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Abstract: - The demand for efficient hardware implementations of convolutional neural networks (CNNs) has surged with the proliferation 

of deep learning applications in various domains such as computer vision, natural language processing, and autonomous systems. 

Convolutional layers, being the fundamental building blocks of CNNs, are computationally intensive, requiring optimized hardware 

architectures for real-time inference tasks. This paper presents novel hardware designs targeting faster convolutional processing within 

multilayer neural networks. We propose a multi-faceted approach that leverages parallelism, pipelining, and hardware acceleration 

techniques to enhance the efficiency of convolution operations. Our design optimally exploits the inherent data-level and model-level 

parallelism present in CNNs to achieve high throughput while minimizing latency.    

Keywords: Efficient hardware implementations, Convolutional Neural Networks (CNNs), Deep learning applications, 

Computer vision, Natural Language Processing (NLP), Autonomous systems, Convolutional layers 

Introduction 

In recent years, the widespread adoption of deep learning across various domains, including computer vision, 

natural language processing (NLP), and autonomous systems, has fueled the demand for efficient hardware 

implementations of convolutional neural networks (CNNs). CNNs have proven to be highly effective in 

handling complex data and extracting meaningful features, making them indispensable in many real-world 

applications. However, the computational demands of convolutional layers, which serve as the cornerstone of 
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CNNs, pose significant challenges for real-time inference tasks, particularly in resource-constrained 

environments. This paper addresses the need for faster convolutional processing within multilayer neural 

networks by presenting novel hardware designs. Our approach is multi-faceted, drawing on principles of 

parallelism, pipelining, and hardware acceleration to enhance the efficiency of convolution operations. By 

exploiting both data-level and model-level parallelism inherent in CNNs, our designs aim to achieve high 

throughput while minimizing latency, thereby enabling accelerated inference performance. 

The key contributions of our proposed hardware designs can be summarized as follows: 

Parallelism Utilization: We leverage parallelism at both the data and model levels to distribute computation 

across multiple processing units efficiently. This includes parallelizing convolution operations across input 

feature maps and exploiting parallelism across multiple convolutional layers within the network. 

Pipelined Processing: To further boost throughput, we adopt a pipelined architecture that enables continuous 

data flow through successive stages of computation. By overlapping computation and minimizing idle cycles, 

pipelining helps maximize hardware utilization and accelerate convolutional processing. 

Hardware Acceleration Techniques: Our designs incorporate dedicated hardware accelerators tailored 

specifically for convolution operations. These accelerators feature specialized arithmetic units optimized for 

convolutional arithmetic and memory structures designed to facilitate efficient data access, thereby accelerating 

convolutional processing. 

Efficient Memory Management: We employ a hierarchical memory organization strategy to minimize data 

movement overhead and optimize memory access patterns. This includes on-chip memory buffers for storing 

intermediate results and reducing reliance on off-chip memory accesses, which tend to be slower and more 

power-intensive. 

Flexibility and Scalability: Our hardware designs are configurable and scalable, allowing them to adapt to 

various CNN architectures and convolutional layer configurations. This flexibility ensures compatibility with 

diverse network requirements and sizes, making our designs versatile and widely applicable. 

Through extensive simulations and comparisons with state-of-the-art implementations, we demonstrate the 

superior performance of our proposed hardware designs across a range of CNN workloads. The results highlight 

significant speedup and efficiency gains, underscoring the potential of our designs to accelerate real-time 

inference tasks in resource-constrained environments. 

Convolutional neural networks (CNNs) have made tremendous strides in accuracy and architecture, which is 

great news for many AI applications. Specifically, convolutional neural networks (CNNs) stand out as a 

promising approach to picture processing problems including recognition and classification [4, 13, 14]. CNN 

models that can process images in real-time while using little power are essential for embedded device image 

processing applications. Nevertheless, the data-intensive processing's better precision comes at a price: very 

high computational complexity and energy consumption. Adding more network layers to CNN improves its 

accuracy and provides better visual comprehension. Furthermore, overall CNN performance is hindered by the 

expensive transfer of data between on-chip or off-chip memory and processing components. Hence, 

performance optimisation is a primary goal while developing hardware accelerators such as GPUs, FPGAs, and 

ASICs. Although there are a number of hardware-based accelerators for convolutional neural network (CNN) 

acceleration in the literature, progress in areas like as computational complexity, resource utilisation, and energy 

efficiency is still in its early stages. While there are a few of designs that aim to drastically cut down on the 

amount of computation cycles needed for convolution operations, the majority of previous work has focused on 

creating memory and processor architectures with high levels of parallelism. The implementation of low-level 

convolution operations has not changed, despite the fast evolution of CNN architectures. Since most of the 

calculations in a CNN model occur during the convolution operation, fully-connected layers and convolutions 

together account for the majority of the network's computational power usage. The computing demands of 

implementing these low-level operations on an embedded device are high. In addition, there are a lot of data 

transfers between the memory and processor components required for data-intensive CNN processing, including 

input, output, and intermediate data transfers. High latency overhead is produced by this enormous data transfer.  
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This study suggests an accelerator design that uses the computing mechanism of convolution operations to 

reduce computational complexity and total processing delay. The accelerator architecture may run more 

efficiently with loading units that use the two important network parameters, weight and pixel. Furthermore, for 

new computing techniques, a redesigned kernel structure is also created. For a number of input parameters, the 

suggested accelerator expedites convolution processing and improves latency reduction. The primary benefits of 

this work are as follows:  

• A new computing technique that reduces the amount of processing cycles needed to produce new pixels is 

suggested using a 3x1 kernel structure. To reduce data transfer, we take use of data that overlaps with 

neighbouring pixels in the input pixel matrix. The suggested kernel architecture allows for efficient and 

inexpensive data transfer between the on-chip memory buffer and processing components.  

 

• The novel kernel loading technique and the parallelization of convolution processing are made possible by two 

loading units, which increase the overall performance of the CNN. Implementing convolutional neural network 

(CNN) models on embedded devices becomes much easier with this design.  

 

• The total number of cycles needed to compute a convolution operation has been the subject of our theoretical 

investigation. In addition, we used Xilinx Vivado HLS 17.4 to simulate the convolution layers of the AlexNet 

[17] and VGG-16 [19] architectures on the FPGA xcvu9p-flgb2104-2-i device, and we were able to accelerate 

the convolution processes.  

Reducing Data Movement Cost 

In recent times, many FPGA-based accelerator designs have been suggested for use in deep convolutional neural 

network (CNN) applications. Using big data processing, we may examine the accelerator's performance. There 

is a lot of data transfer required to operate hundreds of kernels and channels in convolution operations 

simultaneously. Data transfer costs are higher than calculation costs in this highly parallel computing paradigm. 

The two main factors that determine the cost of data transportation are the storage location and the retrieval 

location. Due to the large amount of data sent between the on-chip memory and the PEs, there is a significant 

amount of delay. Data transfers from off-chip memory to PEs also use more power than data transfers from on-

chip memory. Additionally, the total performance of the CNN is diminished due to the discrepancy between the 

compute throughput of the PEs and the memory bandwidth of the FPGA device. Designing dataflow systems 

that accomplish CNN processing while preserving processing performance is of utmost importance. There is a 

hierarchical structure to the data transportation cost that takes into account power consumption and data access 

rate. At each level, various dataflow designs take use of distinct kinds of data movement. Given that convolution 

operations comprise more than 90% of CNN operations and overall execution time, this study employs dataflow 

architecture to minimise superfluous data movement in convolution layers. The main limitations of applications 

are power consumption, latency, and resource utilisation. 

Optimizing Convolution Operation 

CNN brings solutions for a wide range of tasks in smart devices despite of their lowarea footprint and energy 

budget. Superior accuracy of CNN comes at the cost of increased computational complexity. Increase in the 

number of network layers and kernels enhance the performance of the CNN model that demands high design 

space and power consumption. In real-time embedded systems, power efficiency and resource utilization are the 

primary design concern while deploying the computational model of the CNN as an execution model on FPGA. 

As discussed above, the computational workload of a CNN inference basically comes from convolution layer 

that involves an intensive use of MAC operations. As a consequence, these high number of MAC computations 

create challenges for low-energy embedded devices. Increasing the computational power of PEs can alleviate 

this problems, however, use of resource constraint embedded devices make it infeasible. Hence, the feasible 

solution to this challenge is to take advantage of the approximate computing (AC) that accelerates the execution 

of CNN on FPGAs. This approach employs optimization strategies in different levels so that the state-of-the-art 

high accuracy CNNs can easily be deployed on resource constraint FPGA devices. AC obtains significant gains 
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in computational throughput and power efficiency by maintaining an acceptable CNN accuracy. In this thesis, 

overall CNN’s computational cost is reduced by using approximation in fixed point arithmetic and 

implementing approximate adders and multipliers without affecting their predictive performance. 

Machine Learning 

Machine learning (ML) is a statistical approach that enables computer systems to learn—that is, to become 

better at using data—over time, independently of how they were originally constructed. A mountain of data, 

both organised and unstructured, is necessary for machine learning algorithms to acquire knowledge and make 

predictions. The original coiner of the phrase "machine learning" was Arthur Samuel in 1959. The study and 

development of algorithms with the ability to learn from data and generate predictions is the focus of machine 

learning (ML), a branch of AI. The areas of artificial intelligence that gave rise to it include pattern recognition 

and computational learning theory. Among the many conceivable uses for ML is the development of high-

performance algorithms, which would be very difficult, if not impossible, to do without it. Some of the many 

uses for ML include detection in computer vision, object categorization, email and network filtering, and 

generalised classification. ML has many commonalities with computational statistics, another field that employs 

computers to make predictions, and the two fields often intersect. The area receives techniques, theory, and 

application fields from mathematical optimisation, which has significant linkages to it. Furthermore, ML is used 

in conjunction with data mining, a subfield of unsupervised learning that places greater emphasis on exploratory 

data analysis. ML may also be trained under supervision to identify significant abnormalities after learning and 

establishing baseline behaviour for different tasks and entities. In data analytics, ML is a way to handle 

complicated algorithms and models that aim at making predictions. A large number of commercial applications 

that made use of ML principles were predictive analytics. By learning from patterns and correlations in the data 

over time, these analytical models enable researchers and analysts to discover previously unknown information 

and structures, as well as make choices with a high degree of confidence. The availability of more data and 

powerful computers has led to the rise in popularity of Artificial Neural Networks (ANNs), a subset of machine 

learning algorithms. 

Convolution Neural Network 

CNN is a popular feed-forward deep ANN for image analysis because it mimics human perception. The need for 

pre-processing the input data is minimised when CNNs use different multi-layer perceptron techniques. 

Convolutional neural networks (CNNs) are very popular for high-dimensional data, such as photos and movies. 

CNNs are composed of neurons with learnable biases and weights. Convolutional neural networks (CNNs) 

function similarly to regular neural networks. There are inputs to each neuron, and each neuron does a dot 

product and, if desired, a non-linearity follows. From the original picture pixels at one end of the network to the 

class scores at the other, the whole thing is still an expression of a single differentiable scoring function. Also, in 

the last (fully-connected) layer of a CNN, you'll find a loss function, such SVM or Softmax. A CNN layer 

differs significantly from other types of neural networks in that, rather of using standard matrix multiplication, 

each unit is a two- or high-dimensional filter that is convolved with the layer's input. When learning patterns 

from high-dimensional input material, like pictures or films, this is crucial. Voice recognition, picture 

categorization, and segmentation are just a few of the many current applications of convolutional neural 

networks (CNNs). The lowest mistake rate recorded on the dataset was 0.23%, which they attained on the digit 

recognition test. Their use extends to the identification and categorization of objects as well. One example is the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC), which uses hundreds of item classes and 

millions of photos to serve as a benchmark for object identification and classification. Almost single top-

performing team in the ILSVRC-2014 relied on CNN. The winning model, GoogLeNet, used a CNN with 

almost 30 layers and got results that are almost human-level accurate. Further applications of CNNs include face 

detection and video analysis. Through a hierarchical feature learning procedure, CNNs may autonomously 

identify critical object attributes. There is a need for specialised and customised hardware support methods 

because to the high processing demands of CNNs in all of the aforementioned applications. 

Hardware Accelerator 
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Utilising MAC operations extensively in the convolution and FC layers constitutes a significant portion of a 

CNN's computing effort. Efficient execution of CNN layers by avoiding external memory accesses and utilising 

parallelism requires a specific hardware architecture for CNN workloads. Temporal and spatial architectures are 

two major types of hardware that speed up convolutional neural network computation. Processors and graphics 

processing units (GPUs) are examples of temporal hardware design, which allows for a great deal of 

programmability. The memory and centralised control mechanism are shared by all processor elements (PE) in a 

temporal architecture. When applied to regular parallelism patterns, this design's highly parallel structure 

provides efficient processing. Alternatively, low-power spatial designs enable fine-grain parallelism on 

asymmetrical patterns. Each physical element (PE) in the geographical framework has its own memory as well 

as a common global memory. Reducing access to external memory is achieved only by global memory 

communicating with external memory. Inside the on-chip networks (NoC), PEs are linked to one another. Figure 

1 shows the fundamental spatial and temporal topologies of the convolutional neural network (CNN) computing 

paradigm. when GPU-based accelerators do a better job of processing data when training NNs, they aren't the 

best choice for convolutional neural network (CNN) inference in embedded or mobile systems that are 

concerned about power consumption. NN Accelerators built on the PIM Memory Cube (HMC) technique. These 

designs take digital data, transform it into analogue form, and then use crossbar memory to calculate matrix 

multiplication. In order to do calculations that decrease data transport costs, PIM employs processing logics 

inside memory. While memory technology grows exponentially, the current PIM-based accelerators rely on 

analogue, digital, and mixed-signal circuits, which use up most of the chip power. Also, CNN models with FP 

precision provide excellent classification accuracy, whereas PIM designs are limited to computations with fixed-

point precision. It is common practice to use ASIC and FPGA devices when deploying CNN designs as spatial 

hardware. The main drawbacks of ASIC design are its high manufacturing cost and lack of reconfigurability. 

The goal of this effort is to develop CNN accelerator designs that are both space and power efficient. Platforms 

that are well-suited for cutting-edge CNN models include FPGAs because to their hardware flexibility and 

exceptional energy efficiency. Processing performance is increased and memory accesses to external devices are 

reduced because to FPGA's in-situ on-chip memories and high-density Digital Signal Processing (DSP) blocks. 

The functional requirements of CNN applications may be re-programmed even after manufacture using FPGA. 

In order to reduce execution latency, the spatial design of an FPGA may unroll a loop execution and make 

advantage of extra hardware resources. The FPGA's pipeline technique reorganises the distribution of computer 

resources to speed up processing without adding unnecessary space overhead. Therefore, when space and power 

are limited, FPGA is seen as a practical method for convolutional neural network (CNN) acceleration in design.  

The restricted processing power and memory resources of FPGA devices make it difficult to deploy deep CNN 

models for use in embedded applications and High-Performance Computing (HPC) data centres. For this reason, 

achieving maximum energy efficiency in the design of hardware accelerators is of paramount importance. To 

speed up the execution of CNN, there are a number of hardware designs in the literature that are based on field-

programmable gate arrays (FPGAs). 

Figure 1 shows the optimisation methods that deal with the problems of implementing CNNs on FPGAs. To 

speed up CNN on FPGAs, you may use one or all three of these optimisations. To minimise the amount of 

mathematical operations, computational optimisation makes use of approximation computing and algorithmic 

optimisation using feature maps and kernels. To make the convolution and FC layers' matrix multiplication 

faster, algorithmic optimisation applies computational transformations to the input data, such as the Generalised 

Envelope Multiplications (GEMMs), Winograd Transform, and Fast Fourier Transform (FFT). To map CNNs 

on FPGAs effectively, we need to reduce the amount of multiplication operations. To boost the processing speed 

and energy efficiency of the CNN's accelerator, the approximation computing technique trades low accuracy for 

increased efficiency. While running CNN layers, approximate computation decreases the accuracy of the 

operand and the amount of mathematical operations needed to do so without impacting the prediction 

performance. Quantization, pruning, and the use of approximate hardware (adders and multipliers) are just a few 

examples of how computational approximation may be useful in accelerator design. The processing parallelism 

in FPGA-based CNN accelerators is used via data-path optimisation. Architectural designs for convolutional 

neural network (CNN) mapping on field-programmable gate arrays (FPGAs) are optimised using loop 

optimisation methods such as loop unrolling, loop tiling, or loop exchange to maximise computational 

performance and external bandwidth efficiency. Furthermore, a plethora of data-flow designs, including 
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Synchronous Dataflow (SDF) and Dataflow Process Network (DPN), enhance the hardware mapping of deep 

convolutional neural network (CNN) models on FPGA devices with limited resources. Various forms of fixed-

point and floating-point arithmetic are used in the construction of accelerator designs for FPGA 

implementations by means of the High Level Synthesis (HLS) tool and the Register-Transfer Level (RTL) 

compiler. FPGA devices may be effectively used to map convolutional neural networks (CNNs), thanks to 

architectural-level fine-grain optimisation in addition to algorithmic optimisation. 

 

Figure 1: Computing architectures for CNN. 

In this work, data path optimization and approximate computing are jointly implemented in the accelerator 

architecture for additive hardware performance gains. Also, Vivado HLS and Synopsys tools are used to port 

CNN inference onto FPGAs. HLS tool generates a synthesis report mentioning the performance metrics of the 

synthesized hardware design. The report includes mainly area, latency, loop latency, and iteration interval. Area 

refers to the number of hardware resources such as Look-Up Tables (LUT), Flip Flops (FF), Block RAMs 

(BRAMs), and DSP48s required to implement the hardware architecture. The pipeline, Array Partition, Unroll, 

and Dataflow directives are used in the proposed accelerator architectures to improve throughput and reduce 

area and latency 

Shift and Accumulate based accelerator architecture for CNN 

Multiplying and adding the overlapping values of two input pictures is the convolution operation in image 

processing. Convolution is often calculated by adding up the dot products of all the pixels in the input picture 

that have kernels applied to them across all of the dimensions. A kernel is a tiny matrix of varying sizes and 

patterns of integers that moves throughout the whole input picture. The kernel is selected according to the 

image's intended functionalities, such as blur, smooth, etc. An array of MAC processors calculates MAC 

operations. The paper explains how a 3 × 3 kernel K and an image matrix I perform a convolution operation. For 

the output picture O, the first pixel O11 is determined as 

O11 = p11 × 1 + p12 × 0 + p13 × 1 + p21 × 0 + p22 × 1 + p23 × 0 + p31 × 1 + p32 × 0 + p33 × 1. 

Hardware Accelerator Architecture for CNN based on Approximate Computing Units 

Among all the deep neural networks (DNNs), Convolutional Neural Networks (CNNs) are gaining attention and 

popularity in many computer vision (CV) applications [9]. The computationally intensive CNN has achieved 

state-of-the-art performance in image classification, face detection, and speech recognition. High computation 

complexity in CNN inference needs specific hardware to accelerate. Recent advancements in deep CNN 

architectures and dedicated hardware accelerators provide satisfying processing throughput and energy 

efficiency. Development of the real-time devices relies on high performance CNNs implemented on embedded 
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devices. The diverse shape and size of CNN architectures, along with their dedicated accelerators, create 

challenges to the deployment on embedded devices that have limited computational resources. In addition, high 

energy efficiency and low area overhead of CNN’s hardware are the primary performance metrics for real-time 

applications on embedded systems. Despite the challenges and constraints, researchers have developed many 

efficient custom hardware for deep neural networks Rapid progress in the hardware architecture of the CNN 

based inference accelerators achieved higher computing efficiency than CPUs and GPUs. However, 

optimization in the computation of CNNs and their related hardware architectures may improve the overall 

performance for embedded applications. To store and run a deeper neural network (NN), FPGA devices require 

a considerable amount of on-chip memory and computational units. Computing approximation helps to fit such 

neural models on-chip. In general, neural network accelerators focus on optimizing either the network’s 

algorithm or the hardware  architecture. The first category of accelerators treats the computational primitives of 

the network model. In contrast, the second category of accelerators optimized the data transfer and memory 

design. Both sets of accelerators have improved their performance while implementing DNNs. 

Model Number of Layers Size (M) Parameter (M) 

 Convolution FC   

AlexNet  7 3 240 64 

VGG-16  15 3 542 150 

GoogleNet  23 1 42 12.8 

ResNet-50  52 1 102 20.2 

ResNet-152  157 1 237 70.2 

Table 1: The comparison of different CNN architectures 

Traditional convolutional neural network (CNN) algorithms generate output feature maps by combining input 

feature maps with convolutional kernels. The multiply-and-accumulate (MAC) processes, which make up 99% 

of a CNN model, are housed in a sequence of convolutional and fully-connected (FC) layers. The size of the 

feature maps produced by each convolution layer is reduced by pooling layers as well. Computation in 

convolutional neural networks (CNNs) revolves on the convolution operation, which may include hundreds of 

millions of MAC operations per layer. As an added complication, convolution processing sometimes involves 

substantial data transfer between on-chip memory and MAC units. The total processing speed, energy 

efficiency, and resource utilisation of CNNs are significantly affected by the implementation of the convolution 

layers on hardware. The processing of higher-resolution, bigger input photos increases the data and computing 

demands. 

Conclusion 

In this paper, we have presented novel hardware designs aimed at achieving faster convolutional processing 

within multilayer neural networks. Leveraging principles of parallelism, pipelining, and hardware acceleration, 

our designs offer significant improvements in efficiency, throughput, and latency reduction, addressing the 

growing demand for accelerated inference tasks in deep learning applications. Through a multi-faceted 

approach, we optimized our hardware architectures to exploit both data-level and model-level parallelism 

inherent in convolutional neural networks (CNNs). By parallelizing convolution operations across input feature 

maps and adopting a pipelined architecture for continuous data flow, we effectively maximized hardware 

utilization and minimized idle cycles. Additionally, the integration of dedicated hardware accelerators tailored 

for convolution operations further accelerated processing, with specialized arithmetic units and optimized 

memory structures contributing to enhanced performance. 
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