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Abstract: - Online signature verification employs a distinctive biometric trait by utilizing both static and dynamic features extracted from 2D 

signature images. A hybrid wavelet transform, denoted as HWT-1 with a size of 256, is formed through the Kronecker product of two 

orthogonal transforms, such as DCT, DHT, Haar, Hadamard, and Kekre, each with sizes 4 and 64. This HWT facilitates signal analysis at 

both global and local levels, akin to traditional wavelet transforms. Specifically, HWT-1 processes the 256 samples of online handwritten 

signatures, yielding 128 samples that constitute the feature vectors for signature verification and forgery detection. These feature vectors are 

then inputted into the Left-Right and Ergodic Hidden Markov Model (HMM) classifiers for further analysis. The HMMs are trained using 10 

randomly selected genuine signature samples and subsequently tested with the remaining 10 genuine signatures and 20 forged signatures from 

the SVC 2004 signature database, repeating this process 20 times to compute average values. Among all possible combinations of HWT-1 

utilizing DCT, DHT, Haar, Hadamard, and Kekre transforms for the Left-Right HMM model, the combination of DCT 4 and Haar 64 

demonstrates the best performance with a False Rejection Rate (FRR) and False Acceptance Rate (FAR) of 1.05% and 0.99%, respectively, 

at state 3. Similarly, considering all feasible combinations of HWT-1 for the Ergodic HMM model, the combination of DCT 4 and Kekre 64 

yields the optimal performance with an FRR and FAR of 1.24% and 1.33%, respectively, at state 3.    

Keywords: HWT, HMM, Signature Verification. 

1. Introduction 

Online handwritten signature verification stands at the forefront of authentication systems, serving as a pivotal 

mechanism for ensuring secure access to digital resources and transactions. With the transition towards electronic 

transactions and the pervasive nature of digital documentation, the need for reliable and efficient methods of 

verifying handwritten signatures in online environments has become increasingly pronounced.[1] Unlike 

traditional paper-based signatures, online handwritten signatures are captured digitally using various input devices 

such as stylus pens, touchscreens, or graphics tablets. This digital capture process enables the collection of rich 

temporal and spatial information, including stroke trajectories, pen pressure, velocity, and timing, which can be 
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leveraged for authentication purposes. [2] [3] The verification of online handwritten signatures poses unique 

challenges compared to offline counterparts. In addition to variability in writing styles, individuals' online 

signatures exhibit dynamic characteristics influenced by factors such as writing speed, pressure, and device 

properties. Furthermore, the inherent noise in digital signals and the potential for deliberate or unintentional 

alterations introduce additional complexities to the verification process. [4] Addressing these challenges requires 

the development of sophisticated algorithms and methodologies capable of accurately capturing, representing, and 

analysing the intricacies of online handwritten signatures. Researchers in this field draw upon a diverse range of 

disciplines, including signal processing, pattern recognition, machine learning, and biometrics, to design effective 

verification systems. [5] 

The ultimate goal of online handwritten signature verification is twofold: to authenticate the identity of the signer 

and to detect attempts at forgery or unauthorized access. Achieving these objectives necessitates the extraction of 

discriminative features from signature signals, the utilization of robust classification algorithms, and the 

implementation of stringent evaluation protocols. As digital transactions continue to proliferate across various 

domains, including finance, legal, and administrative sectors, the importance of reliable online handwritten 

signature verification systems cannot be overstated. These systems play a crucial role in safeguarding sensitive 

information, preventing fraud, and upholding the integrity of digital transactions in an increasingly interconnected 

world. An online signature has additional dynamic features like pressure applied by the user, the speed of writing, 

the way the pen is held etc. in addition to a 2D image. For computerizing the signature verification process, online 

signatures offer more advantages than offline signatures because of its dynamic features. [1] 

Handwritten Signature Verification can be automated for document verification in different sectors such as 

Banking, Legal Documentation etc. There are two Signature Verification methods: Offline (static) and online 

(dynamic). Offline Signature offers a 2D image of the signature whereas online Signature has the added benefit 

that it also measures the user pressure applied, writing speed, pen inclination along with the 2D signature image. 

[6] To generate training samples, the user will sign on the pressure sensitive writing pads. Each signature sample 

consists of X-coordinates: scaled cursor position along x-axis, Y-coordinates: scaling cursor position along y-axis, 

Time stamp: system time at time of signing Button status: status of button at time of signing (0 for pen up, 1 for 

pen down), Azimuth: clockwise rotation of the cursor around the z-axis, Altitude: angle upward toward positive 

z-axis, Pressure applied by hand varies during the signing process. 

Related Work 

Recent advancements in signature verification have focused on extracting discriminative features from signature 

signals. Feature extraction techniques such as Fourier Transform and Wavelet Transform have been widely 

explored to capture both spatial and temporal information. Moreover, deep learning-based approaches, including 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have shown promise in 

automatically learning hierarchical representations from raw signature data. 

Hybrid wavelet transforms (HWTs) have demonstrated superior performance in image compression compared to 

the orthogonal transforms from which they are derived. [7][8] Additionally, HWTs find applications in 

watermarking [9] and the conversion of color images to grayscale. [10] Various classifiers, including KNN, SVM, 

and NN, [11][12] have been utilized for signature verification. For instance, in one study, a KNN classifier was 

employed with HWTs of strain maps derived from online signatures as the feature vector, resulting in an Equal 

Error Rate (EER) of 30%. [13][14] In another study, an SVM classifier was used with a kernel feature extracted 

from the time series of online signatures, based on the detection of Longest Common Subsequences (LCSSs), 

yielding an EER of 6.84%. When combined with HMM, the SVM approach achieved a minimal EER of 1.96% 

and a False Rejection Rate (FRR) of 60.43%.[15] 

Dynamic signature analysis, which involves capturing temporal dynamics such as pen pressure, velocity, and 

stroke order, has emerged as a crucial aspect of online signature verification. Dynamic features offer enhanced 

discriminative power and resilience against forgery attempts. Techniques such as velocity-based segmentation, 

pressure distribution analysis, and curvature-based features have been extensively investigated for their efficacy 

in characterizing signature dynamics. [1] 
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In [16], neural network classifier used with, the approximation and details of DWT of the pen position and pen 

movement angle as feature vector, the usage of all coefficients of DWT, 100% with trained signature, 90% with 

untrained signatures and FRR of 24%. Using selected 25 coefficients of DWT, success rate was 100% with trained 

signature, 95% with untrained signatures and FAR of 8%.  

Methodology 

 
Figure 1. Proposed System 

The proposed system is shown in figure-1. We use Hybrid Wavelet Transform-1 (HWT-1) of the pressure 

component of online handwritten signature. HWT-1 is formed by combining the two orthogonal transforms using 

Kronecker product. It has the ability to analyse the signal at global as well as local level like wavelet transform. 

[7] Consider matrices X and Y as shown below.  

X =  [

𝑥11 𝑥12
𝑥21 𝑥22

… 𝑥1𝑎
… 𝑥2𝑎… …

𝑥𝑎1 𝑥𝑎2

… …
… 𝑥𝑎𝑎

]      Y =  [

𝑦11 𝑦12
𝑦21 𝑦22

… 𝑦1𝑏
… 𝑦2𝑏… …

𝑦𝑏1 𝑦𝑏2

… …
… 𝑦𝑏𝑏

] 

Hybrid wavelet transform matrix can be generated by the Kronecker product of two orthogonal transform 

matrices. Consider two orthogonal transform matrices X and Y of size a and b respectively then HWT will be of 

size N=a*b=ab. In the process, the hybrid wavelet transform matrix is constructed as follows: Initially, the first 'a' 

rows of the matrix are formed by taking the product of each element in the first row of the orthogonal transform 

matrix X with every column of the orthogonal transform matrix Y. Subsequently, for the next 'b' rows of the 

hybrid wavelet transform matrix, the second row of the orthogonal transform matrix X undergoes a shift rotation 

after being extended with zeros. Likewise, the subsequent rows of the hybrid wavelet transform matrix are 

generated in sets of 'n' rows, with each set corresponding to each of the 'a-1' rows of the orthogonal transform 

matrix X, starting from the second row and continuing to the last row. [7][18] We have used a = 4 and b = 64 and 

N = ab = 256. 

The SVC2004 database is a widely used benchmark dataset in the field of handwritten signature verification. The 

SVC2004 database consists of genuine and forged signature samples captured from 40 individuals, resulting in 

20 genuine signatures and 20 forged signatures per individual. Each signature in the SVC2004 database was 

acquired using a digitizing tablet, ensuring high-resolution images suitable for detailed analysis. The dataset 

encompasses a diverse range of signature types, including static and dynamic signatures, providing a 

comprehensive representation of real-world signing behaviors. Additionally, the SVC2004 dataset incorporates 

variations in signature quality, size, and complexity, reflecting the inherent challenges encountered in signature 

verification tasks. To facilitate rigorous evaluation and comparison of signature verification algorithms, the 

SVC2004 database is accompanied by detailed ground truth annotations, specifying the authenticity of each 

signature sample. This enables researchers to quantify the performance of their systems in terms of metrics such 

as accuracy, precision, recall, and F1-score, fostering a standardized framework for assessing algorithmic efficacy. 

Furthermore, the SVC2004 database has been extensively utilized in academic research and benchmarking 

studies, serving as a benchmark for evaluating the robustness and generalization capabilities of various signature 

verification approaches. Its widespread adoption has contributed to the advancement of signature verification 

technology and facilitated collaboration and knowledge sharing within the research community. [17][1] 

There are numerous topologies of Hidden Markov Model (HMM) such as Left to right, Ergodic and Ring etc. The 

Left to right and Ergodic models have been shown in fig 2 & 3. [21] 

Traing/Test 
Signature

Feature 
Extraction

HWT
Hidden 
Markov 
Model

Database / 
Classification

Genuine / 
Forged
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Figure 2 Left to Right HMM model 

 

Figure 3 Ergodic HMM model 

HMM is represented by the transition probability matrix (A), Observation matrix (B) and initial probability 

distribution matrix (π). We have used the Left-Right model and Ergodic models of HMM. 

Consider a system characterized by distinct states (S1, S2… SN) at any given time. In this experiment, we vary 

the number of states (N) of the model, exploring values of 2, 3, 4, and 5. It's observed that as the number of states 

increases, the time required for training also increases. Each state is associated with a fixed number of observations 

(M), with M set to 275 in this study. The output of HWT -1 yields a matrix of dimension [1 × 256]. Subsequently, 

elements 1 to 128 of this matrix, corresponding to lower frequencies, are selected to form a feature vector. These 

feature vectors are then scaled to generate M observations. [18][19][20] 

Initial Probability Distribution (π): πi = P (q1= Si); 1 ≤ i ≤ N.  We assume the model to be in state 1 at start. So 

the initial probability of the first state is 1 and the others are 0 which implies that in the beginning HMM is always 

in state 1. State transition probability (aij): aij = P (St = j / St-1= i). For the left-to-right HMM, aij=0 when i > j. 

We are using the HMM of first order so that aij=0 when j > i+1. For Ergodic HMM, aij ≠ 0 for i, j. Initially, the 

state transition matrix is generated using the random numbers such that   = 1; 1 ≤ i ≤ N where i = present state and 

j = next state. Observation probability (bj):  bj (k) = P (Vk at t / qt = Sj); 1 ≤ j ≤ N; 1 ≤ k ≤ M; the probability of 

generating a symbol Vk in state j. 

Statistics and machine learning toolbox of the MATLAB is used for implementation of HMM. Initially a randomly 

generated transition probability Matrix (A) is generated using MATLAB, Observation probability matrix (B) with 

equal probability for every symbol and initial state is assumed to be state 1. HMM is trained using 10 randomly 

chosen genuine signature samples and is used to test remaining 10 genuine signatures and 20 forged signatures of 

40 users. This process is iterated 20 times and then average values are calculated. 

2. Experimental Results 

The evaluation of the proposed system is based on two key metrics: the False Rejection Ratio (FRR) and the False 

Acceptance Ratio (FAR). FRR signifies the rate of falsely rejecting genuine signatures, while FAR indicates the 

rate of falsely accepting forged signatures. [16]  



J. Electrical Systems 20-4s (2024): 2471-2478 

 

2475 

 

The False Rejection Ratio (FRR) is determined by calculating the ratio of the number of genuine signatures 

incorrectly identified as forged to the total number of genuine signatures tested. Conversely, the False Acceptance 

Ratio (FAR) is computed as the ratio of the number of forged signatures incorrectly identified as genuine to the 

total number of forged signatures tested. These evaluations are conducted across 40 users, after which the average 

FRR and FAR are computed. 

The proposed system is evaluated on the basis of False Rejection Ratio (FRR) and False Acceptance Ratio (FAR). 

FRR refers to false rejection of genuine signature and FAR refers to false acceptance of forged signature. 

Performance analysis for various combinations of HWT-1 for Left-Right model are shown in the table below. 

Table 1. FRR-FAR for Left- Right Model 

NAME 
State 2 State 3 State 4 State 5 

FRR FAR FRR FAR FRR FAR FRR FAR 

Haar 4 DCT 64 13.76 6.46 10.42 4.89 12.55 6.53 13.66 8.82 

Haar 4 DHT 64 2.31 9.44 1.16 14.96 2.03 10.70 14.78 15.04 

Haar 4 Hadamard 64 1.79 12.22 5.31 9.44 12.54 10.65 15.62 6.22 

Haar 4 Kekre 64 14.86 11.79 11.24 12.77 10.41 1.88 5.13 14.71 

Haar 256 8.33 13.89 7.60 15.09 12.87 6.44 3.38 12.46 

DHT 4 DCT 64 12.81 10.74 1.85 12.35 2.74 9.89 15.80 13.59 

DHT 4 Haar 64 6.51 1.98 12.80 14.70 14.32 10.77 15.69 10.84 

DHT 4 Hadamard 64 7.10 2.62 13.06 3.23 1.01 3.47 6.51 5.88 

DHT 4 Kekre 64 13.48 4.20 10.21 3.53 3.37 1.18 1.67 9.97 

DHT 256 5.01 13.63 0.74 3.18 7.26 8.53 6.55 12.44 

DCT 4 DHT 64 10.99 8.10 7.90 5.17 6.84 0.49 8.18 9.68 

DCT 4 Haar 64 10.74 5.69 2.05 0.99 14.86 4.59 6.01 5.31 

DCT 4 Hadamard 64 6.53 0.41 3.06 8.08 0.59 2.39 3.17 8.96 

DCT 4 Kekre 64 2.95 7.26 2.19 3.43 5.69 12.38 9.53 10.71 

DCT 256 0.81 7.81 3.67 3.44 7.47 4.37 8.30 4.44 

Hadamard 4 DCT 64 5.42 6.39 13.31 11.60 6.11 2.36 2.69 6.61 

Hadamard 4 DHT 64 11.32 7.70 11.96 0.10 12.21 15.18 7.71 8.55 

Hadamard 4 Haar 64 12.94 4.50 8.08 3.27 11.43 1.08 0.51 3.96 

Hadamard 4 Kekre 64 15.98 6.36 12.00 3.01 3.85 10.43 4.61 11.59 

Hadamard 256 10.78 15.26 4.31 11.61 13.47 6.23 12.33 4.99 

Kekre 4 DCT 64 13.55 7.31 5.42 9.65 4.62 6.18 4.85 8.18 
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Kekre 4 DHT 64 6.20 8.70 5.27 15.41 11.62 1.16 3.34 3.98 

Kekre 4 Haar 64 0.40 12.92 3.16 2.96 7.16 3.55 10.09 14.64 

Kekre 4 Hadamard 64 12.59 14.42 11.00 9.83 6.49 2.15 14.25 2.26 

Kekre 256 15.55 9.94 9.38 0.12 11.90 11.16 13.88 6.91 

Performance analysis for various combinations of HWT-1 for Ergodic model are shown in the table below. 

Table 1. FRR-FAR for Ergodic Model 

NAME 
State 2 State 3 State 4 State 5 

FRR FAR FRR FAR FRR FAR FRR FAR 

Haar 4 DCT 64 0.13 18.04 5.52 8.12 7.77 0.89 16.82 18.18 

Haar 4 DHT 64 20.57 9.93 15.76 6.65 5.18 13.41 4.53 7.92 

Haar 4 Hadamard 64 11.82 1.69 20.42 14.77 5.78 1.73 17.61 6.60 

Haar 4 Kekre 64 20.43 3.74 12.71 3.56 2.16 9.56 7.31 9.73 

Haar 256 10.24 2.60 1.43 19.09 7.42 10.93 19.07 6.36 

DHT 4 DCT 64 9.01 18.54 3.47 10.48 14.87 12.75 16.45 1.52 

DHT 4 Haar 64 13.11 7.72 17.70 7.03 8.84 11.51 19.30 19.12 

DHT 4 Hadamard 64 0.50 9.12 2.70 17.18 15.54 12.53 3.08 5.55 

DHT 4 Kekre 64 5.34 3.37 12.49 13.85 15.98 19.56 7.99 17.34 

DHT 256 3.94 14.34 6.12 19.12 11.87 3.02 4.69 3.61 

DCT 4 DHT 64 12.22 4.99 2.30 1.57 0.80 17.84 19.18 18.67 

DCT 4 Haar 64 15.76 15.02 17.03 2.17 3.40 17.93 17.71 3.43 

DCT 4 Hadamard 64 1.95 12.30 20.91 9.03 15.48 13.14 9.50 15.80 

DCT 4 Kekre 64 20.38 14.89 1.24 1.33 3.32 12.37 7.73 7.88 

DCT 256 1.69 19.49 15.25 5.20 5.00 14.41 14.14 6.60 

Hadamard 4 DCT 64 8.67 2.92 4.30 17.85 19.42 10.36 13.26 19.87 

Hadamard 4 DHT 64 8.49 8.87 19.35 18.65 19.46 16.44 20.25 12.37 

Hadamard 4 Haar 64 18.49 2.39 8.75 2.84 1.54 20.38 15.98 15.52 

Hadamard 4 Kekre 64 2.32 3.83 9.28 18.90 5.82 1.90 18.78 17.06 

Hadamard 256 3.92 18.65 7.65 12.42 13.84 5.67 8.25 14.34 

Kekre 4 DCT 64 19.28 17.47 7.14 5.06 16.23 4.04 6.77 17.75 

Kekre 4 DHT 64 5.11 13.74 12.48 2.14 12.29 12.57 4.61 8.22 

Kekre 4 Haar 64 17.18 6.62 5.96 12.65 0.35 18.13 19.61 17.11 

Kekre 4 Hadamard 64 1.45 6.45 10.37 15.52 2.97 2.90 15.01 14.35 

Kekre 256 0.29 3.82 9.78 2.86 4.42 11.28 1.09 3.95 

 

3. Discussion 

We have kept the number of training samples same, as 10 and number of symbols to be 275, for all trials.  

For Left – Right model of HMM, for best FRR- FAR we have following results.  

Examining different combinations of Haar Transform within HWT-1, it was found that Haar 4 DHT 64 achieved 

the most favorable performance with an FRR of 2.31% and a FAR of 9.44% for state 2. Similarly, among various 

DHT Transform combinations, DHT 256 exhibited the best performance, yielding an FRR of 0.74% and a FAR 

of 3.18% for state 3. In the case of DCT Transform combinations, DCT 4 Haar 64 demonstrated superior 

performance, achieving an FRR of 1.05% and a FAR of 0.99% for state 3. Furthermore, among Hadamard 

Transform combinations, Hadamard 4 Haar 64 showed the most promising performance, with an FRR of 0.51% 
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and a FAR of 3.96% for state 5. Lastly, considering various Kekre Transform combinations, Kekre 4 HAAR 64 

offered the best performance with an FRR of 3.16% and a FAR of 2.96% for state 3. 

For given state and Left – Right model of HMM, best FRR- FAR are as follows.  

In the evaluation across different states, it was found that for state 2, DCT 4 Hadamard 64 demonstrated the 

optimal performance, achieving an FRR of 6.53% and a FAR of 0.41%. Meanwhile, for state 3, DCT 4 Haar 64 

showed the best performance with an FRR of 1.05% and a FAR of 0.99%. In the case of state 4, DCT 4 Hadamard 

64 exhibited superior performance, yielding an FRR of 0.59% and a FAR of 2.39%. Lastly, for state 5, Hadamard 

4 Haar 64 displayed the most promising performance, with an FRR of 0.51% and a FAR of 3.96% 

Considering all the possible combination of HWT-1 for DCT, DHT, Haar, Hadamard and Kekre transform for 

Left Right HMM model, DCT 4 Haar 64 offers best performance of FRR, FAR of 1.05%, 0.99% respectively for 

state 3. 

For Ergodic model of HMM, for best FRR- FAR we have following results.  

Exploring different combinations of Haar Transform within HWT-1, it was found that Haar 4 DCT 64 achieved 

the top performance, with an FRR of 7.77% and a FAR of 0.89% for state 4. Among various DHT Transform 

combinations, DHT 4 Kekre 64 exhibited the best performance, yielding an FRR of 5.34% and a FAR of 3.37% 

for state 2. In terms of DCT Transform combinations, DCT 4 Kekre 64 demonstrated superior performance, 

achieving an FRR of 1.24% and a FAR of 1.33% for state 3. When considering various Hadamard Transform 

combinations, Hadamard 4 Kekre 64 showed the most promising performance, with an FRR of 2.32% and a FAR 

of 3.83% for state 2. Lastly, among various Kekre Transform combinations, Kekre 256 offered the best 

performance, with an FRR of 0.29% and a FAR of 3.82% for state 2 

For given state and Ergodic model of HMM, best FRR- FAR are as follows.  

In the assessment across different states, it was determined that for state 2, Kekre 256 exhibited the optimal 

performance, with an FRR of 0.29% and a FAR of 3.82%. Meanwhile, for state 3, DCT 4 Kekre 64 showed the 

best performance, achieving an FRR of 1.24% and a FAR of 1.33%. In the case of state 4, Kekre 4 Hadamard 64 

demonstrated superior performance, yielding an FRR of 2.97% and a FAR of 2.90%. Lastly, for state 5, Kekre 

256 displayed the most promising performance, with an FRR of 1.09% and a FAR of 3.95%. 

Considering all the possible combination of HWT-1 for DCT, DHT, Haar, Hadamard and Kekre transform for 

Ergodic HMM model, DCT 4 Kekre 64, offers best performance of FRR, FAR of 1.24%, 1.33% respectively for 

state 3. 

Conclusion 

In the proposed approach, HWT-1 combined with an HMM classifier was utilized for the verification of 

handwritten online signatures and the detection of forgery within the online handwritten signatures in the SVC 

2004 database. After exploring various combinations of HWT-1 with transforms such as DCT, DHT, Haar, 

Hadamard, and Kekre for both Left Right HMM and Ergodic HMM models, it was found that DCT 4 Haar 64 

exhibited the most favorable performance, achieving an FRR of 1.05% and a FAR of 0.99% for state 3 in the Left 

Right HMM model. Similarly, in the Ergodic HMM model, the combination of DCT 4 Kekre 64 demonstrated 

the best performance, yielding an FRR of 1.24% and a FAR of 1.33% for state 3. These results indicate that the 

combinations involving HWT-1 outperform their respective orthogonal transforms. Furthermore, it was observed 

that the combinations of HWT-1 within the Left Right HMM model generally outperformed those within the 

Ergodic HMM model. Consequently, it can be concluded that employing HWT-1 with HMM constitutes a viable 

method for extracting feature vectors in online signature-based biometric systems, specifically for the verification 

of handwritten online signatures and the detection of forgery 
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