
J. Electrical Systems 20-6s (2024): 1148-1161

1148

1Dr. Sanjay

Kumar N V

2Dr. Anitha C L

3Dr. Ashwini B P

4Dr.

Savithramma R

M

5Mr. Subhash

Kamble

Performance Benchmarking of Redpanda

an event streaming platform using SBK

and Open Messaging Frameworks

Abstract: - Redpanda is an event-driven, publish/subscribe based messaging system. The two main performance benchmarking

frameworks, Storage Benchmark Kit (SBK) and open messaging benchmark are used here to test the performance benchmarking of

redpanda’s event processing system. SBK is a software framework for measuring any storage device or client's performance benchmarking

and open messaging benchmark framework which supports benchmarking for a wide variety of messaging platforms. Well formulated fine

tuning system for benchmarks is still an open research problem. In this paper, SBK and open messaging frameworks have been

experimentally compared with respect to their messaging capabilities (Message sending and receiving throughput) on redpanda’s event

processing system. A number of experimental test scenarios have been conducted on data streaming workload, the performance evaluation

results revealed that SBK gives maximum throughput performance compared to open messaging benchmark.

Keywords: Benchmarking; Framework; Distributed Systems; File System; SBK; Redpanda; Events; Workloads;

Producers; Consumers; Message Queues; Performance; Storage; Streaming; Throughput; Topic;

I. INTRODUCTION

SBK: An open source, vendor neutral, software framework has been developed for assessing the performance

benchmarks of various storage systems [1-2]. SBK is intended for measuring the the highest throughput and

minimal latency for any storage device/client. When comparing performance Benchmark Frameworks,

throughput in terms of messaging capabilities (message sending and receiving) is generally considered. In

order to determine the optimal performance of storage system benchmarking is used [3]. SBK is the right tool

to measure the performance of Various storage systems, including Database Systems, Persistent Key-Value

storage systems, Object storage systems, Distributed messaging systems, etc., are supported by SBK for

performance benchmarking, accommodating multiple writers and readers/callback (push) scenarios. It writes a

large volume of data to the storage system and retrieves data from the storage system on a significant scale [4].

SBK is designed to handle high message rates and large volumes of data. It provides a

standard set of tests that measure the throughput, latency, and resource utilization of messaging platforms.

The OpenMessaging Benchmark Framework will offer benchmarking tools for a growing number of

messaging platforms. It aims to develop streaming and messaging applications for various heterogeneous

platforms and systems [5]. The benchmarking tool for Open Messaging facilitates the assessment of Kafka's

1 Professor, Dept. of CSE, Kalpataru Institute of Technology, Tiptur, Karnataka, India

sanjaynv@gmail.com
2Professor, Dept. of CSE, Kalpataru Institute of Technology, Tiptur, Karnataka, India

clanitha@gmail.com
3Assistant Professor, Dept. of CSE Siddaganga Institute of Technology, Tumakuru, Karnataka, India

4Assistant Professor, Dept. of CSE Siddaganga Institute of Technology, Tumakuru, Karnataka , India

ashvinibp@sit.ac.in
5Assistant Professor, Global Academy of Technology, Bengaluru, India

subhashkamble@gat.ac.in

Copyright © JES 2024 on-line : journal.esrgroups.org

savirmrl@sit.ac.in

J. Electrical Systems 20-6s (2024): 1148-1161

1149

performance for publish/subscribe based messaging systems. Kafka serves as an event streaming platform,

utilizing a persistent distributed commit log for the implementation of publish-subscribe messaging [6]. Kafka

is commonly employed in the development of real-time streaming applications, wherein the input and/or

output data is stored within Kafka clusters. On the client side, Kafka Streams integrates the ease of writing and

developing conventional Java and Scala applications [7].

Redpanda is a kafka-compatible, event streaming data platform which is designed for maximum performance

on any data streaming workload [8]. Redpanda can be deployed on bare-metal commodity hardware, virtual

machines, and containers, supporting installations on both on-premise and cloud platforms. It is specifically

crafted for cluster environments, enabling multiple clients to access it simultaneously. Redpanda and Kafka

implement the Kafka API. Redpanda aims to bring operational simplicity to the existing overwhelming

complexity of standing up state-of-the- art streaming systems [9]. Redpanda is built with a focus on ease of use,

reliability, and scalability, and is rapidly gaining popularity as a leading event-driven platform for modern

data- driven applications [10]. Redpanda is designed to be significantly faster than kafka, particularly for small

messages and high message rates.

Producers and Consumers are client applications, producers send data to Redpanda in the form of events, where

as Consumers subscribe to Redpanda topics to read an events. Redpanda is designed to handle both single and

multiple producer-consumer workloads. Redpanda safely stores these events in sequence and organize them

into topics, which represents a replayable log of changes in the system.

Publishers and subscribers are terms used to describe message producers and subscribers in the pub/sub of

redpanda’s platform. Each message in pub/sub messaging is sent to a specific topic and may be delivered to

one or more consumers which are registered in the topic [11]. Consumers can store, process, or reply to events

after registering for the topic in order to start receiving messages.

Storage benchmarking has primarily been carried out to assess performance [12]. In this paper the two open

source benchmarking frameworks, SBK and Open messaging have been experimentally compared with each

other to measure the throughput performance of a redpanda’s event processing system. when making a

decision based on performance and data accessibility we tested with single partition for a workload of 1-topic-1-

producer-1-consumer-100bytes and 5 partitions, 1- topic-5-producer-5-consumer-100bytes, in all testing

scenarios SBK performs well with the maximum number of messages published to the topic as well as

maximum number of messages consumption from the topic per second. To determine the actual throughput for

a specific use case, it is recommended to conduct performance benchmarking, which can help to optimize and

fine-tune the system for the workload.

II. RELATED WORK

This section gives the most relevant work that evaluate the performance of two different benchmark tool. In the

paper titled 'Distributed Streaming Storage Performance Benchmarking: Kafka and Pravega' Authors: Dr.

Keshava Munegowda & Sanjay Kumar N V, have assessed the messaging capabilities of SBK and the open

messaging benchmark framework suggested that The throughput achieved by the open messaging benchmark

tool, when evaluating the performance of 10 Kafka producers alongside the Pravega benchmark tool, is notably

lower in comparison to the Pravega benchmark tool [13]. The open messaging benchmark tool does not pump

or flush the data to the Kafka client at the maximum rate. Presently, distributed messaging and streaming

platforms are being benchmarked in the development of the open messaging benchmark framework [14].

A streaming data platform Redpanda which is a kafka compatible provides 10 times faster and 6 times more

hardware efficient. While the Kafka performance benchmarking is made easier by the open messaging

benchmark tool, SBK streamlines benchmarking processes across streaming and distributed messaging

platforms, along with both generic persistent and non-persistent storage platforms. Finding the optimal data

partitioning strategy is particularly challenging in Big Data applications [15].

III. TEST METHODOLOGY

The performance and architecture of storage are crucial factors that significantly impact the overall system

J. Electrical Systems 20-6s (2024): 1148-1161

1150

performance [16]. Redpanda is comptaible with the kafka API, No Zookeeper, No JVM is required, so it works

with the full ecosystem of tools and integration built on kafka [17]. This section gives the most relevant work

that evaluate the performance of two different benchmark tool. In our experiment redpanda is deployed on bare

metal, here we can benchmark read/write events to an events processing system (redpanda). In Redpanda we

can use the kafka protocol to implement a producer and consumer for a topic [18]. We are currently

assessing the maximum message produced

/consumed are achievable with both the Open messaging and SBK frameworks for a given redpanda

configuration. The two different combinations of workloads have undergone test using their default redpanda

settings and configurations. In each test case, the throughput is measured for every test application i.e to

send/receive messages to/from broker, and results have been recorded.

A. Single producer and consumer model

In a model with a single producer and consumer (Max- rate-1-topic-1-partition-1p-1c-100b), A Single topic

with single partition, a single producer and a single consumer process messages to publish and subscribe the

data across with one broker. In a single producer consumer workload, there is only one producer and one

consumer interacting with Redpanda. This is typically used for low-volume workloads or for testing and

development purposes.

B. Five producer and consumer model

In a Five-Producer-Consumer Model (Max-rate -1-topic-5- partition-5p-5c-100b), In order to publish/subscribe

the message, The broker serves as a load-balancing node, distributing each message to all five consumers

subscribed to the same topic. In this model of Five-producer consumer workload, Five producers and

consumers interacting with Redpanda simultaneously. Multiple producers and consumers are used for high-

volume workloads where data is being produced and consumed at a high rate.

TABLE I. DESCRIPTION OF THE HARDWARE AND SOFTWARE CONFIGURATIONS

UTILIZED IN THE TEST SETUP

Components Remarks

Number of compute

nodes

2 Nodes

1 for Redpanda broker

1for OpenMessaging & SBK

Each node is installed with Ubuntu (22.04.1

LTS)

CPU 4 CPUs : Each of 64 Bit, 3.6 GHz

RAM 8 GB

Hard Disk

SSD (Solid State Drive) of size 1TB (Tera

Bytes)

Ethernet 100Mbps Network

Software Versions

SBK : 3.0

Kafka : 3.3.2

Redpanda : 22.3.11

Table 1. shows, the hardware and software specifications that we have used for performance evaluation.

Configuring the workload in Redpanda requires changing a number of factors in order to tailor the platform to

our particular use case.

A few of the key parameters that can be configured include the number of partitions, replication factor, and

message size. The number of partitions determines how many logical units of data are stored in the distributed

log. The throughput of the system can be increased by increasing the number of partitions, but can also

increase the complexity of

J. Electrical Systems 20-6s (2024): 1148-1161

1151

managing the system. The number of copies that each partition is stored in the system depends on the

replication factor. As Replication factor increases can enhance data durability and fault tolerance, but it can

also increase the overall resource requirements of the system [19].

The message size determines the size of each record in the distributed log. Reducing the message size can

improve the overall throughput of the system, but can also increase the overhead of processing individual

messages. Redpanda's workload configuration requires modifying the configuration file or using the command-

line interface. It's important to carefully evaluate the impact of each configuration parameter on the overall

performance of the system, and to test the system under realistic workloads to ensure that it meets an intended

requirements [20].

IV. IMPLEMENTATION DETAILS

The initial version of SBK was implemented in Java 8 and the latest release of SBK 3.0 is incorporated in Java

version 17 and it can be found on the Git repository hub [2] with the latest release of 3.0 SBK and Open

messaging is used to check performance benchmarking of redpanda’s events processing platform. In open

messaging benchmark workloads are specified in YAML configuration files which describes the number of

topics, size of the messages being produced and consumed, the number of producers and subscriptions per

topic, the time duration etc,[21]. In SBK running performance benchmarking with write/read a specific amount

of events/record and write/read the events/record to the specified amount of time. At the end of the

benchmarking sessions both SBK and open messaging outputs the total written/read, average throughput and

latency. Benchmarking Redpanda with open messaging using a latest version [22] provides a standard set of

test that measure the throughput and latency.

V. RESULTS AND DISCUSSIONS

In this paper the total number of messages produced or consumed per second is the measure of throughput.

Test performance metrics are used in benchmarking to assess storage performance. The most fundamental

measure of input/output (IO) performance is throughput. To determine optimum storage performance, a model

workload or appropriate benchmark must be used in order to evaluate and compare the benchmarking results

on the specified system [23].

The experimental messaging performance study of the broker is presented in this section using five test

scenarios to illustrate the results. Redpanda is designed to handle both single and multiple producer-consumer

workloads. In a single producer consumer workload, there is only one producer and one consumer interacting

with Redpanda. In a multiple producer-consumer workload, there are multiple producers and consumers

interacting with Redpanda simultaneously. Redpanda's setup options, such as the number of partitions,

replication factor, and buffer size for network I/O, may need to be changed in order to adapt to a multi-producer

consumer workload.

A. In a Single topic-1producer-1consumer model

The redpanda performance benchmarking is conducted with data size of 100 bytes. In a single topic, one

producer publish the message to the topic at the other end one consumer read the messages from the same topic,

i.e only one producer and one consumer interacting with the broker.

Redpanda's performance is benchmarked using CLI, for Single topic-1producer-1consumer model.

⚫ Through Open Messaging

~/openmessaging-benchmark $ sudo bin/benchmark --drivers driver-kafka/redpanda-throughput.yaml

workloads/max-rate- 1-topic-1-partition-1p-1c-100b.yaml. This command initiates a benchmarking process

aimed at assessing the throughput capabilities of the system. The --drivers driver- kafka/redpanda-

throughput.yaml segment specifies the driver or configuration file required to interact with either Kafka or

Redpanda, indicating the specific system under evaluation. Meanwhile, the workloads/max-rate-1-topic-1-

partition-1p-1c- 100b.yaml portion defines the workload parameters, including the maximum rate, number of

topics, partitions, producers (1p), consumers (1c), and message size (100 bytes).

J. Electrical Systems 20-6s (2024): 1148-1161

1152

⚫ Through SBK

~/SBK$./build/install/sbk/bin/sbk -class redpanda -topic 1 - partitions 1 -replica 1 -insync 1 -writers 1 -readers

1 -size 100

-seconds 180 -broker 10.0.100.134:9092 -throughput 30 - create true. This command is used to run a

benchmarking test on a Redpanda instance with specific configurations, including the number of topics,

partitions, replication factor, message size, duration, throughput, and broker address, among others. It will

assess the performance of Redpanda under the defined conditions.

Fig. 1. Iteration1 Results Chart.

Fig. 2. Iteration2 Results Chart.

J. Electrical Systems 20-6s (2024): 1148-1161

1153

Fig. 3. Iteration3 Results Chart.

Fig. 4. Iteration4 Results Chart.

Fig. 5. Iteration5 Results Chart.

Figure 1-5 shows that SBK and Open Messaging benchmark performance are compared for a workload of ‘1-

topic-1-partition-1p-1c-100b’, here the analyzed metric is throughput, SBK benchmarking results shows the

J. Electrical Systems 20-6s (2024): 1148-1161

1154

approximate maximum throughput of 11MB/sec and open messaging gives the maximum throughput result of

8MB/sec. The test scenario was run five times, lasting three minutes each time, and the results were graphed,

when compare to open messaging at the completion of each testing period, SBK performs better to write/read

events of size 100 bytes to/from the topic.

B. In a Single topic-5producer-5consumer model

The benchmarking of Redpanda performance is carried out using 100-byte data size. Single topic with

5producers are writing events to the topic (publish the message through the queue) five consumers at the

opposite end subscribe to these events (subscribe the messages from the queue). In this model, a single topic is

created in Redpanda, and five producers are set up to write messages to this topic. These producers publish

messages to the topic, which is essentially a queue. On the other end of the queue, there are five consumers

who subscribe to the topic and retrieve the messages and each message is delivered to only one of the

consumers.

Redpanda's performance is benchmarked using CLI for Single topic-5producer-5consumer model.

⚫ Through Open Messaging

To initiate a benchmarking process aimed at evaluating the throughput capabilities of the system, the workload

parameters defined in the 'max-rate-1-topic-1-partition-5p-5c-100b.yaml' file play a crucial role. This workload

specification encompasses various parameters, including the maximum rate, number of topics, partitions, as

well as the configuration for producers (5p) and consumers (5c).

⚫ Through SBK

SBK initiating a performance evaluation of a Redpanda instance with specific configurations for 5writers,

5readers number of topic is 1, 5partitions, 1replication factor, 100 bytes message size, duration, throughput, and

broker address.

Fig. 6. Iteration1 Results Chart.

J. Electrical Systems 20-6s (2024): 1148-1161

1155

Fig. 7. Iteration2 Results Chart.

Fig. 8. Iteration3 Results Chart.

Fig. 9. Iteratio4 Results Chart.

J. Electrical Systems 20-6s (2024): 1148-1161

1156

Fig. 10. Iteration5 Results Chart.

Fig. 5-10 shows Multiple Producers Consumers performance Benchmarking, the performance benchmarking

of redpanda for 5 producers and 5consumers for a workload ‘max-rate-1-topic-5-partition-5p-5c-100b’ On a

single broker, a topic is divided into 5 partitions Every message has an offset assigned to it that is with in the

partitions which allows the consumers to read from all the 5 partitions in the same order. SBK Benchmarking

results shows that the approximate maximum throughput of 18MB/sec, whereas open messaging gives the

maximum throughput result of 16MB/sec hence SBK achieves the maximum throughput for record (data) size

of 100Bytes compare to open messaging.

C. In a Single topic-1producer-1consumer model for events processing.

The actual numbers of events that can be processed vary depending on parameters like the size of message, the

number of producers and consumers, the network bandwidth, the disk throughput, and the CPU resources

available [24]. Whenever an event gets published to a topic, it's directly appended to the specific partition

created for that topic. Subsequently, any consumer assigned to that particular topic-partition will consistently

retrieve events in the exact sequence they were originally written. One producer write event to the topic by

publishing messages into the queue. On the receiving end, one consumer subscribe to these events and retrieve

the messages from the queue.

Event processing is typically done in real-time, single topic is a string which identifies the stream of events

that the record belongs to. In a distributed streaming platform redpanda allows to publish and subscribe to

stream of records [25]. Once the record is published, redpanda stores it in a partition within the topic. Here

Single Producer publish an event by sending a record, by sending a key, value and a topic. Once it is published

it stores it in a partition within the topic. Single Consumer can then subscribe to a topic and read events from a

partition, and receive key, value and meta data associated with the event.

Fig. 11. Iteration1 Results Chart.

J. Electrical Systems 20-6s (2024): 1148-1161

1157

Fig. 12. Iteration2 Results Chart.

Fig. 13. Iteration3 Results Chart.

Fig. 14. Iteration4 Results Chart.

J. Electrical Systems 20-6s (2024): 1148-1161

1158

Fig. 15. Iteration5 Results Chart.

In a Single Producer-Consumer model for events processing, Figure 10 - 15 shows that the throughput for total

number of events for read/write for the record size of 100 bytes for a given workload of ‘max-rate-1-topic-1-

partition-1p-1c-100b’. The graph shows that, in all the 5 iterations for a period of 3 minutes, SBK records more

events than open messaging.

D. In a Single topic-5producer-5consumer model for events processing.

Single broker redpanda performance benchmarking is conducted to evaluate event processing for the record

size of 100 bytes on a single topic with 5 partitions, 5-producer and 5 consumer setup. if the message size is

small, say 100 bytes, and the system is configured for high throughput, Redpanda can handle up to 5 million

events per second in the Single topic-5producer-5consumer model. However, the actual throughput will

depend on various factors such as the number of partitions in the topic, the number of threads used by each

producer and consumer, and the batch size of messages.

Fig. 16. Iteration1 Results Chart

J. Electrical Systems 20-6s (2024): 1148-1161

1159

Fig. 18. Iteration3 Results Chart

Fig. 19. Iteration4 Results Chart

Fig. 17. Iteration2 Results Chart

J. Electrical Systems 20-6s (2024): 1148-1161

1160

Fig. 20. Iteration5 Results Chart

Figure 15-20 illustrates the performance benchmark of five producers and five consumers. in the above 5

iterations for a period of 3 minutes, total number of events for read/write for the record size of 100 bytes for a

given workload ‘max-rate-1- topic-5-partition-5p-5c-100b’, SBK shows maximum performance compared to

open messaging, SBK achieves the maximum write/read events throughput than open messaging. Redpanda

provides various tools for monitoring and measuring the performance of the system, which can help to

determine the optimal configuration and performance metrics.

VI. CONCLUSION

This paper gives an experimental evaluation and analysis of two leading open source benchmarking framework

to conduct performance benchmarking on redpanda’s event processing system. The design of redpanda is to

provide maximum performance on any data streaming workload, benchmarking redpanda with Open

Messaging and SBK provides valuable insights into the performance and scalability of the data streaming

platform. In our work, Redpanda is set up on bare metal with a commodity hardware, so that we may test its

publish/subscribe communications. In our experiment For a specific Redpanda configuration, the maximum

number of messages that can be produced/consumed using the Open messaging and SBK frameworks is being

assessed. The performance benchmarking has been determined by 5 iterations of 4 experimental test scenarios.

In each benchmarking results SBK performs well.

REFERENCES

[1] [Online].Available: Storage Benchmark Kit (SBK) : https://github.com/kmgowda/SBK , 2023.

[2] [Online].Available: SBK Releases: https://github.com/kmgowda/SBK/releases , 2023.

[3] Peter M. Chen and David A. Patterson, fellow, ieee, “Storage Performance-Metrics and Benchmarks”, Proceedings of

the IEEE, Vol. 81. No. 8, August 1993.

[4] Munegowda, K., Sanjay Kumar, N.V. (2022). “Design and Implementation of Storage Benchmark Kit”. Emerging

Research i n Computing, Information, Communication and Applications. Lecture Notes in Electrical Engineering, vol

790. Springer,

Singapore. https://doi.org/10.1007/978-981-16-1342-5_5

[5] [Online].Available: Open Messaging Benchmark Website : https://openmessaging.cloud/docs/benchmark.

[6] [Online].Available: Apache Kafka website : https://kafka.apache.org/ , 2023.

[7] Neha Narkhede, Gwen Shapira and Todd Palino, “Kafka, The Definitive guide”, O’reilly series, 1st edition, july 2017.

[8] [Online].Available: Redpanda website : https://docs.redpanda.com/docs/get-started/ 2023.

[9] [Online].Available: Redpanda website : https://redpanda.com/blog/redpanda-vs-kafka-

https://github.com/kmgowda/SBK/
https://github.com/kmgowda/SBK/releases/
https://doi.org/10.1007/978-981-16-1342-5_5
https://openmessaging/
https://kafka.apache.org/

J. Electrical Systems 20-6s (2024): 1148-1161

1161

faster-safer/ 2023.

[10] T. Clark and B. S. Barn, "Event driven architecture modelling and simulation," Proceedings of 2011 IEEE 6th

International Symposium on Service Oriented System (SOSE), Irvine, CA, USA, 2011, pp. 43-54, doi:

10.1109/SOSE.2011.6139091.

[11] S. Arnautov, P. Felber, C. Fetzer and B. Trach, "FFQ: A Fast Single-Producer/Multiple-Consumer Concurrent FIFO

Queue," 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 2017,

pp. 907-916, doi: 10.1109/IPDPS.2017.41.

[12] David Bermbach , J¨orn Kuhlenkamp , Akon Dey , Arunmoezhi Ramachandran , Alan Fekete , and Stefan Tai1,

“BenchFoundry: A Benchmarking Framework for Cloud Storage Services”

https://dbermbach.github.io/publications/2017-icsos- benchfoundry.pdf

[13] [Online].Available: Pravega website : Exploring Pravega

[14] G. van Dongen and D. Van den Poel, "Evaluation of Stream Processing Frameworks," in IEEE Transactions on

Parallel and Distributed Systems, vol. 31, no. 8, pp. 1845-1858, 1 Aug. 2020, doi: 10.1109/TPDS.2020.2978480.

[15] H. Wang, J. Zhang, D. Zhang, S. Pumma and W. -c. Feng, "PaPar: A Parallel Data Partitioning Framework for Big

Data Applications," 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),

Orlando, FL, USA, 2017, pp. 605-614, doi: 10.1109/IPDPS.2017.119.

[16] Peter M. Chen and David A. Patterson, fellow, IEEE, “Storage Performance-Metrics and Benchmarks”, Proceedings of

the IEEE, Vol. 81. No. 8, August 1993.

[17] J. Kreps et al., "Kafka: A distributed messaging system for log processing", Proc. NetDB, pp. 1-7, 2011.

[18] [Online].Available: Kafka version 3.4.0 release : https://kafka.apache.org/downloads , 2023.

[19] Aaron B. Brown and Joseph L. Hellerstein, “An Approach to Benchmarking Configuration Complexity”,

Conference: Proceedings of the 11st ACM SIGOPS European Workshop, Leuven, Belgium, September 19-22, 2004.

[20] Funke, F. et al. (2012). “Metrics for Measuring the Performance of the Mixed Workload CH-benCHmark”. In:

Nambiar, R., Poess, M. (eds) Topics in Performance Evaluation, Measurement and Characterization. TPCTC 2011.

Lecture Notes in Computer Science, vol 7144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32627-

1_2.

[21] T. P. Raptis and A. Passarella, "On Efficiently Partitioning a Topic in Apache Kafka," 2022 International Conference

on Computer, Information and Telecommunication Systems (CITS), Piraeus,Greece,2022,pp.1-8, doi:

10.1109/CITS55221.2022.9832981

[22] [Online].Available: Open messaging source code : https://github.com/openmessaging/openmessaging-benchmark ,

2023.

[23] [http://www.codecentric.de/de/m/kompetenzen/publikationen/stu dien/

[24] M. Astekin, S. Özcan and H. Sözer, "Incremental Analysis of Large-Scale System Logs for Anomaly Detection,"

2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 2119-2127, doi:

10.1109/BigData47090.2019.9006593.

[25] T. P. Raptis and A. Passarella, "On Efficiently Partitioning a Topic in Apache Kafka," 2022 International Conference

on Computer, Information and Telecommunication Systems (CITS), Piraeus, Greece, 2022, pp. 1-8, doi:

10.1109/CITS55221.2022.9832981.

https://dbermbach.github.io/publications/2017-icsos-benchfoundry.pdf
https://cncf.pravega.io/docs/latest/
https://kafka.apache.org/downloads
https://doi.org/10.1007/978-3-642-32627-1_2
https://doi.org/10.1007/978-3-642-32627-1_2
https://github.com/openmessaging/openmessaging-benchmark
http://www.codecentric.de/de/m/kompetenzen/publikationen/studien/

