [23], the feature vectors from the tweets or reviews are 

mapped. The feature vectors in the entry indicate the words' underlying meaning. Additionally, it illustrates the 

connection between semantic and syntactic properties. Our suggested method precisely extracts the necessary 

information, which improves the accuracy of the social media network's sentiment analysis. Semantic and 

contextual advertising is the major terminology employed in the sentiment analysis of social media networks. 

Modern works categorize the texts and their various judgments in most cases [24]. It is necessary to examine the 

sentiment using semantic and contextual factors. The most popular feature extraction techniques include GloVe 

[25], Word2vec [26], and FastText [27]. 
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⮚ Word2Vec: The pertinent words for the sentences that are broken apart can be found using this 

technique. The learning procedures are carried out using deep learning methodologies. The vector accurately 

arranges the words in the correct sequence. The majority of researchers mainly employ the Skip-Gram approach 

[28]. Consequently, the Skip-Gram technique's objective function can be expressed as follows: 

))(log(
1

1 0,

 
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w

W jsjs
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      (1) 

The total number of training words from the dataset is denoted as w . The size of the training context is indicated 

as s, d is the training word, the center word in the training context can be denoted as Wd
. If the value of s possesses 

maximum value then it denotes the maximum accuracy.  

⮚ FastText: This method primarily makes use of Facebook's AI Research lab's (FAIR) [19] word and 

representation library. This methodology, also known as the skip-gram approach, has the following objective 

function: 


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The scoring function can be denoted as;f. H denotes the size of the n-grams. The values of Hd fall under the range 

of 1 to H with d words. Each n-gram h’s vector representation can be denoted as hz
. The context vector can be 

represented as sl
. Hence this is more reliable than the previous one.  

⮚ GloVe: The overall vector representation looks like this. Word2Vec and GloVe are two tools that can 

successfully extract the local window context and assess the global comprehensive co-occurrence statistics of 

words. 

The sentiment analysis makes use of polarity, synonymous terms, emotions, and other functions. It is challenging 

to recognize these patterns; hence we suggested a novel BEC-L2-norm LDA-based technique to address these 

problems. The next section provides more details about this. 

3.2 Linear Discriminant analysis 

The projected data samples with more discriminative data are used to identify the low-dimensionality space data 

using the LDA [30]. Data dimensionality has been reduced with the aid of a linear transformation matrix. The 

linear transformation matrix is given as, nrPM rn   , . The between-class scattering matrix mX
and scatter 

matrix within-class cX
can be formulated as,  
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The optimization issues are subjugated by using the following equations: 
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The trace operation used in the equation is denoted as 
(.)Tr

and the transposed matrix can be indicated as
T(.) . 

From the generalized issues
0, =  cXcX cm , the optimal solutions can be acquired as ( )rccC ,....,1= . 

The value of C is stated as the maximized eigenvalue d from the mc XX
1−

if the nonsingular value is given as cX

.  

3.3 BCE-based L2-norm LDA 

The limitations of the Bhattacharyya error have been reduced in the suggested method, enhancing the separation 

of L2 norm LDA-based between class scatterings. This decreases the scattering distance within and is computed 

as the weighted sum of pairwise distances of class means. Consequently, it can be stated as, 
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The BCE based L2-norm LDA can be estimated as,    
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objective function is minimized. 
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represents the coefficient of the weighted distance between the ith 

and jth class. The coefficient of within-class scatter is denoted as . This also ensures the reduction in error 

constraints. The orthonormality property of discriminant directions is provided by the limited IccT = . Our 

proposed L2 norm LDA is used to solve the issues via the utilization of the eigenvalue of the decomposition issues 

as shown below,  
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Here, 
A

c

A

a XXX .+−=
 and can be used to classify the sentiment based on the reviews or tweets. There are, 

however, certain overfitting and class disparity problems. Therefore, we suggested an MHHO algorithm to resolve 

those problems. This improves the suggested method's classification accuracy based on the negative and positive 

classes. The following section explains. 

3.4 Modified wild Horse herd optimization (MHHO) algorithm  

The algorithm HHO has evolved depending on the type of horse pattern. There are six traits of horses included in 

it, including the grazing mechanism, hierarchical mechanism, amiability mechanism, and wandering mechanism 

[31]. The equation for the horse's motion during each round is as follows: 
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The location of the nth horse is represented as
YRo

nB 

. The velocity of the horse while moving is denoted as 

YRo

nW


. The characters of horses vary with age and surroundings. 

● Grazing (GR): 

The horse is a species of grazing animal that consumes green plants and grasses. It can be written 

mathematically as, 
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The parameter used to indicate the movement of the jth horse is
YRo

nf − )1(

. The lower and upper constraints are 

given as UR  and LR  correspondingly.  

● Hierarchy (H): 

The hierarchical behavior of the horses is determined by the tendency factors and can be represented as TF. The 

middle-age horses , can be expressed as,  
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The location velocity of the best horse is represented as 

YRo

nH


and its respective position is indicated as 
( )1−



RoA

. 

● Sociability (SL): 

The average size is designated as HL, and the horse's security is compromised by predators' hunting habits. 
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The social movement of the jth horse is represented as
( )YRo

nHL −1

. The respective orientation of the horse in the 

round is given as
( )YRo

nHL −1

. With the reduction factor, HLV the value of the iteration is reduced to 
YRo

nHL 

.  

● Defense scheme (DF): 

The defense system can be represented as DF. Mathematically it can be expressed as,  
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The escape vector of the average horses is denoted as 

YRo

nDF


. The worst position of the horse with the number 

of the NL is given as A . 

4. Result and Discussion: 

The dataset description and the experimental settings are covered in this section. In addition, a several assessment 

measures have been subjected to experimental evaluation, as illustrated below. Designers used the most popular 

Python programming framework, NLTK (Natural Language Tool Kit) [32, 33], to assess the sentiment in tweets. 

There are also user-friendly interfaces for more than 50 corpora and lexical resources, including WordNet, as well 

as text processing libraries for parsing, tokenization, stemming, semantic reasoning categorization, and tagging 

[34–36]. We employed the clustering, regression, and classification techniques found in the Python Scikit-learn 

toolkit. 

4.1 Explanation of datasets:  

In this work, the proposed approach is evaluated using the Apple Twitter sentiment document (71585 reviews) 

and the Amazon fine food reviews (568,454 reviews) datasets. The tweets from the two datasets were combined, 

and we produced three pairs of randomly shuffled tweets that we dubbed AST1, AST2, and AST3 [37, 38]. 

4.2 Performance measures: 

Performance indicators like recall, accuracy, and F1-Score are used for evaluating our suggested technique. 

❖ Accuracy 

The phrase "accuracy or precision" relates to how often a sentiment analysis was correct. If a couple of these 

tonalities are accurately scored, for example, the accuracy of papers with the tone can be assessed. 
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                         (1) 

❖ Recall 

The recall is a measurement of the frequency with which emotional documents were classified as such. i.e., what 

neutrality means to the system. 
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T
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                         (2) 

❖ F1 Score: 

This can be described as a combination of accuracy and recall. Most usually, the F1 score falls between 0.0 and 

1.0. 
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4.3 Performance analysis:  

Every strategy was paired with the visual words to evaluate the proposed work performance, and it was then 

compared to traditional SNA, CNN-LSTM, and BERT techniques. In the comparison research, individual pre-

trained distributed word representations along similar structures were used. Additionally, accuracy and F1 score 

are estimated using baseline classifiers. Figures 2 and 3 present the outcomes, respectively. 

 

Figure 2: Analysis of accuracy based on 3 arbitrarily jumbled-up tweets 

 

Figure 3: Analysis ofF1 Score based on 3 arbitrarily jumbled-up tweets 

To assess the planned work's overall performance, certain carefully chosen data aspects have previously been 

examined. The proposed effort to existing studies for the top 50 data features sets has been evaluated, as shown 

in Figure 4. In this instance, the suggested method obtains 94 percent accuracy and 94.67 percent F1 scores. This 

leads to a balance between exploitation and investigation in the proposed study, as well as precise categorization 

based on a range of emotions. 
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Figure 4: Evaluation of accuracy and F-score with respect to 50 features  

Figure 5 shows the overall evaluations for the top 100 feature data sets for both the proposed and current work. 

SNA, BERT, and CNN-LSTM are examples of existing techniques that are utilized to validate the effectiveness 

of the suggested strategy. The proposed method has an accuracy of 87.45 percent for the F1 score of 0.96. 

 

Figure 5: Evaluation of accuracy and F-score with respect to 100 features  

Figure 6 compares the overall performance of the proposed work to that of earlier systems in terms of the top 200 

chosen attributes. The recommended strategy had an F1 score of 0.91 and an accuracy of 85.76 percent according 

to the investigative analysis. The accuracy has decreased as the value of feature sets has increased. The current 

approach's accuracy has likewise declined. 
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Figure 6: Evaluation of accuracy and F-score with respect to 200 features  

Figure 7 shows the overall effectiveness of the suggested methodology compared to all other methods for the 

whole feature dataset. Although the accuracy improved slightly over the previous research, it was still inferior to 

the small data sets. Overall, the proposal beats state-of-the-art approaches in terms of dataset features. Therefore, 

the proposed work outperforms all other efforts in terms of all dataset attributes. The accuracy did, however, 

decline as the number of characteristics did. 

 

Figure 7: Evaluation of accuracy and F-score with respect to whole feature sets  

Table 1 provides an illustration of a state-of-the-art evaluation based on sentiment analysis. In this inquiry, the 

standard SNA, CNN-LSTM, and BERT methodologies are combined with the suggested methodology. Compared 

to other approaches now in use, the proposed method gives good outcomes. 

Table 1: State-of-art evaluation with respect to sentiment analysis 

Example SNA BERT CNN-

LSTM 

Proposed 

I receive a message that my storage is nearly 

full approximately every five minutes. 

Negative Positive Negative Negative 

Thank you for using xtracheckin to check in at 

the Upper Westside location. However, why 

Positive  Positive Positive Negative 
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are appointments running approximately 50 

minutes behind schedule? 

When the items arrived, they were marked as 

"Jumbo Salted Peanuts," however they were 

actually little and unseasoned. I'm not sure if 

the dealer accidentally named the items 

"Jumbo" or if that was their intention. 

Negative  Negative Positive Negative 

5. Conclusion 

The analysis of the sentiment from the opinions expressed by the people is based on the BEC-L2-norm LDA 

technique in this article. Additionally, there are certain class imbalances and overfitting difficulties with the 

suggested approach. The use of the MHHO algorithm has decreased this. The characteristics were retrieved using 

the DWR-DS technique prior to classification. The characteristics from the dataset were successfully retrieved in 

this way. This technique efficiently examines the sentiment from several angles. The comparison analysis and 

experimental analysis show that the suggested approach is more effective at analyzing sentiment than the other 

approaches. 
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