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Abstract: - Deep learning, a branch of AI, makes use of specialised neural networks. Computational acceleration of high-performance deep 

neural network algorithms continues to necessitate efficient architecture, high memory bandwidth, parallel processing, and resources, 

despite decades of study on such algorithms. Excessive space requirements are a problem for DNN implementations caused by resource-

intensive components like activation functions (AF) and multiply-and-accumulate (MAC) units. In addition, edge-AI applications 

necessitate a densely packed, power-hungry, high-throughput DNN accelerator. If we want to build a DNN accelerator that uses little power 

and occupies little space, we need to optimise the MAC architecture, the AF, and the network complexity so that data flows efficiently. In 

addition, providing functional configurability while working with restricted chip surface is a difficulty for DNN hardware designs based on 

ASICs. This dissertation explores the efficient and low-power VLSI architecture of DNN accelerators, addressing the hardware 

implementation of DNN and targeting applications with limited resources. In order to assess MAC and non-linear AF operations, we 

investigate and enhance the CORDIC architecture. The poor throughput is a major downside of CORDIC-based architectures, even though 

they are area and power efficient. Consequently, we suggest a pipelined design for CORDIC-based MAC and AF that focuses on 

performance. Due to the increased hardware resource consumption that comes with pipeline stages, this study investigates the mutual 

exclusivity of CORDIC stages and investigates in depth the accuracy variation related to the number of stages needed to achieve high 

throughput.    
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Introduction 

Recent years have seen a meteoric rise in the popularity of artificial intelligence (AI). The advent of AI and ML 

has revolutionised contemporary society. Over the previous decade, this area has seen tremendous 

advancements. Recent developments such as autonomous cars, digital assistants, robots in manufacturing, and 

smart cities have demonstrated the feasibility of creating intelligent machines. Artificial intelligence has already 

revolutionised numerous industries, including retail, manufacturing, banking, healthcare, and journalism, and it 

is still expanding into uncharted regions. Machine learning is an AI subfield that enables computers to acquire 

new skills and knowledge without human intervention in the form of code. To create autonomous computer 

programmes that can get data and learn new things, machine learning is crucial. Machine learning, similar to the 

human brain, uses inputs like knowledge graphs or training data to comprehend domains, entities, and their 

relationships. Once entities have been established, deep learning can commence 

Inspired by the way the human brain works, deep learning is a branch of machine learning that makes use of 

massive datasets to refine its algorithms. Similarly, the Deep Learning algorithm would iteratively finish a task, 

each time tweaking it slightly to improve the outcome, similar to how humans learn from experience. "Deep 

learning" is the name we give to neural networks that include several layers for the purpose of learning. Deep 

neural networks (DNNs) are the foundation of many of the latest AI applications. The goal of deep neural 

networks (DNNs), also known as deep learning, according to computer scientist John McCarthy, is to build 

intelligent machines capable of accomplishing human-made objectives. DNN's exceptional performance is a 

result of its ability to efficiently represent the input space by extracting high-level features from raw sensory 

data following statistical training on massive amounts of data. Additionally, DNN is widely used for a variety of 

non-linear detection issues, including lane detection, pattern identification, fault detection, and industry 

monitoring [8, 9]. Nevertheless, a DNN and real-time processing are frequently necessary for these applications, 

which necessitate substantial computational capacity. As a result of deep learning, many platforms are required 

to speed up the DNN algorithm's computation, such as GPU, CPU, ASIC, or FPGA. A number of processes, 

notably Multiply-Accumulate (MAC), are supported by the general-purpose platforms used by CPU and GPU-

based DNN implementations. A major issue with CPUs and GPUs is the excessive amount of power they 

consume due to the underutilization of their resources [10]. When compared to streaming pixels and learning 

features, ASIC and FPGA devices offer quick multiplication operations with little resource utilisation and lower 

power consumption [11]. Additionally, FPGAs have a dedicated hardware architecture for MAC operation, but 

their design is tailored to DNN implementation, which allows them to achieve lower power consumption and 

high resource utilisation. The quickest and most energy-efficient hardware accelerators are those based on 

application-specific integrated circuits (ASICs). But they have limitations, such as a small inferred network size 

and an inability to re-configure neural networks with new features [12]. One 224× 224 input image requires 

15.5G MACs and 138 million weights for convolutional neural networks (CNNs) like VGG-16. However, in the 

overall computation paradigm, MAC operations account for more than 90%. Our comparison of GPU, CPU, 

FPGA, and ASIC implementations is shown here. Although it requires more time and money to create, the 

NeuroFlow chip outperforms the GPU and CPU in terms of throughput. In addition, ASICs and FPGAs use less 

power and provide better performance per watt during operations. On top of that, FPGAs are very fast and 

cheap, thus it's easy to prototype the DNN with them. Despite a drop in performance, the CPU and GPU 

drastically cut down on development time and made deploying the DNN accelerator a breeze. Hardware should 

have low power consumption and high throughput to tackle edge-AI devices. For this reason, solutions based on 

field-programmable gate arrays or application-specific integrated circuits are necessary for these devices. 

In different contexts, different kinds of activation functions are more or less useful. The multi-activation 

function's on-chip adjustable architecture, however, is not compatible with traditional architecture. Activation 

function (AF) optimisations and design strategies for a DNN architecture are explored in this chapter. Providing 

functional configurability while staying within the constraints of restricted chip size is a significant difficulty 

when designing activation functions (AF) in neural networks using ASICs. In order to fully utilise the ASIC's 

parallel processing capacity, as opposed to a general-purpose processor, an area-efficient customisable 

architecture for an AF is essential. Our proposed adaptable AF, the Coordinate Rotation Digital Computer 

(CORDIC) method, is based on the shift-and-add technique and aims to solve this problem. The suggested 

flexible activation function incorporates tan hyperbolic and sigmoid functions into its CORDIC design.  
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Computational models such as pattern recognition, prediction, and classification are well-known to use deep 

neural networks (DNNs). Computational unit, activation function (AF), mathematical precision, data formats, 

and design platform are the main components of a DNN implementation. There are three main categories into 

which hardware implementations of DNNs fall: application-specific integrated circuits (ASICs), digital signal 

processing (DSPs), and field programmable gate arrays (FPGAs). The alternatives do not compare to the 

performance and area advantages of an ASIC implementation [29]. Nevertheless, the ASIC design is immutable 

and cannot be altered to suit alternative uses. Furthermore, a big deep neural network implemented on an ASIC 

uses a lot of resources. Therefore, it is typically not done for neural networks to achieve high accuracy multiple 

activation functions. In addition, power-efficient applications require an effective design method to reduce the 

supply voltage [30, 31]. To further optimise performance, hardware implementation of a DNN might take 

advantage of the network's inherent parallelism. Various DNN-based applications have inspired the 

development of efficient VLSI designs [32], [15]. The accuracy and performance of a neural network, however, 

are heavily dependent on the precision of the data that is needed, from an application standpoint [32] [15]. In 

particular, when neural networks are implemented in hardware, increased precision typically comes at the 

expense of significant power and area overheads. The need for flexible architectures further complicates this 

trade-off. Compared to ASICs, FPGAs typically take up more space on the device, but they provide more 

customisable hardware designs [33]. Neural networks necessitate implementations of adjustable activation 

functions from a design perspective. Sigmoid, hyperbolic tangent (tanh), and exponential non-linear 

transformations are among its most appealing features [34]. Figure 1 shows the typical design of a neuron with 

several activation functions, as suggested in [35]. Among its many significant downsides are the following: 

higher data propagation time (as a result of MUX), power dissipation (static power dissipation) because of the 

unused hardware, and area overhead (path-A, path-B, and path-C) to separate activation functions. Since only 

one activation function can be enabled at a time, the separate hardware for each activation function is not the 

ideal option. To tackle this trade-off, we offer an optimised CORDIC-based architecture that allows neural 

networks to perform efficient yet adjustable computations. 

 

Figure 1: Typical design architecture of single neuron with configurable activation function 

Types of Activation Functions and Design Techniques. 

The non-linear transformation function of AF takes MAC output as input in DNN. More hardware resources are 

required for AF implementation because of its nonlinear nature, and resource utilisation grows exponentially 

with increasing precision. The PWL implementation also necessitates extra memory components for the AF 

with 16-bit and better precision. Since the number of memory components needed grows exponentially with 

increasing precision, hardware utilisation becomes prohibitively expensive. The DNN application makes 

advantage of many non-linear transformations. 

There are various types of activation functions, including linear, sigmoid, tanth, regression linear units, 

parameterized regression linear units, exponential, linear unit, swish, and softmax [36]. In order to back-

propagate from the output layer weights to the input layer weights, AF needs to be differentiable in order to 

calculate gradients. The ideal characteristics of an activation function are differentiability, non-linearity, and 

tractability. When it comes to activation functions, you can choose between linear and nonlinear varieties. A 

non-linear activation function should be chosen. Nonlinear activation functions like Sigmoid, Tanh, ReLU, and 

Exponential are more commonly utilised. Nevertheless, several nonlinear functions are utilised depending on the 
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application; they include Leaky ReLU, SeLU, Softplus, and others. Several nonlinear activation functions with 

customisable architectures were covered, including sigmoid, tanh, and ReLU. In this chapter, we have created a 

flexible architecture based on the Co-ordinate Rotation Digital Computer (CORDIC) algorithm. It activates 

sigmoid, tanh, and ReLU using the same hardware. 

Exploration of hardware implementation of activation functions 

Popular AFs like sigmoid, Tanh, and ReLU are covered and explained in detail here. All of these functions are 

variants on the same basic concept, but their emphasis on specific mathematical processes makes them distinct. 

When it comes to local storage of AF parameters, it can make use of various on-chip memory resources as 

Lookup Tables (LUTs), Block RAM (BRAM), Distributed FPGA memory, or external DRAM. The following is 

a synopsis of a few of the implementation strategies:  

1. LUTs based implementation by storing function 

2. LUTs based implementation by storing parameters  

3. Approximation in calculation into base-2 exploration  

4. Coordinate Rotation Digital Computer (CORDIC) algorithm   

5. Combinational logic based implementation  The non-linear and continuous character of the AF makes a 

correct computation utilising hardware implementation problematic. Consequently, these functions are 

implemented using the Piece-Wise Linear (PWL) approach. As the number of quantization states grows 

exponentially with increasing precision (8-bit, 12-bit, 16-bit), the number of memory items required also grows 

exponentially. In [4], we can see the error contribution as a function of the various precisions of PWL activation 

functions. Even with combinational logic, non-linear AFs like sigmoid/tanh cannot be approximated efficiently 

[10]. In contrast to traditional ROM-based methods, however, utilising combinational logic alone results in 

reduced latency with minimal space overhead. To delve further into sigmoid function evaluation, an 

approximation approach for tanh AF implementation has been suggested in [4] employing combinational logic 

design.  

Enhancing Performance of AF using Pipelining 

The hyperbolic rotation mode of the CORDIC algorithm has been used in the hardware designs to implement 

adjustable activation functions. Because the CORDIC algorithm is inherently iterative, these systems have lower 

power and area overheads than traditional memory-based devices, but they have low throughput. In order to 

implement neural network applications with adjustable non-linear activation functions at high throughput, this 

section presents an improved CORDIC-based hardware solution that handles this trade-off. In brief, the 

following are the main contributions of the work: 

This paper presents a Pareto analysis of the relationship between accuracy and the two independent CORDIC 

phases. For non-linear activation functions, this paper sheds light on how to determine the optimal number of 

pipeline stages to use in a CORDIC-based architecture, taking into account the space and power requirements of 

each step. According to our research, increasing throughput without decreasing accuracy is possible with a four-

stage pipeline.  

• In order to examine the effects of computational approximation, which results in a decreased number of 

pipeline stages, the error cost functions for the AF model are extracted. 

 • Using the CMOS 45nm technology node and comparing it to state-of-the-art designs, we examine and talk 

about the circuit's physical properties such as area, power, and critical delay for derived Pareto points. 

Hardware Efficient and Configurable Design of Neuron using CORDIC Architecture 

Area and performance suffer as computational complexity rises in a hardware implementation of an ANN. 

Because ASIC designs are fixed, there is additional effort required to configure them for features like bit 

precision flexibility or activation function types (sigmoid, hyperbolic tangent, tanh, etc.). Power and space are 
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also used up by calculations with higher bit precision, such as 32-bit or 64-bit [5]. Quicker reaction times and 

simpler technology (bit accuracy) are therefore highly desired [6]. The classic design for ASIC-based neurons, 

as suggested in [8], has several activation functions and a multiply-accumulate unit. A multi-adder tree and 

many multipliers constitute a MAC unit. The activation function that receives the MAC unit's output is chosen 

by the multiplexer based on the application. 

An Empirical Approach to Enhance the Performance of MAC Unit using Pipelining 

A key challenge to the effective use of contemporary DNNs is the resource-intensive Multiply-Accumulate 

(MAC) unit. If we want Deep Neural Network (DNN) accelerators to operate better, we need to optimise 

computation efficiency and throughput. This project aims to create a MAC unit that is based on the CORDIC 

architecture. Low throughput is a key drawback of CORDIC-based devices, despite their size and power 

efficiency. Our performance-centric pipelined architecture for MAC solves the problem of low throughput. In 

this study, we use a Pareto analysis to look closely at the accuracy variation across various precision levels and 

the critical pipeline steps for optimum performance. 

Introduction to MAC and its Performance Enhancing Techniques. 

For calculations requiring greater bit-precision, DNN's resource-intensive MAC block becomes even more 

taxing due to its power-hungry multiplication operation. In the past, researchers have suggested effective ways 

to personalise ASIC and FPGA architectures. But there are compromises in physical performance metrics, 

throughput, and accuracy with state-of-the-art methods. Additionally, bandwidth constraint is a barrier while 

implementing the accelerator in hardware. Accordingly, in [7, 8], performance metrics for hardware-based 

acceleration with multi-bit precision (8, 16, 24, or 32 bits) have been examined. Less hardware resources were 

used by the approach of iterative computation shift-and-add based multiplication, which reduced the logic 

arithmetic complexity [6]. In [8], the CORDIC architecture is suggested as a means to efficiently develop MAC. 

Nevertheless, the throughput is reduced for the iterative CORDIC-based calculations. Additionally, in order to 

compute with n-bit accuracy, an n-bit barrel shifter and n-1 additions are needed. Presented in [75] is the 

efficient design for MAC based on Vedic multipliers, which operates at low precision. But when the algorithm's 

critical path and propagation time increase, it becomes unscalable for high-precision systems.  

In order to save resources, researchers looked at the modified booths method for multiplication in [6]. The 

physical performance metrics were examined after implementing a MAC design based on Wallace trees [7]. Its 

architecture makes use of the efficient lower-precision AND and OR planes. Nevertheless, the complexity of 

such design increases as bit accuracy increases. The use of an approximation multiplier in MAC calculation 

helps to decrease the power consumption and circuit latency on the device. Approximate computation is 

preferred by error-tolerant applications. The article [9] introduced a partial product accumulation tree that is 

roughly accurate. Additionally, the multiplier's erroneous logic compressors provide encouraging outcomes for 

hardware implementation [8]. Consequently, power and energy efficiency are both enhanced.  

Sharing weights simplifies MAC calculation and maintains a consistent storage capacity [11].Research on a 

reversible logic structure high-performance array multiplier that improves throughput performance has been 

conducted [8]. On the other hand, multi-precision signed/unsigned computing is outside the scope of current 

enhancement strategies. This study evaluates a high-performance CORDIC-based MAC unit for DNN 

accelerators, which addresses the area, power, and throughput trade-off.  

To fix the throughput problem, this workflow uses CORDIC phases. The matter is handled by assessing the 

required pipeline steps, which come with an overhead in terms of area. Since accuracy and the number of 

necessary pipeline stages are inherently incompatible, we have examined several stages of the CORDIC-based 

architecture to comprehend the trade-off between the two. In addition, we have tested the accuracy of 

performance using various levels of mathematical precision. Although there is a little loss in accuracy, 8-bit 

precision computing is much faster than 16-bit precision and uses 4 times less memory bandwidth. On top of 

that, we were able to reduce space utilisation without sacrificing throughput performance or accuracy thanks to 

the Pareto research that evaluated the necessary number of phases. Using a 45 nm technology node, the next 
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section synthesises the suggested design and describes the physical properties of the circuit, including area, 

power, and critical delay. 

Iterative Architecture Benefits and their Limitations in MAC 

Over the last ten years, researchers have concentrated on developing more efficient design strategies to enhance 

the MAC's performance. Particularly in the domain of DNNs, approximation computation approaches have been 

the main emphasis for design improvement. At a tolerable loss of accuracy, the technique enables the DNN 

accelerator to reduce its space and power consumption. Using a recursive Coordinate Rotation DIgital Computer 

(CORDIC) based architecture, researchers have examined the trade-offs between throughput, on-chip size, and 

power saving in [18]. The MAC implementation repeatedly conducts computing using the recursive CORDIC 

architecture. With its little power and space requirements, the CORDIC algorithm makes advantage of the shift-

and-add operation. Each iteration of the CORDIC architecture's calculations is mutually exclusive, thus N-bit 

precision computing takes N+1 clocks. Therefore, instead of using iterative design in CORDIC, pipeline 

architecture may improve throughput performance. Because of their high computing requirements, DNNs have a 

resource-intensive design. One of the most important benefits of parallelism is the improvement in DNN's 

throughput performance. Space and energy are limited resources in AI and mobile apps running on the edge. As 

a result, we have improved the performance of the pipeline and suggested an efficient design of MAC based on 

the CORDIC architecture. There is area overhead with MAC, even if it includes pipeline steps that increase 

throughput. In situations when an approximation may cause errors, the neural network is robust. Thus, to 

determine the most efficient number of CORDIC pipeline stages in terms of both space and power consumption, 

a performance-centric study must be conducted. We mainly looked at the accuracy performance variance across 

pipeline stages in the assessment procedure. We were able to save a lot of space by reducing the number of 

pipeline stages needed. We have completed the design of the LeNet architecture using the suggested CORDIC-

based MAC.  

Various stages of the pipeline have verified the correctness. We continued training the network until we reached 

the maximum accuracy, and when compared to the correct Tensor libraries for MNIST and CIFAR-10, we saw 

an accuracy loss of around 1%. In comparison to computations based on Xilinx MAC, fully connected NN 

applied to Vertex-7 demonstrates performance that is about two times greater. Furthermore, at the 45 nm node, 

the physical properties of the design are retrieved and compared to prior studies.  

Deep learning is a sophisticated AI approach that has been used to solve complicated issues in many different 

disciplines, including medical diagnostics, autonomous driving, picture identification, and natural language 

processing. Deep neural networks (DNNs) are the backbone of deep learning algorithms. DNNs are networks of 

artificial neurons that can learn complicated patterns and representations from input via linked layers of neurons. 

Despite DNNs' impressive performance in several domains, specialised hardware accelerators are often needed 

for their broad implementation to fulfil the rigorous computational demands of speed, power efficiency, and 

resource utilisation.  

Designing efficient hardware designs for deep learning is still a demanding job, even after decades of study and 

development in high-performance DNN accelerators. Data neural networks (DNNs) need efficient hardware 

architectures that can perform computationally demanding operations with fast throughput and low power 

consumption. These operations include multiply-and-accumulate (MAC) and non-linear activation functions 

(AF). In addition, there is a growing need for economical and versatile VLSI designs for DNN accelerators due 

to the abundance of edge-AI applications that prioritise power economy above computing resources.  

Hardware Implementation Layer-Multiplexed High-performance DNN Accelerator 

In order to apply deep neural networks (DNN) to practical issues, substantial amounts of memory bandwidth, 

processing power, and other hardware resources are required. Efficient DNN engines are necessary for the AI-

powered Internet of Things applications. As the depth of the neural network increases, so does the amount of 

hardware resources needed to construct a DNN. Our work here suggests a new architecture for the DNN engine 

that is both more economical and has better performance. A layer-multiplexed DNN accelerator has been 
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developed and deployed at the system level. Implementing the suggested pipelined MAC design overcomes the 

throughput limits that occur with the architecture's reuse of the single layer inside the DNN. 

When it comes to hardware cost, the multiply-accumulate (MAC) unit is where deep neural networks really 

shine [74]. Also, it uses well over 90% of the processing power in DNN accelerators [76]. The problem has been 

resolved by using the CORDIC method [18]. Invented in 1959 by Jack E. Volder, it is capable of doing many 

mathematical operations, including multiplication, trigonometric functions, and many more [87]. John Walter 

later in 1971 enhanced an effective algorithm for a modifiable mode of operation and its uses [8]. The hardware 

design process may make use of algorithms to simulate a neuron's mathematical processes [13]. The recursive-

CORDIC architecture has been suggested as a new and efficient neuron computational unit [18]. Though it has 

poor throughput because of its recursive design, CORDIC-based neuron architecture beats the state-of-the-art in 

area and power reports when compared to earlier work [18, 19]. Due to its reliance on the recursive technique, 

the CORDIC-based design consistently delivers subpar performance. For architectures using layer multiplexing, 

this problem will become critical. For n-bit precision computation evaluations, the conventional CORDIC 

procedure calls for n clock cycles before the final results evaluation. The most recent, cutting-edge designs have 

tackled optimisation of designs at many levels of abstraction. Prior work effectively computes the essential 

mathematical action multiplication using several methods such as Vedic multiplier, Wallace tree adder, and 

booth's algorithm. In addition, methods including computational approximation in error-resistant applications, 

bit-serial computing bit rounding using CORDIC arithmetic, and reused hardware have been used to optimise 

designs [9]. Every cutting-edge method has its own set of trade-offs when it comes to performance metrics. 

Implementations of the MAC unit in DNN that are based on the recursive CORDIC engine provide the most 

efficient use of both space and power [18]. There are several benefits to the CORDIC-based architecture. Its 

primary benefit is the drastic reduction in both space and energy consumption. Furthermore, the design's 

computational simplicity allows it to reap greater advantages at higher precision arithmetic. Recursive 

CORDIC-based MAC's numerical precision is n iteration-dependent; more iterations lead to improved accuracy 

but significantly reduce throughput (n times). Second, a barrel shifter, which is a component of the hardware 

design of the generic CORDIC architecture, has a high critical latency and additional space overhead. 

Conclusion 

This work proposes a modular VLSI architecture that would allow fast and scalable deep learning solutions for 

edge-AI applications, which is a big step forward. The key to solving social problems and driving technical 

progress via the use of artificial intelligence lies in expanding the frontiers of innovation in very large scale 

integration (VLSI) design. To further evaluate the suggested architecture's practicality and performance in real-

world settings, it would be beneficial to conduct empirical validation via hardware prototyping and real-world 

deployment in edge-AI applications. 
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