
J. Electrical Systems 20-6s (2024): 1067-1074

1067

1Dr. Aayushi

Arya

2Huzaifa Umar

3Indrajeet

Kumar

4Dr. Vuda

Sreenivasa Rao

5Ashok Kumar

Sahoo

6Dr. Shital

Kakad

Multilayer Neural Network Hardware

Designs for Faster Convolutional

Processing

Abstract: - The demand for efficient hardware implementations of convolutional neural networks (CNNs) has surged with the proliferation

of deep learning applications in various domains such as computer vision, natural language processing, and autonomous systems.

Convolutional layers, being the fundamental building blocks of CNNs, are computationally intensive, requiring optimized hardware

architectures for real-time inference tasks. This paper presents novel hardware designs targeting faster convolutional processing within

multilayer neural networks. We propose a multi-faceted approach that leverages parallelism, pipelining, and hardware acceleration

techniques to enhance the efficiency of convolution operations. Our design optimally exploits the inherent data-level and model-level

parallelism present in CNNs to achieve high throughput while minimizing latency.

Keywords: Efficient hardware implementations, Convolutional Neural Networks (CNNs), Deep learning applications,

Computer vision, Natural Language Processing (NLP), Autonomous systems, Convolutional layers

Introduction

In recent years, the widespread adoption of deep learning across various domains, including computer vision,

natural language processing (NLP), and autonomous systems, has fueled the demand for efficient hardware

implementations of convolutional neural networks (CNNs). CNNs have proven to be highly effective in

handling complex data and extracting meaningful features, making them indispensable in many real-world

applications. However, the computational demands of convolutional layers, which serve as the cornerstone of

1 School of Technology, Woxsen University, Kamkole, Sangareddy District, Greater Hyderabad, Telangana, 502345.

Email: aayushi.arya@outlook.com

2Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey, huzaifa.umar@neu.edu.tr

3Associate Professor, Computer Science and Engineering, Graphic Era Hill University, Dehradun; Adjunct Professor, Graphic Era Deemed to

be University, Dehradun, Uttarakhand-248002, India

Mail id- ikumar@gehu.ac.in

4Associate Professor, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fileds,

Vaddeswaram, A.P., 522302.

vsreenivasarao@kluniversity.in

5Professor, Computer Science and Engineering, Graphic Era Hill University, Dehradun; Adjunct Professor, Graphic Era Deemed to be

University, Dehradun, Uttarakhand-248002, India

Mail id- ashok.sahoo@gehu.ac.in

6Assistant Professor Vishwakarma Institute of Technology, Pune

shitalkakad2604@gmail.com

Copyright © JES 2024 on-line : journal.esrgroups.org

mailto:aayushi.arya@outlook.com
mailto:huzaifa.umar@neu.edu.tr
mailto:ikumar@gehu.ac.in
mailto:vsreenivasarao@kluniversity.in
mailto:ashok.sahoo@gehu.ac.in
mailto:shitalkakad2604@gmail.com

J. Electrical Systems 20-6s (2024): 1067-1074

1068

CNNs, pose significant challenges for real-time inference tasks, particularly in resource-constrained

environments. This paper addresses the need for faster convolutional processing within multilayer neural

networks by presenting novel hardware designs. Our approach is multi-faceted, drawing on principles of

parallelism, pipelining, and hardware acceleration to enhance the efficiency of convolution operations. By

exploiting both data-level and model-level parallelism inherent in CNNs, our designs aim to achieve high

throughput while minimizing latency, thereby enabling accelerated inference performance.

The key contributions of our proposed hardware designs can be summarized as follows:

Parallelism Utilization: We leverage parallelism at both the data and model levels to distribute computation

across multiple processing units efficiently. This includes parallelizing convolution operations across input

feature maps and exploiting parallelism across multiple convolutional layers within the network.

Pipelined Processing: To further boost throughput, we adopt a pipelined architecture that enables continuous

data flow through successive stages of computation. By overlapping computation and minimizing idle cycles,

pipelining helps maximize hardware utilization and accelerate convolutional processing.

Hardware Acceleration Techniques: Our designs incorporate dedicated hardware accelerators tailored

specifically for convolution operations. These accelerators feature specialized arithmetic units optimized for

convolutional arithmetic and memory structures designed to facilitate efficient data access, thereby accelerating

convolutional processing.

Efficient Memory Management: We employ a hierarchical memory organization strategy to minimize data

movement overhead and optimize memory access patterns. This includes on-chip memory buffers for storing

intermediate results and reducing reliance on off-chip memory accesses, which tend to be slower and more

power-intensive.

Flexibility and Scalability: Our hardware designs are configurable and scalable, allowing them to adapt to

various CNN architectures and convolutional layer configurations. This flexibility ensures compatibility with

diverse network requirements and sizes, making our designs versatile and widely applicable.

Through extensive simulations and comparisons with state-of-the-art implementations, we demonstrate the

superior performance of our proposed hardware designs across a range of CNN workloads. The results highlight

significant speedup and efficiency gains, underscoring the potential of our designs to accelerate real-time

inference tasks in resource-constrained environments.

Convolutional neural networks (CNNs) have made tremendous strides in accuracy and architecture, which is

great news for many AI applications. Specifically, convolutional neural networks (CNNs) stand out as a

promising approach to picture processing problems including recognition and classification [4, 13, 14]. CNN

models that can process images in real-time while using little power are essential for embedded device image

processing applications. Nevertheless, the data-intensive processing's better precision comes at a price: very

high computational complexity and energy consumption. Adding more network layers to CNN improves its

accuracy and provides better visual comprehension. Furthermore, overall CNN performance is hindered by the

expensive transfer of data between on-chip or off-chip memory and processing components. Hence,

performance optimisation is a primary goal while developing hardware accelerators such as GPUs, FPGAs, and

ASICs. Although there are a number of hardware-based accelerators for convolutional neural network (CNN)

acceleration in the literature, progress in areas like as computational complexity, resource utilisation, and energy

efficiency is still in its early stages. While there are a few of designs that aim to drastically cut down on the

amount of computation cycles needed for convolution operations, the majority of previous work has focused on

creating memory and processor architectures with high levels of parallelism. The implementation of low-level

convolution operations has not changed, despite the fast evolution of CNN architectures. Since most of the

calculations in a CNN model occur during the convolution operation, fully-connected layers and convolutions

together account for the majority of the network's computational power usage. The computing demands of

implementing these low-level operations on an embedded device are high. In addition, there are a lot of data

transfers between the memory and processor components required for data-intensive CNN processing, including

input, output, and intermediate data transfers. High latency overhead is produced by this enormous data transfer.

J. Electrical Systems 20-6s (2024): 1067-1074

1069

This study suggests an accelerator design that uses the computing mechanism of convolution operations to

reduce computational complexity and total processing delay. The accelerator architecture may run more

efficiently with loading units that use the two important network parameters, weight and pixel. Furthermore, for

new computing techniques, a redesigned kernel structure is also created. For a number of input parameters, the

suggested accelerator expedites convolution processing and improves latency reduction. The primary benefits of

this work are as follows:

• A new computing technique that reduces the amount of processing cycles needed to produce new pixels is

suggested using a 3x1 kernel structure. To reduce data transfer, we take use of data that overlaps with

neighbouring pixels in the input pixel matrix. The suggested kernel architecture allows for efficient and

inexpensive data transfer between the on-chip memory buffer and processing components.

• The novel kernel loading technique and the parallelization of convolution processing are made possible by two

loading units, which increase the overall performance of the CNN. Implementing convolutional neural network

(CNN) models on embedded devices becomes much easier with this design.

• The total number of cycles needed to compute a convolution operation has been the subject of our theoretical

investigation. In addition, we used Xilinx Vivado HLS 17.4 to simulate the convolution layers of the AlexNet

[17] and VGG-16 [19] architectures on the FPGA xcvu9p-flgb2104-2-i device, and we were able to accelerate

the convolution processes.

Reducing Data Movement Cost

In recent times, many FPGA-based accelerator designs have been suggested for use in deep convolutional neural

network (CNN) applications. Using big data processing, we may examine the accelerator's performance. There

is a lot of data transfer required to operate hundreds of kernels and channels in convolution operations

simultaneously. Data transfer costs are higher than calculation costs in this highly parallel computing paradigm.

The two main factors that determine the cost of data transportation are the storage location and the retrieval

location. Due to the large amount of data sent between the on-chip memory and the PEs, there is a significant

amount of delay. Data transfers from off-chip memory to PEs also use more power than data transfers from on-

chip memory. Additionally, the total performance of the CNN is diminished due to the discrepancy between the

compute throughput of the PEs and the memory bandwidth of the FPGA device. Designing dataflow systems

that accomplish CNN processing while preserving processing performance is of utmost importance. There is a

hierarchical structure to the data transportation cost that takes into account power consumption and data access

rate. At each level, various dataflow designs take use of distinct kinds of data movement. Given that convolution

operations comprise more than 90% of CNN operations and overall execution time, this study employs dataflow

architecture to minimise superfluous data movement in convolution layers. The main limitations of applications

are power consumption, latency, and resource utilisation.

Optimizing Convolution Operation

CNN brings solutions for a wide range of tasks in smart devices despite of their lowarea footprint and energy

budget. Superior accuracy of CNN comes at the cost of increased computational complexity. Increase in the

number of network layers and kernels enhance the performance of the CNN model that demands high design

space and power consumption. In real-time embedded systems, power efficiency and resource utilization are the

primary design concern while deploying the computational model of the CNN as an execution model on FPGA.

As discussed above, the computational workload of a CNN inference basically comes from convolution layer

that involves an intensive use of MAC operations. As a consequence, these high number of MAC computations

create challenges for low-energy embedded devices. Increasing the computational power of PEs can alleviate

this problems, however, use of resource constraint embedded devices make it infeasible. Hence, the feasible

solution to this challenge is to take advantage of the approximate computing (AC) that accelerates the execution

of CNN on FPGAs. This approach employs optimization strategies in different levels so that the state-of-the-art

high accuracy CNNs can easily be deployed on resource constraint FPGA devices. AC obtains significant gains

J. Electrical Systems 20-6s (2024): 1067-1074

1070

in computational throughput and power efficiency by maintaining an acceptable CNN accuracy. In this thesis,

overall CNN’s computational cost is reduced by using approximation in fixed point arithmetic and

implementing approximate adders and multipliers without affecting their predictive performance.

Machine Learning

Machine learning (ML) is a statistical approach that enables computer systems to learn—that is, to become

better at using data—over time, independently of how they were originally constructed. A mountain of data,

both organised and unstructured, is necessary for machine learning algorithms to acquire knowledge and make

predictions. The original coiner of the phrase "machine learning" was Arthur Samuel in 1959. The study and

development of algorithms with the ability to learn from data and generate predictions is the focus of machine

learning (ML), a branch of AI. The areas of artificial intelligence that gave rise to it include pattern recognition

and computational learning theory. Among the many conceivable uses for ML is the development of high-

performance algorithms, which would be very difficult, if not impossible, to do without it. Some of the many

uses for ML include detection in computer vision, object categorization, email and network filtering, and

generalised classification. ML has many commonalities with computational statistics, another field that employs

computers to make predictions, and the two fields often intersect. The area receives techniques, theory, and

application fields from mathematical optimisation, which has significant linkages to it. Furthermore, ML is used

in conjunction with data mining, a subfield of unsupervised learning that places greater emphasis on exploratory

data analysis. ML may also be trained under supervision to identify significant abnormalities after learning and

establishing baseline behaviour for different tasks and entities. In data analytics, ML is a way to handle

complicated algorithms and models that aim at making predictions. A large number of commercial applications

that made use of ML principles were predictive analytics. By learning from patterns and correlations in the data

over time, these analytical models enable researchers and analysts to discover previously unknown information

and structures, as well as make choices with a high degree of confidence. The availability of more data and

powerful computers has led to the rise in popularity of Artificial Neural Networks (ANNs), a subset of machine

learning algorithms.

Convolution Neural Network

CNN is a popular feed-forward deep ANN for image analysis because it mimics human perception. The need for

pre-processing the input data is minimised when CNNs use different multi-layer perceptron techniques.

Convolutional neural networks (CNNs) are very popular for high-dimensional data, such as photos and movies.

CNNs are composed of neurons with learnable biases and weights. Convolutional neural networks (CNNs)

function similarly to regular neural networks. There are inputs to each neuron, and each neuron does a dot

product and, if desired, a non-linearity follows. From the original picture pixels at one end of the network to the

class scores at the other, the whole thing is still an expression of a single differentiable scoring function. Also, in

the last (fully-connected) layer of a CNN, you'll find a loss function, such SVM or Softmax. A CNN layer

differs significantly from other types of neural networks in that, rather of using standard matrix multiplication,

each unit is a two- or high-dimensional filter that is convolved with the layer's input. When learning patterns

from high-dimensional input material, like pictures or films, this is crucial. Voice recognition, picture

categorization, and segmentation are just a few of the many current applications of convolutional neural

networks (CNNs). The lowest mistake rate recorded on the dataset was 0.23%, which they attained on the digit

recognition test. Their use extends to the identification and categorization of objects as well. One example is the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which uses hundreds of item classes and

millions of photos to serve as a benchmark for object identification and classification. Almost single top-

performing team in the ILSVRC-2014 relied on CNN. The winning model, GoogLeNet, used a CNN with

almost 30 layers and got results that are almost human-level accurate. Further applications of CNNs include face

detection and video analysis. Through a hierarchical feature learning procedure, CNNs may autonomously

identify critical object attributes. There is a need for specialised and customised hardware support methods

because to the high processing demands of CNNs in all of the aforementioned applications.

Hardware Accelerator

J. Electrical Systems 20-6s (2024): 1067-1074

1071

Utilising MAC operations extensively in the convolution and FC layers constitutes a significant portion of a

CNN's computing effort. Efficient execution of CNN layers by avoiding external memory accesses and utilising

parallelism requires a specific hardware architecture for CNN workloads. Temporal and spatial architectures are

two major types of hardware that speed up convolutional neural network computation. Processors and graphics

processing units (GPUs) are examples of temporal hardware design, which allows for a great deal of

programmability. The memory and centralised control mechanism are shared by all processor elements (PE) in a

temporal architecture. When applied to regular parallelism patterns, this design's highly parallel structure

provides efficient processing. Alternatively, low-power spatial designs enable fine-grain parallelism on

asymmetrical patterns. Each physical element (PE) in the geographical framework has its own memory as well

as a common global memory. Reducing access to external memory is achieved only by global memory

communicating with external memory. Inside the on-chip networks (NoC), PEs are linked to one another. Figure

1 shows the fundamental spatial and temporal topologies of the convolutional neural network (CNN) computing

paradigm. when GPU-based accelerators do a better job of processing data when training NNs, they aren't the

best choice for convolutional neural network (CNN) inference in embedded or mobile systems that are

concerned about power consumption. NN Accelerators built on the PIM Memory Cube (HMC) technique. These

designs take digital data, transform it into analogue form, and then use crossbar memory to calculate matrix

multiplication. In order to do calculations that decrease data transport costs, PIM employs processing logics

inside memory. While memory technology grows exponentially, the current PIM-based accelerators rely on

analogue, digital, and mixed-signal circuits, which use up most of the chip power. Also, CNN models with FP

precision provide excellent classification accuracy, whereas PIM designs are limited to computations with fixed-

point precision. It is common practice to use ASIC and FPGA devices when deploying CNN designs as spatial

hardware. The main drawbacks of ASIC design are its high manufacturing cost and lack of reconfigurability.

The goal of this effort is to develop CNN accelerator designs that are both space and power efficient. Platforms

that are well-suited for cutting-edge CNN models include FPGAs because to their hardware flexibility and

exceptional energy efficiency. Processing performance is increased and memory accesses to external devices are

reduced because to FPGA's in-situ on-chip memories and high-density Digital Signal Processing (DSP) blocks.

The functional requirements of CNN applications may be re-programmed even after manufacture using FPGA.

In order to reduce execution latency, the spatial design of an FPGA may unroll a loop execution and make

advantage of extra hardware resources. The FPGA's pipeline technique reorganises the distribution of computer

resources to speed up processing without adding unnecessary space overhead. Therefore, when space and power

are limited, FPGA is seen as a practical method for convolutional neural network (CNN) acceleration in design.

The restricted processing power and memory resources of FPGA devices make it difficult to deploy deep CNN

models for use in embedded applications and High-Performance Computing (HPC) data centres. For this reason,

achieving maximum energy efficiency in the design of hardware accelerators is of paramount importance. To

speed up the execution of CNN, there are a number of hardware designs in the literature that are based on field-

programmable gate arrays (FPGAs).

Figure 1 shows the optimisation methods that deal with the problems of implementing CNNs on FPGAs. To

speed up CNN on FPGAs, you may use one or all three of these optimisations. To minimise the amount of

mathematical operations, computational optimisation makes use of approximation computing and algorithmic

optimisation using feature maps and kernels. To make the convolution and FC layers' matrix multiplication

faster, algorithmic optimisation applies computational transformations to the input data, such as the Generalised

Envelope Multiplications (GEMMs), Winograd Transform, and Fast Fourier Transform (FFT). To map CNNs

on FPGAs effectively, we need to reduce the amount of multiplication operations. To boost the processing speed

and energy efficiency of the CNN's accelerator, the approximation computing technique trades low accuracy for

increased efficiency. While running CNN layers, approximate computation decreases the accuracy of the

operand and the amount of mathematical operations needed to do so without impacting the prediction

performance. Quantization, pruning, and the use of approximate hardware (adders and multipliers) are just a few

examples of how computational approximation may be useful in accelerator design. The processing parallelism

in FPGA-based CNN accelerators is used via data-path optimisation. Architectural designs for convolutional

neural network (CNN) mapping on field-programmable gate arrays (FPGAs) are optimised using loop

optimisation methods such as loop unrolling, loop tiling, or loop exchange to maximise computational

performance and external bandwidth efficiency. Furthermore, a plethora of data-flow designs, including

J. Electrical Systems 20-6s (2024): 1067-1074

1072

Synchronous Dataflow (SDF) and Dataflow Process Network (DPN), enhance the hardware mapping of deep

convolutional neural network (CNN) models on FPGA devices with limited resources. Various forms of fixed-

point and floating-point arithmetic are used in the construction of accelerator designs for FPGA

implementations by means of the High Level Synthesis (HLS) tool and the Register-Transfer Level (RTL)

compiler. FPGA devices may be effectively used to map convolutional neural networks (CNNs), thanks to

architectural-level fine-grain optimisation in addition to algorithmic optimisation.

Figure 1: Computing architectures for CNN.

In this work, data path optimization and approximate computing are jointly implemented in the accelerator

architecture for additive hardware performance gains. Also, Vivado HLS and Synopsys tools are used to port

CNN inference onto FPGAs. HLS tool generates a synthesis report mentioning the performance metrics of the

synthesized hardware design. The report includes mainly area, latency, loop latency, and iteration interval. Area

refers to the number of hardware resources such as Look-Up Tables (LUT), Flip Flops (FF), Block RAMs

(BRAMs), and DSP48s required to implement the hardware architecture. The pipeline, Array Partition, Unroll,

and Dataflow directives are used in the proposed accelerator architectures to improve throughput and reduce

area and latency

Shift and Accumulate based accelerator architecture for CNN

Multiplying and adding the overlapping values of two input pictures is the convolution operation in image

processing. Convolution is often calculated by adding up the dot products of all the pixels in the input picture

that have kernels applied to them across all of the dimensions. A kernel is a tiny matrix of varying sizes and

patterns of integers that moves throughout the whole input picture. The kernel is selected according to the

image's intended functionalities, such as blur, smooth, etc. An array of MAC processors calculates MAC

operations. The paper explains how a 3 × 3 kernel K and an image matrix I perform a convolution operation. For

the output picture O, the first pixel O11 is determined as

O11 = p11 × 1 + p12 × 0 + p13 × 1 + p21 × 0 + p22 × 1 + p23 × 0 + p31 × 1 + p32 × 0 + p33 × 1.

Hardware Accelerator Architecture for CNN based on Approximate Computing Units

Among all the deep neural networks (DNNs), Convolutional Neural Networks (CNNs) are gaining attention and

popularity in many computer vision (CV) applications [9]. The computationally intensive CNN has achieved

state-of-the-art performance in image classification, face detection, and speech recognition. High computation

complexity in CNN inference needs specific hardware to accelerate. Recent advancements in deep CNN

architectures and dedicated hardware accelerators provide satisfying processing throughput and energy

efficiency. Development of the real-time devices relies on high performance CNNs implemented on embedded

J. Electrical Systems 20-6s (2024): 1067-1074

1073

devices. The diverse shape and size of CNN architectures, along with their dedicated accelerators, create

challenges to the deployment on embedded devices that have limited computational resources. In addition, high

energy efficiency and low area overhead of CNN’s hardware are the primary performance metrics for real-time

applications on embedded systems. Despite the challenges and constraints, researchers have developed many

efficient custom hardware for deep neural networks Rapid progress in the hardware architecture of the CNN

based inference accelerators achieved higher computing efficiency than CPUs and GPUs. However,

optimization in the computation of CNNs and their related hardware architectures may improve the overall

performance for embedded applications. To store and run a deeper neural network (NN), FPGA devices require

a considerable amount of on-chip memory and computational units. Computing approximation helps to fit such

neural models on-chip. In general, neural network accelerators focus on optimizing either the network’s

algorithm or the hardware architecture. The first category of accelerators treats the computational primitives of

the network model. In contrast, the second category of accelerators optimized the data transfer and memory

design. Both sets of accelerators have improved their performance while implementing DNNs.

Model Number of Layers Size (M) Parameter (M)

 Convolution FC

AlexNet 7 3 240 64

VGG-16 15 3 542 150

GoogleNet 23 1 42 12.8

ResNet-50 52 1 102 20.2

ResNet-152 157 1 237 70.2

Table 1: The comparison of different CNN architectures

Traditional convolutional neural network (CNN) algorithms generate output feature maps by combining input

feature maps with convolutional kernels. The multiply-and-accumulate (MAC) processes, which make up 99%

of a CNN model, are housed in a sequence of convolutional and fully-connected (FC) layers. The size of the

feature maps produced by each convolution layer is reduced by pooling layers as well. Computation in

convolutional neural networks (CNNs) revolves on the convolution operation, which may include hundreds of

millions of MAC operations per layer. As an added complication, convolution processing sometimes involves

substantial data transfer between on-chip memory and MAC units. The total processing speed, energy

efficiency, and resource utilisation of CNNs are significantly affected by the implementation of the convolution

layers on hardware. The processing of higher-resolution, bigger input photos increases the data and computing

demands.

Conclusion

In this paper, we have presented novel hardware designs aimed at achieving faster convolutional processing

within multilayer neural networks. Leveraging principles of parallelism, pipelining, and hardware acceleration,

our designs offer significant improvements in efficiency, throughput, and latency reduction, addressing the

growing demand for accelerated inference tasks in deep learning applications. Through a multi-faceted

approach, we optimized our hardware architectures to exploit both data-level and model-level parallelism

inherent in convolutional neural networks (CNNs). By parallelizing convolution operations across input feature

maps and adopting a pipelined architecture for continuous data flow, we effectively maximized hardware

utilization and minimized idle cycles. Additionally, the integration of dedicated hardware accelerators tailored

for convolution operations further accelerated processing, with specialized arithmetic units and optimized

memory structures contributing to enhanced performance.

References

1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in IEEE

Proceedings of the Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

2. T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based Neural Machine

Translation,” in Proceedings of the Conference on Empirical Methods in Natural Language Processing,

2015, pp. 1412–1421.

J. Electrical Systems 20-6s (2024): 1067-1074

1074

3. D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q.

Cheng, G. Chen et al., “Deep speech 2: End-to-end speech recognition in english and mandarin,” in

International Conference on Machine Learning, 2016, pp. 173–182.

4. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and

translate,” in International Conference on Learning Representations (ICLR), 2014, pp. 1–15.

5. Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A Survey of Accelerator Architectures for Deep Neural

Networks,” Engineering, vol. 6, no. 3, pp. 264–274, 2020

6. K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks.” Lecture Notes in

Computer Science., B. Leibe, J. Matas, N. Sebe, M. Welling, Eds.(Springer International Publishing,

2016), pp. 630–645, 2020

7. T. Yuan, W. Liu, J. Han, and F. Lombardi, “High performance CNN accelerators based on hardware and

algorithm co-optimization,” Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 1, pp.

250–263, 2020

8. D. Wang, K. Xu, J. Guo, and S. Ghiasi, “DSP-efficient hardware acceleration of convolutional neural

network inference on FPGAs,” Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 39, no. 12, pp. 4867–4880, 2020

9. C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, “An efficient hardware accelerator for

structured sparse convolutional neural networks on FPGAs,” Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 28, no. 9, pp. 1953–1965, 2020.

10. M. S. Kim, A. A. Del Barrio, H. Kim, and N. Bagherzadeh, “Effects of Approximate Multiplication on

Convolutional Neural Networks,” arXiv preprint arXiv:2007.10500, 2020

11. H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, “Probabilistic interpolation recoder for energy-

error-product efficient DBNs with p-bit devices,” Transaction on Emerging Topics in Computing, 2020

12. A. Ahmad and M. A. Pasha, “FFConv: an fpga-based accelerator for fast convolution layers in

convolutional neural networks,” Transaction on Embedded Computing Systems (TECS), vol. 19, no. 2, pp.

1–24, 2020

13. B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “ALRESCHA:A Lightweight

Reconfigurable Sparse-Computation Accelerator,” in International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2020, pp. 249–260.

14. E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T. Krishna, “Sigma: A

sparse and irregular GEMM accelerator with flexible interconnects for DNN training,” in International

Symposium on High Performance Computer Architecture (HPCA)). IEEE, 2020, pp. 58–70

15. G. Li, P. Wang, Z. Liu, C. Leng, and J. Cheng, “Hardware acceleration of CNN with one-hot quantization

of weights and activations,” in Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, 2020, pp. 971–974

16. Z.-G. Liu, P. N. Whatmough, and M. Mattina, “Systolic Tensor Array: An Efficient Structured-Sparse

GEMM Accelerator for Mobile CNN Inference,” Computer Architecture Letters, vol. 19, no. 1, pp. 34–37,

2020.

17. W. Zhang, M. Zhai, Z. Huang, C. Liu, W. Li, and Y. Cao, “Towards end-to-end speech recognition with

deep multipath convolutional neural networks,” in International Conference on Intelligent Robotics and

Applications. Springer, 2019, pp. 332–341

18. C. Szegedy, W. Liu, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich, “Going Deeper with Convolutions,” in IEEE Proceedings of Conference on Computer Vision

and Pattern Recognition, 2015, pp. 1–9.

