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Abstract: - Sensor devices for data sensing (referred to as DSDs) are used in use cases such as border control and vehicle tracking. The 

architecture of the Data Sensing Device Network (DSDN) is established by integrating numerous DSDs across a given region, forming 

multiple groups. Within each group, a specific DSD is designated to facilitate communication between independent groups. The multi attribute 

values are captured and these attribute values effect the selection of head DSDs. For each of DSD this value ranges between 0.1 to 1. The 

DSD which has the highest value of range will be treated as Group Head in LEACH. The attributes are namely distance, battery level for each 

DSD. From the source DSD to destination DSD the link formation will happen end to end by making use of DSDs and base station, generally 

the end-to-end link communication has larger hops. This will have a ripple effect on battery level for DSDs and can cause reduced lifetime. 

The Energy based LEACH is modified on top of LEACH by computing the battery level for DSDs and picking DSD with highest battery 

level. The Energy based LEACH will have two DSDs in each group acting like head DSDs. Machine Learning Data Sensing Device Network 

(ML-DSDN) is proposed which will first create group DSDNs based on k means machine learning algorithm. ML-DSDN will find the head 

group DSD based on combination of random forest and SVM algorithm with set theory. The comparison is done of ML-DSDN with respect 

to ELEACH and LEACH method and it is proved that ML-DSDN performs better with respect to delay, link count, energy consumption, 

alive DSD count, dead DSD count, lifetime ratio, routing overhead. 

Keywords: ELEACH, LEACH, Machine Learning Data Sensing Device Network (ML-DSDN), of Quality of Service (QoS). 

 

I. INTRODUCTION 

The study presents a novel Hybrid protocol tailored for Wireless Sensor Networks (DSDN), which builds upon 

the LEACH protocol through the integration of Machine Learning techniques. This protocol prioritizes factors 

such as traffic patterns, energy levels, and distances within the network to enhance its overall performance. 

Initially, the protocol employs the K-medoid algorithm for clustering, a method recognized for its effectiveness in 

forming clusters based on distances between data points. By considering various parameters including distance, 

traffic load, and energy levels, the protocol intelligently selects cluster head candidates. Furthermore, in the re-

clustering phase based on machine learning technique the cluster head is elected, is utilized.  A significant 

development has occurred in DSDN with the rise of the Internet of Things (IoT). The fundamental goal of IoT is 

to enable the transfer of data collected from DSDN networks to distant locations (referred to as sinks) using 

different wireless technologies, all while minimizing delays and conserving energy. The time required to collect 

and process data at the DSD level is critical in communication latency, a key measure of Quality of Service (QoS). 

Latency includes several processes such as data collection, processing, transmission across multiple hops, and 

ultimately reaching the sink DSD. Many protocols have been created to assess latency in DSDNs. Energy 

consumption is another important metric for DSDN QoS. Various energy-efficient routing protocols have been 

developed specifically for DSDNs. In DSDNs, each DSD is initially endowed with a certain amount of energy, 

which is expended during activities such as cluster creation, sensing, processing, data transmission, reception, and 

store-and-forward operations. The proposed work aims to optimize communication latency and energy 

consumption across the entire network. Communication within the network adheres to a network model where 

each layer plays a vital role and exchanges data with its adjacent layers. Collaborative operation between layers, 

known as cross-layer optimization, enhances overall performance. 
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The suggested protocol utilizes a cross-layer approach where the Network, Media Access Control (MAC), and 

Physical layers work together to achieve energy efficiency, reduce the number of inactive nodes, minimize latency, 

and maximize the number of operational nodes. Extending the Low Energy Adaptive Clustering Hierarchy 

(LEACH) protocol with additional functionalities, the proposed protocol integrates probabilistic, distance-based, 

and energy-aware criteria for selecting DSDN heads. Each chosen DSDN head takes on the responsibilities of 

sensing its own data, collecting data from other DSDN nodes, and transmitting processed data to the next DSD, 

all with the goal of accelerating data delivery to the sink while conserving energy. The protocol's intelligent cross-

layer routing mechanism utilizes a sequence of DSDN heads to relay processed data to the remote sink. The 

process of selecting DSDN heads, gathering and processing data, and optimizing the transmission path involves 

collaborative efforts across the Network layer, MAC layer, and Physical layer, showcasing the comprehensive 

cross-layer functionality of the protocol. The paper is structured as follows: it begins with a survey of various 

existing methods, followed by a detailed explanation of the proposed method. This explanation covers DSDN 

formation, cluster formation, DSDN head selection, path establishment, data delivery process, and data 

aggregation. 

II. BACKGROUND 

Many contemporary applications involve the continuous flow of data, commonly referred to as data streams. One 

prominent domain reliant on data streams is the realm of DSDN applications. Given the limited lifespan of sensors, 

there exists a pressing need to devise algorithms for aggregating sensor data within the DSDN domain. Introducing 

W-LEACH, an innovative data-stream aggregation algorithm tailored for DSDNs, which builds upon the LEACH 

algorithm proposed by Heinzelman et al. W-LEACH exhibits versatility in handling both non-uniform and 

uniform networks without compromising network longevity. In fact, W-LEACH enhances the average sensor 

lifespan, ensuring sustained network performance. DSDNs have gattered lot of attention within the research 

community, catalysing a transformative shift in technology with immense potential to enhance numerous existing 

applications. DSDNs find relevance across diverse domains such as habitat monitoring, building surveillance, 

forest surveillance, and earthquake observation, among others. While these applications traditionally have focused 

on environmental monitoring, they now play pivotal roles in fields such as biological science, biomedical 

engineering, healthcare, and vehicle tracking. Sensors deployed in these applications are often dispersed remotely 

and operate autonomously. However, DSDNs encounter several constraints, including limited energy resources, 

processing capabilities, and communication range [2] – [5]. In DSDN network, DSDs are outfitted with small-

scale devices designed to detect various phenomena in their surroundings. These DSDs possess the capability to 

sense, process, and transmit data or information. These devices have the capability to communicate with 

neighbouring DSDs and transmit information to the base station. This communication can occur either directly or 

through intermediate relay DSDs [6]. A significant obstacle in DSDN applications revolves around minimizing 

energy consumption and extending the network's lifespan. Efforts are directed towards reducing energy usage 

among end DSDs or sensor DSDs to prolong the overall network lifespan. This entails minimizing processing 

tasks and communication overhead associated with each sensor DSD within the DSDN [7]. 

LEACH (Low Energy Adaptive Clustering Hierarchy) functions as a hierarchical protocol designed for routing 

data within group-based DSDNs. It offers several benefits including self-organization and adaptability. LEACH 

operates in rounds, each comprising two stages: group setup and steady-state. During the steady-state phase, a 

group of DSDs operates with the objective of conserving energy and minimizing unnecessary energy 

consumption. However, it's worth noting that the steady-state phase is typically shorter in duration compared to 

the group setup phase [8]. Energy efficiency stands as a critical concern in DSDNs due to the finite battery power 

available to sensor DSDs. This study introduces a novel energy-efficient routing protocol, termed ML-EERP, 

which leverages machine learning techniques and incorporates traffic awareness. ML-EERP begins with initial 

clustering facilitated by the K-medoid algorithm and subsequently employs machine learning for cluster head 

selection, considering factors like distance, traffic load, and energy levels. The protocol's experimental assessment 

primarily examines the efficacy of selecting optimal cluster head candidates and their impact on energy efficiency. 

Through comparative analysis with the conventional LEACH protocol, the study evaluates  
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The performance of ML-EERP was evaluated based on network lifetime, throughput, packet delivery ratio, and 

energy consumption. Experimental results demonstrate substantial improvements in energy efficiency compared 

to LEACH, highlighting the effectiveness of using machine learning for selecting group heads and enhancing 

overall network performance[9]. Lizhi Cao and Ying Chen have proposed an energy-balanced unequal group 

algorithm designed specifically for DSDNs known as Detection Sensor Devices (DSDs), aiming to address the 

challenges posed by the random distribution of DSDs. Drawing inspiration from the ICLA protocol and integrating 

learning automata (LA), this algorithm takes into account DSD density to achieve energy balance throughout the 

DSDN. The proposed approach incorporates criteria such as residual energy and DSD density in the process of 

selecting group heads, leveraging learning automata for intelligent decision-making. By considering the distance 

between group heads and the base station, along with DSD density, the algorithm forms unequal groups to 

effectively distribute the energy load across the DSDN. Furthermore, it utilizes an evaluation function to identify 

optimal relay group heads and establish multi-hop routing, thus achieving a balance between group head energy, 

DSD density within groups, and distances to the base station. Through these strategies, the algorithm aims to 

optimize group head selection and ensure a balanced distribution of energy load among all DSDs within the DSDN 

[10]. 

Mobile Ad hoc Networks (MANETs) have become a significant technology in wireless communication, 

offering advantages such as mobility support, scalability, and DSDN extension without reliance on fixed 

infrastructure. However, wireless connectivity introduces several communication challenges, including 

connection lifespan, packet routing, information delay, and ensuring security and trustworthiness of data sources 

and receivers. The traditional flat topology used in MANETs encounters difficulties in scaling with the growing 

number of mobile devices. To address this, hierarchical topologies like groups have been proposed to tackle 

scalability issues. groups of mobile devices resolves key problems including DSDN expansion, confining 

communication within clusters to maintain neighbor group unawareness, and simplifying routing maintenance. 

groups involves two primary processes: group formation and group maintenance. The author discusses weighted 

groups, a scheme that imposes constraints on fixed weights (Degree Difference Nv, Sum of Distances Dv, Mobility 

Mv, and Power Pv). These weights are crucial for selecting stable group heads and supporting the dynamics of 

mobile devices. The algorithm focuses on selecting the mobile device with the minimum weight to serve as the 

group head, a critical task in both group formation and maintenance phases. [11]. DSDN is a system created to 

monitor its surroundings, process collected data, and enable communication among its sensor devices. These 

activities require energy, usually provided by batteries, to operate effectively in real-time. Many research efforts 

have investigated ways to improve power efficiency within DSDNs. This study aims to develop an adaptive 

framework that utilizes machine learning techniques within DSDNs. The research evaluates how integrating 

machine learning methods into DSDNs can impact energy efficiency [12]. The selection of group heads is critical 

for the longevity of a DSDN as it effectively manages energy consumption across DSDs. Previous studies have 

primarily emphasized factors such as residual energy levels and distances to the base station when addressing this 

issue. As per the study the lifespan of the DSDN depends on the time until the first DSD device depletes its energy 

reserves, making this criterion worthy of attention. This research introduces an enhanced energy-efficient protocol 

that utilizes K-means clustering, where both distance and residual energy are key parameters aimed at extending 

the lifespan of the initial DSD device until its energy reserves are depleted [13]. 

Laxminarayan Sahoo and Team proposed a method which first finds Group Heads (GHs) for group DSDN 

purposes. These intelligent clustering algorithms leverage data-driven approaches, machine learning, and 

optimization algorithms to facilitate optimal DSDN formation and Group Head selection. An intelligent clustering 

mechanism has been devised utilizing the Silhouette Index (SI) score, which serves as a benchmark for conducting 

optimized clustering using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm. Additionally, we utilized the elbow method to corroborate the SI score in conjunction with the k-Means 

clustering algorithm. By incorporating uncertainty factors into the decision-making process algorithms 

demonstrate adaptability to changing conditions, thereby enhancing the overall lifetime of the DSDN. 

Furthermore, our framework integrates MCDM approaches to prioritize cluster formation and GH selection 

criteria. Triangular Fuzzy Numbers (TFNs) are utilized to represent uncertain parameters, as they align well with 

the principles of fuzzy logic systems designed to handle uncertainty and imprecision [14]. Distributed Sensor 

Device Networks (DSDNs) are often deployed in remote and inaccessible areas to facilitate precise environmental 



J. Electrical Systems 20-6s (2024): 940-959 

943 

monitoring for various applications in civil and military sectors. These networks utilize wireless micro sensors to 

collect physical data from the surrounding environment, contributing to sustainability efforts. The gathered data 

is then transmitted to a central sink sensor device for processing. However, given that DSDN devices operate on 

limited battery power, their energy constraints significantly impact both the network's lifespan and environmental 

sustainability. This study aims to enhance the energy efficiency of the Engroove Leach (EL) protocol to extend 

the network's operational duration while minimizing energy consumption. Clustering and routing strategies are 

commonly employed to achieve this goal. In this research, the Meta Inspired Hawks Fragment Optimization 

(MIHFO) system, incorporating passive clustering, is used for clustering purposes. Cluster heads are selected 

based on criteria such as residual energy, distance to neighbours and the base station, DSD degree, and DSD 

centrality. Additionally, the Heuristic Wing Antfly Optimization (HWAFO) algorithm determines the optimal path 

between cluster heads and the Base Station (BS) by considering factors like distance, residual energy, and DSD 

degree. Evaluation metrics for this study include the number of active DSDs, energy consumption, and data packet 

transmission to the base station. [15]. Traditional routing protocols in DSDNs frequently face challenges due to 

high temporal redundancy in data collected at fixed intervals, leading to excessive energy consumption. To address 

this issue and encourage energy conservation in sensor networks, a practical solution involves employing 

prediction-based data fusion methods. This work introduces the Low Energy Adaptive Clustering Hierarchy-

Energy-Kopt-N (LEACH-Energy-Kopt-N) algorithm, designed to optimize the cluster-head selection phase of the 

Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. Additionally, the work proposes a data collection 

model that utilizes data prediction techniques, specifically the Grey Data Prediction Model, to enhance efficiency 

in sensor data aggregation and transmission [16]. 

The efficiency of routing algorithms implemented in DSDNs significantly impacts their potential for conserving 

energy. Developing distributed clustering algorithms presents a challenge as they must efficiently form groups 

without relying on centralized information gathering. This requires striking a balance between cost-effectiveness, 

computational complexity, and flexibility while operating within resource constraints. In this study, we introduce 

a novel hierarchical and distributed approach by integrating the Low Energy Adaptive Clustering Hierarchy 

(LEACH) algorithm with the Analytic Hierarchy Process (AHP). Our approach involves sensor devices (DSDs) 

maintaining a matrix that includes potential threshold values representing the probability of serving as the cluster 

head. These values, determined through AHP, consider both energy and distance conditions relative to the Sink as 

criteria, with importance levels assigned from 1 to 9. AHP computations, weighted with factors expressing 

preference for the energy criterion, yield threshold values that minimize energy consumption and maximize packet 

transmission to the Sink. This method enables DSDs to autonomously determine their cluster head probability 

based on energy status and distance to the Sink, eliminating the need for centralized control. Compared to 

algorithms like Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), our proposed method requires 

minimal computational resources and can be implemented in a distributed manner [17]. Localization remains a 

significant challenge in DSDNs in recent years. Accurately assessing and monitoring data collected using beacons 

and localization methods to DSD locations poses difficulties. Developing effective algorithms like "Distance-

Vector-Hop (DV-Hop)" is essential to address this challenge. Such studies aim to enhance DSD localization 

accuracy by refining the calculation of average hop-size with beacon assistance, thereby reducing localization 

errors associated with distance measurements between DSDs and beacons. The current research leverages DSD-

based Internet of Things (IoT) network deployment and a customized routing protocol based on clustering to 

improve performance and security. The proposed routing protocol, named Cluster-Based Routing Protocol with 

Static Hub (CRPSH), thoroughly discovers all potential paths before utilizing them. Simulation results 

demonstrate that the proposed method achieves superior localization accuracy compared to DV-Hop and other  

DSDNs are commonly deployed in remote and inaccessible areas to gather data autonomously and transmit it to 

a central base station. Hierarchical routing protocols are often used in these networks to manage data transmission 

efficiently. One prominent protocol is the Low Energy Adaptive Clustering Hierarchy (LEACH), which involves 

two main phases: the setup phase and the steady phase. This study proposes enhancements to the Enhanced 

LEACH protocol to achieve a balanced energy consumption across the DSDN and extend the lifespan of DSDs. 

The Enhanced LEACH protocol employs a clustering approach to reduce communication overhead between DSDs 

and the base station. This clustering scheme aims to optimize energy efficiency by organizing DSDs into clusters 

with designated group heads to coordinate communication. By selecting group heads based on residual energy 

levels, the protocol aims to minimize energy depletion and maximize resource utilization within the DSDN [19]. 
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Existing methodologies like LEACH rely on random number-based criteria for selecting group heads in DSDNs. 

Each DSD generates a stochastic variable, which is then compared to a predetermined threshold value. If the 

generated value exceeds this threshold, the DSD becomes a group head. However, this approach assumes DSD 

homogeneity, where all devices have similar structures and energy levels. Consequently, group head selection 

becomes arbitrary, resulting in an uneven distribution of group heads throughout the DSDN. To overcome this 

limitation, this paper proposes a new methodology for identifying group heads based on the maximum residual 

energy of DSDs. This approach aims to optimize energy usage and extend the DSDN's lifespan by selecting group 

heads with higher energy reserves [20]. DSDNs consist of multiple sensors distributed throughout the monitoring 

area. Routing data between these sensor DSDs consumes significant energy, which can impact the network's 

longevity. Thus, efficient energy usage is essential for maximizing the DSDN's lifespan. Various routing and 

power-saving techniques have been developed to address this challenge. In this study, we propose a novel 

approach called MOD-GRASP (Modified Greedy Random Adaptive Search Procedure), which utilizes the 

GRASP algorithm to optimize energy consumption in DSDNs. The MOD-GRASP protocol focuses on reducing 

power consumption during data transmission to the base station (BS) in a DSDN. Furthermore, the protocol 

implements a method for selecting the optimal Group head within the network based on GRASP data. The goal is 

to improve the network's energy efficiency and prolong its lifespan by optimizing the selection of Cluster Heads 

using the GRASP algorithm [21]. With the progress of drone technology, autonomous unmanned aerial vehicle 

(UAV) swarms are increasingly employed in various sectors such as traffic management, pollution monitoring, 

package delivery, and security surveillance. This study presents an enhanced version of the LEACH algorithm 

tailored for UAV swarm communication in urban environments. Our approach involves selecting group heads 

based on attributes including group size, distance from the base station (BS), battery percentage, and line-of-sight 

(LOS), aiming to improve packet delivery efficiency and extend system operation. The method makes use of a 

two-level hierarchy where cluster heads are selected using the enhanced LEACH algorithm from a designated 

pool of parent drones (PDs) [22]. Designing a robust routing protocol for DSDNs requires scalability to be a key 

consideration. As DSDNs gain prominence, applications demanding real-time and continuous data delivery 

encounter challenges related to power, storage capacity, and energy efficiency. It is crucial to account for these 

constraints when choosing a routing protocol for DSDNs. Routing protocols can be categorized based on their 

attributes and the specific types of DSDNs they support. Various performance metrics are utilized to evaluate the 

efficacy of routing protocols. By conducting such studies, we can analyse the performance of different routing 

protocols and iterate on them to achieve optimal functionality. [23]. 

In DSDNs, the energy capacity of sensor nodes is critical as it serves as their primary energy source. grouping 

DSDN has emerged as a fundamental strategy in DSDNs to conserve energy and extend the network's lifespan. 

The energy used during data transmission depends on the distance between transmitter and destination nodes, 

emphasizing the importance of grouping DSDN. This paper introduces a novel fuzzy logic model for selecting 

group heads, a crucial step in grouping DSDN within DSDNs. The proposed model evaluates five characteristics 

to determine each node's suitability for group head status, including proximity to the base station, node density, 

topographical suitability, and remaining power. Using fuzzy logic, we propose the Fuzzy Reasoning-based 

Energy-Efficient grouping DSDN for DSDNs (FL-EEC/DSDN), focusing on minimizing the distance between 

CHs. Additionally, we assess the energy distribution efficiency among sensors within the DSDN using the Gini 

index as a metric for energy consumption in clustered methods. Comparative evaluations between our FL-

EEC/DSDN approach and existing methods, including LEACH and other fuzzy logic-based grouping DSDN 

approaches, demonstrate significant improvements in energy efficiency, network longevity, and balanced energy 

consumption across sensor nodes of varying network sizes and topologies, as shown through simulation results 

[24]. Energy limitations present significant challenges in DSDNs, affecting DSDN lifespan and overall 

performance. Researchers are actively exploring strategies to optimize energy usage while extending the longevity 

of these networks. Factors such as environmental conditions and routing methods directly impact battery 

consumption in sensor DSDs. Various quality of service (QoS) metrics are employed to evaluate DSDN 

performance and minimize battery usage at the routing level. Numerous routing protocols have been proposed to 

address energy constraints in WSNs. In this study, we conducted an analysis of two low-power protocols—

LEACH and Sub-cluster LEACH—and compared their performance. The authors have implemented Levenberg-

Marquardt neural networks (LMNNs) and Moth-Flame optimization to enhance DSDN performance. QoS 

indicators including energy efficiency, end-to-end latency, throughput, and packet delivery ratio (PDR) were 
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evaluated to assess performance. Our simulations revealed that Sub-cluster LEACH with Moth-Flame 

optimization demonstrated superior DSDN efficiency and effectiveness compared to competing algorithms. [25]. 

In DSDNs, grouping is a fundamental technique that groups sensor DSDs into DSDN group managed by 

designated cluster heads to enhance DSDN efficiency and coordination, facilitating data transmission to the sink 

node. The LEACH protocol is well-known for its effectiveness in enabling efficient grouping in wireless sensor 

networks. Another approach, termed balanced cluster formation, strives to create DSDN group of equal size with 

a degree of overlap between them. The work introduces a novel hybrid DSD reconfiguration scheme called 

Energy-efficient Uniform Size grouping (EUSC), designed to balance the load, improve DSDN lifespan, maintain 

uniform cluster sizes, and prevent cluster overlap in wireless sensor networks. The EUSC scheme aims to optimize 

DSDN performance by efficiently organizing sensor DSDs into DSDN group with uniform sizes, thereby 

enhancing energy efficiency and overall DSDN operation [26]. A significant issue in large-scale dense DSDNs is 

the efficient utilization of energy resources. With a higher number of DSDs in these DSDNs, there's a greater 

likelihood of redundant data transmission. To address this, energy conservation becomes paramount, making data 

fusion and aggregation essential. Aggregating surplus data at intermediary DSDs helps minimize connectivity 

costs and energy consumption by reducing the number of messages exchanged between sensor DSDs. In this 

context, the proposed study employs the In-Network data collection and energy-saving protocol, LEACH, to 

conserve resources in DSDNs. However, ensuring the security and integrity of aggregated data during routing 

poses a considerable challenge. To tackle this issue, one approach is to identify malicious DSDs within clusters 

by assessing the confidence value between group heads and group members based on their DSD identities. This 

helps enhance the protection and reliability of the aggregated data transmission process [27]. Energy efficiency is 

a crucial consideration in DSDNs. This work proposes an approach that leverages Delaunay triangulation to 

optimize the deployment of DSDs. By utilizing Delaunay triangulation for placing mobile DSDs, we introduce a 

clustering method called Equi-Quadrant Division-based Clustering to enable efficient shortest path routing to the 

base station (BS). This approach addresses challenges such as coverage gaps and the identification of a DSD's 

sensing range in a random distribution, ultimately enhancing the overall engagement and performance of DSDs 

in the DSDN [28]. DSDNs have gained widespread popularity due to their affordability, adaptability, scalability, 

and suitability for deployment in various environments. Energy efficiency has emerged as a crucial design 

consideration to ensure the longevity of these networks. The LEACH routing protocol has become a standard 

choice for power-aware DSDNs. However, a notable drawback of LEACH is the premature depletion of energy 

in base station nodes, leading to a decrease in network lifespan. To address this issue, a modified version of 

LEACH, known as Modified LEACH (MLEACH), has recently been proposed. MLEACH aims to reduce average 

energy consumption, thereby extending the network's lifespan. It achieves this by assigning an expiration time to 

each cluster, reducing the formation of redundant clusters, and minimizing energy expenditure. Additionally, 

MLEACH mitigates packet loss by eliminating the need for base station reset times. Moreover, it designates a 

supervisor node within each cluster to monitor routing overhead and facilitate efficient data transmission, thereby 

preventing the formation of lengthy transmission chains [29]. In DSDNs, DSDs encounter constraints such as 

limited energy supply, communication range, and computational capabilities. Efficient data routing is essential to 

help Distributed Sensor Devices (DSDs) conserve energy, thereby improving the overall DSDN lifespan. 

Clustering protocols play a vital role in achieving energy preservation in DSDNs. These protocols involve 

selecting group head DSDs based on factors directly impacting DSD power consumption. This paper presents a 

novel algorithm called Fuzzy-based Zone-group Heads Selection for Heterogeneous Wireless Sensor Networks 

(FZCHS). By utilizing an optimization fuzzy logic approach, critical factors influencing DSD lifespan are 

identified and integrated. group heads are chosen based on two key factors: the number of neighbouring DSDs 

and a novel component representing the potential lifespan of DSDs acting as group heads. This approach aims to 

optimize energy usage and extend the DSDN's lifespan by efficiently selecting group heads. [30]. 

III. MACHINE LEARNING Based Cluster Head Selection, Cluster Formation and Path 

Formation 

A  DSDN has various objectives, one of which is to ensure comprehensive coverage of the monitored area. It 

serves multiple purposes such as tracking devices or detecting enemy intrusion in military applications. To 

optimize the battery life of the DSDs, they can be organized into a set known as the cover set.  
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DSDs within this cover set can be dynamically switched between different operational modes, such as ON or OFF, 

to enhance health monitoring and improve tracking efficiency. DSDNs can be categorized into single-area DSDNs 

or multiple-area DSDNs. In a single-area DSDN, all DSDs are distributed within a specific region, whereas in a 

multiple-area DSDN, DSDs are spread across several groups or locations. For communication between DSDs 

belonging to different areas, a Head DSD is selected for each area to facilitate inter-location communication.  

A. Single DSDN Network 

The work is on managing a single-group DSDN. Consider a single DSDN network formed with 100* 100 

dimension as shown in the figure 1. There are 100 DSDs spread with horizontal limit between 1 to 100 and vertical 

limit between 1 to 100. Each of the DSD is represented by its own unique ID and have their own positional 

information. DSD-21 the position of DSD has a positional value {5,95}. DSD-10 has a positional value of {1,10}. 

In a similar way all remaining 98 DSD’s have their own position. The Single Group DSD Formation is done using 

the algorithm given in Figure 2. 

 

Fig 2: Single DSDN Formation 

B. Multi Group DSDN Network using Machine Learning 

For a Multi Group DSDN Network. Each level is associated with a group of DSDs associated with it. The 

formation of Groups will be done on the basis of k means algorithm. The algorithm used falls under the category 

Fig 1: Placement of DSDs in a Network 
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of unsupervised machine learning. The grouping is done based on similarity of data. The partition depends upon 

the tuning parameter K. Where K defines the number of groups. The various phases of K means grouping for 

DSDN can be defined as follows 

1. Set Up Phase The position of group centre is chosen in a random fashion. The number of such group 

centres depends upon the tuning parameter K.  

2. Labelling Phase From each of the DSD to the initial centre of the group the distance is computed using 

Euclidean concept.  After computing k distances with respect to the centroids the lowest distance is found 

and DSD is assigned a Group DSDN label. Each DSD is assigned to only one Group. Figure 3 shows the 

K means DSDN Network with six different groups. The orange color indicates the shift in the cluster 

centroids positions while grouping the DSDNs in an optimized fashion based on distances 

 

Fig 3: K means DSDN Network 

. 3 Optimization Phase In the optimization phase the position of each group DSDN centre is recomputed based 

on assigned DSDs.  The new position of centre for each group is computed using a mean formula applied on each 

of the DSD’s in the group. The algorithm for Group DSDN formation is summarized in Figure 4 

 

Fig 4:  Group DSDN Network 

C. Group Head DSDN Selection  
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The Group Head DSD plays a unique role in facilitating group communication and inter-group communication 

within a DSDN. The selection of a Group Head DSD should take into account factors such as energy dissipation, 

battery level, DSD position in the DSDN, DSD mobility, and the buffer or load present in the DSD. Considering 

these parameters is crucial for improving the overall lifetime performance of the DSDN. 

The Group Head is selected alternatively with a combination of Random Forest and Support Vector Machine 

algorithm.  

Random Forest is a popular ensemble learning method used in machine learning for classification and regression 

tasks. It operates by constructing multiple decision trees during the training phase and then combining their 

predictions to make a final decision.   

1. Data Collection DSDN Phase 

During the Data Collection phase of a DSDN, the Base Station is utilized to gather information from DSDs 

regarding various features such as battery level, distance from the base station, average mobility, and buffer 

levels. 

2. Initial Group DSDN Head Computation 

During the Data Collection phase of a Wireless Sensor Network, the Base Station is utilized to gather 

information from DSDs regarding various features such as battery level, distance from the base station, average 

mobility, and buffer levels. 

 

3. History Capture and Training Algorithm 

Train multiple decision trees on different subsets of the training data and features. Each decision tree is trained 

independently. 

During the training process, each decision tree considers a random subset of the features to split the data at each 

DSD. This randomness helps in reducing overfitting and improving the generalization of the model. 

As each decision tree is trained, it learns to classify DSDs in DSDN as potential cluster heads or non-cluster heads 

based on specific features. These features include battery level, distance between the node and the Base Station, 

mobility of DSDs in the DSDN, and remaining buffer level of DSDs in the DSDN. 

 

In the context of selecting DSDN heads in a DSDN Network, Random Forest utilizes multiple decision trees, each 

analysing a random subset of sensor data to determine suitable candidates for DSDN head positions. By 

aggregating the decisions of these individual trees, Random Forest identifies sensors that are frequently chosen 

across the ensemble as potential DSDN heads. This collective decision-making process leverages the diverse 

perspectives of the individual trees, akin to seeking advice from a group of experts, resulting in an effective 

selection of DSDN heads for the DSDN network. 

In a similar fashion the Group DSDN head selection process undergoes Support Vector Machine execution as 

well.  

Imagine you have a bunch of points on a graph, and you want to draw a line to separate them into two groups. But 

here's the twist: these points aren't just randomly scattered; they're also labelled with different categories, like high 

performing DSD and medium performing DSD. 

Support Vector Machines (SVMs) are powerful tools designed to determine the optimal decision boundary 

between different groups of points. Rather than simply drawing a line, SVMs identify the line that maximizes the 

separation (or gap) between these groups of points. This gap is crucial because it enhances the model's ability to 

accurately classify new, unlabelled points based on their position relative to the decision boundary. For each of 
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DSDs the features history is fed as a training data and then the DSDs are classified into High Performing and Low 

Performing DSD.  The high performing DSDs are filtered out. 

 

 

 

Finally, an intersection set is created between random forest and Support Vector Machine which will produce the 

common DSDs. One of them will be chosen as head DSD. Figure 5 shows the short summary of head DSD 

selection process. The location, battery level and other features are taken as an input for the process. Random 

Forest and Support Vector Machine are executed and then a set of DSD’s are found out. The first set is called 

Random Forest DSDs, the second set is called Support Vector Machine DSDs. The intersection between the two 

sets will provide an optimized set of DSD’s and then one of them is chosen as a head DSD. 

D. End to End Data Transfer Link  

The Path Formation Process involves establishing the end-to-end path between nodes in a network. Initially, 

the source DSD checks if the destination DSD is within the same group; if so, a direct link is established. If the 

source and destination nodes belong to different groups, the source DSD locates its group head and establishes a 

link to the head DSD of its group in the Distributed Sensor Device Network (DSDN). The source head DSD then 

initiates a Route Request (RREQ) packet to all group head nodes. The group head nodes respond with a REPLY 

indicating which DSD has the destination. Finally, the destination DSD establishes a link to complete the path. 

IV. COMPARISON ALGORITHMS NOTES 

This section describes LEACH and ELEACH method which are present in the literature and is used for 

performance analysis with the proposed method. 

A. LEACH 

The LEACH method involves selecting head nodes randomly and probabilistically within each group of the Multi-

group DSDN. Once head nodes are selected, the path establishment process begins with the initiator DSD 

Fig 5: Head DSD Selection Process 
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transmitting data to its chosen head DSD. The communication then progresses from the head DSD to the base 

station, which sequentially scans through each group until reaching the intended destination DSD. 

B. ELEACH 

ELEACH, similar to LEACH, divides the DSDN into multiple segments and uses path construction and head 

DSD selection for data transmission. In ELEACH, the choice of head DSD considers factors such as battery level 

and distance from the base station, aiming to improve network lifespan compared to LEACH. However, ELEACH 

still faces challenges related to throughput and link count because it relies on LEACH for data delivery. 

V. RESULTS 

The following section describes the results of proposed Machine Learn based Group DSDN method (ML-DSDN) 

comparison with existing methods LEACH and ELEACH. 

Table1: Simulation Input 

Parameter Name Parameter Value 

Number of Group DSDN 6 

Group 1 End Points Xdsdmin=1 Ydsdmin=1 

Xdsdmax=50 

Ydsdmax = 50 

Number of DSDs Group1 5 

Group 2 End Points Xdsdmin=51 

Xdsdmax=100 

Ydsdmin= 1 

Ydsdmax = 50 

Number of DSDs Group2 10 

Group 3 End Points Xdsdmin=100 

Xdsdmax=150 

Ydsdmin= 1 

Ydsdmax = 50 

Number of DSDs Group3 10 

Group 4 End Points Xdsdmin=1 

Xdsdmax=50 

Ydsdmin= 51 

Ydsdmax = 100 

Number of DSDs Group4 5 

Group 5 End Points Xdsdmin=51 

Xdsdmax=100 

Ydsdmin= 51 

Ydsdmax = 100 

Number of DSDs Group5 5 

Group 6 End Points Xdsdmin=101 

Xdsdmax=150 

Ydsdmin= 51 

Ydsdmax = 100 
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                              Fig 6: Group DSDN Network 

Figure 6 shows the Group DSDN Network with one axis as X dimension and another dimension is of Y. First 

Group has set of DSDs namely {DSD-1, DSD-2, DSD-3, DSD-4, DSD-5}, The Second Group has set of DSDs 

namely {DSD-6, DSD-7, DSD-8, DSD-9, DSD-10, DSD-11, DSD-12, DSD-13, DSD-14, DSD-15}, The third 

Group has set of DSDs namely {DSD-16, DSD-17, DSD-18, DSD-19, DSD-20}. The fourth Group has set of 

DSDs namely {DSD-21, DSD-22, DSD-23, DSD-24, DSD-25}. The fifth Group has set of DSDs namely {DSD-

26, DSD-27, DSD-28, DSD-29, DSD-30, DSD-31, DSD-32, DSD-33, DSD-34, DSD-35}. The sixth Group has 

set of DSDs namely {DSD-36, DSD-37, DSD-38, DSD-39, DSD-40}. Each DSDs have their own boundaries in 

the DSDN network. 

 

Figure 7: Battery Level DSD’s 

 

Figure 7 shows the battery level for DSD’s. All the 40 DSD’s have been initialized with 1000 J.  

A. End to End Delay 

The time taken for DSDN route formation refers to the duration it takes for the Route Request (RREQ) to travel 

from the S-DSD to the D-DSD, and then for the Path Formation Reply (RRPLY) to return from the D-DSD to the 

S-DSD. 

𝐷𝑆𝐷𝑁(𝑑𝑒𝑙𝑎𝑦) = 𝑅𝑃𝑠𝑡𝑜𝑝 − 𝑅𝑄𝑠𝑡𝑎𝑟𝑡  

𝑊ℎ𝑒𝑟𝑒, 

𝑅𝑃𝑠𝑡𝑜𝑝 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑅𝐸𝑃𝐿𝑌 𝑝𝑎𝑐𝑘𝑒𝑡 

𝑅𝑄𝑠𝑡𝑎𝑟𝑡 = 𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑅𝑅𝐸𝑄 𝑝𝑎𝑐𝑘𝑒𝑡
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Fig 8: End to End Delay 

Figure 8 shows the end-to-end delay comparison between proposed ML-DSDN with LEACH and E-LEACH 

method. From the fig it is evident that the ML-DSDN is having the lowest value across all experimental count. As 

the experimental count increases the delay also increases.  The maximum value of delay for ML-DSDN is 0.003 

whereas for E-LEACH has the maximum value of delay with a value of 0.004 and then for LEACH the value of 

maximum delay with a value of 0.014. Hence ML-DSDN has the best performance.  

B. Hops Performance 

The count of set of links between source DSD to destination DSD 

 

Fig 9: Hops Performance 

Figure 9 shows the hops performance. From the figure 9 it is evident that ML-DSDN has the lowest hops followed 

by ELEACH and LEACH. LEACH has the maximum hops.  

C. Total Energy Consumption 

The dissipation consumption for entire FDP route can be defined as be 

𝑇𝐷𝐶 = ∑ 𝐷𝑐

𝑁𝑓𝑑𝑝𝑝𝑎𝑖𝑟

𝑘=1

(𝑘) 

𝑊ℎ𝑒𝑟𝑒, 

𝑁𝑓𝑑𝑝𝑝𝑎𝑖𝑟 = 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑃𝑎𝑖𝑟 𝑜𝑓 𝐹𝐷𝑃𝑑 𝑖𝑛 𝑝𝑎𝑡ℎ 

𝐷𝑐(𝑘) = 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛  𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  𝑎𝑐𝑟𝑜𝑠𝑠 𝑘𝑡ℎ  𝑙𝑖𝑛𝑘 

 

The dissipation consumed by the 𝑘𝑡ℎ pair given by 
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𝐸𝑐 = 2𝐸𝑡𝑥𝑝𝑎𝑖𝑟 + 𝐸𝑔𝑒𝑛𝑝𝑎𝑖𝑟𝑑(𝑆 − 𝐷𝑆𝐷, 𝐷 − 𝐷𝑆𝐷)𝛿𝑓 

𝐸𝑡𝑥𝑝𝑎𝑖𝑟 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  𝑓𝑜𝑟  𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑜𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑜𝑓 𝐷𝑆𝐷 𝑝𝑎𝑖𝑟 

𝐸𝑔𝑒𝑛𝑝𝑎𝑖𝑟 = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑝𝑎𝑐𝑘𝑒𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑆𝐷 𝑝𝑎𝑖𝑟 

𝑑(𝑆 − 𝐷𝑆𝐷, 𝐷 − 𝐷𝑆𝐷) = 𝑑𝑖𝑠 𝑡𝑎𝑛 𝑐 𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐹𝐷𝑃𝑠  𝑆𝑜𝑢𝑟𝑐𝑒 𝐹𝐷𝑃 𝑎𝑛𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐹𝐷𝑃 

𝛿𝑓 = 𝑎𝑡𝑡𝑢𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟   0.1 ≤ 𝛿𝑓 ≤ 1 

𝐸𝑔𝑒𝑛𝑝𝑎𝑖𝑟 ≺≺ 𝐸𝑡𝑥𝑝𝑎𝑖𝑟  

Figure 10 shows comparison with respect to  . ML-DSDN has the lowest energy consumption followed by E-

LEACH and LEACH. 

 

Fig 10: Total Energy Consumption 

The maximum value of energy consumption for ML-DSDN is below 500 mJ compared to LEACH which has 

maximum value of energy consumption above 4500 mJ. 

D. Alive DSD Count 

The alive DSD count is count of set of DSDs whose value is higher than or equal to reduced value of 1/4 th of 

initial battery level.  

 

Fig 11: Alive DSDs Count 

Figure 11 reveals the alive DSDs count. ML-DSDN has the highest alive DSDs followed by ELEACH and 

LEACH. As the experimental count increases the value of alive DSDs decreases. 
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E. Dead DSDs Count 

The Dead DSDs count is obtained by taking the difference between total DSDs to the alive DSDs 

 

Fig 12: Dead DSDs Count 

Figure 12 shows the dead DSDs count. As the experimental count increases the count of dead DSDs also increases. 

The lowest dead DSDs are for ML-DSDN followed by E-LEACH and LEACH. At the experimental count 6 the 

dead DSD count for ML-DSDN is 0, ELEACH is 1 and LEACH is 20. For the experimental count 25 the dead 

DSDs for ML-DSDN is 1, ELEACH is 5, LEACH is 22. 

F. Lifetime Ratio 

The division performed between Alive DSDs to Dead DSDs 

 

Fig 13: Lifetime Ratio 

Figure 13 shows the lifetime ratio comparison. ML-DSDN has the highest lifetime ratio followed by ELEACH 

and LEACH. As the experimental count increases the lifetime ratio decreases.  

G. Routing Overhead 

The ratio is computed using the count of RREQ and REPLY packets in the denominator and then number of data 

packets sent on the numerator. If the overhead value is on the lower side then performance of the algorithm is 

better. 
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Fig 14: Routing Overhead 

Figure 14 shows the routing overhead for all the algorithms. ML-DSDN has the lowest routing overhead compared 

to ELEACH and LEACH. The LEACH is having highest routing overhead hence performance of LEACH is less. 

H. Throughput 

The throughput is measured by sending data packets over a period of time. 

 

Fig  15: Throughput Measure 

Figure 15 shows the throughput measure. As the experimental count increases the throughput measure decreases. 

For most of the iterations the ML-DSDN have the highest throughput followed ELEACH and LEACH has the 

lowest throughput. 

I. Residual Energy of Network 

The residual energy of network is computed by summing out remaining battery energy level. 

𝑅𝐸𝑁 = ∑ RE(DSD)i

NDSDs

𝑖=1

 

Where, 

NFDPs = total number of DSDs 

RE − DSDi = Re s idual Energy for  ith DSD 
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Fig 16: Total DSDN energy of DSDN Network 

Figure 16 shows the DSDN energy of DSDN Network. As the experimental count increases the residual energy 

decreases. ML-DSDN is having highest DSDN energy as compared to ELEACH and LEACH. Across all 

experimental counts ML-DSDN have the highest DSDN energy. 

Table 2: Performance Comparison 

Parameter  ML-DSDN 

Improvement 

Percent with 

LEACH 

ML-DSDN 

Improvement Percent 

with ELEACH 

Delay 73.91 % 12.91% 

Hops 89.68% 1.02% 

Energy Consumed 87.26% 0.007% 

Alive DSDs 23.76% 1.5% 

Dead DSDs 72.85% 4.8% 

Lifetime Ratio 51.61% 25.76% 

Routing Overhead 89.68% 13.98% 

Throughput 51.1% 2.8% 

Residual Energy 28.3% 0.09% 

 

The percentage improvement of ML-DSDN compared to LEACH and ELEACH is summarized in Table 2. From 

the Table 2 it is evident that performance of ML-DSDN is better compared to existing methods.  

From all the comparison results it is evident that ML-DSDN is performing the best compared to ELEACH and 

LEACH method. 

V. CONCLUSION 

First, we have described the DSDN network in which DSDs are placed, this was followed by Group DSDN 

network.  The existing methods which are based on LEACH and machine learning are also described. This is 

followed by proposed method ML-DSDN with DSDN formation, Group DSDN formation, selection of head 

DSDs by making use of multiple machine learning algorithms and end to end path formation for DSDs. The 

comparison methods namely LEACH and ELEACH are also described in a short format. The proposed method 

ML-DSDN is compared with LEACH and ELEACH for various parameters namely end to end delay, hops 

performance, energy consumption, alive count, dead count, lifetime ratio, routing overhead and throughput 

measure and from the experiment it is proved that ML-DSDN is working the best. 
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