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Abstract: - The electricity market faces numerous challenges due to the growing demand for energy, increasing penetration of renewable 

energy sources, and the need for grid reliability and efficiency. To address these challenges, optimization algorithms have emerged as 

essential tools for optimizing various aspects of the electricity market, including generation, transmission, distribution, and demand-side 

management. The review can be done by providing an overview of the key components and challenges of the electricity market, including 

generation dispatch, unit commitment, economic dispatch, transmission network optimization, and demand response management. It then 

systematically examines a wide range of optimization techniques employed in addressing these challenges, including linear programming, 

mixed-integer linear programming, nonlinear programming, dynamic programming, genetic algorithms, particle swarm optimization, 

simulated annealing, and machine learning-based approaches. This paper presents a comparison of optimization algorithms, RCEDUMDA 

(Ring-Cellular Encode-Decode Univariate Marginal Distribution Algorithm) and CL_HC2RCEDUMDA (Hill Climbing to Ring Cellular 

Encode-Decode Univariate Marginal Distribution Algorithm) for the profit maximization of Electricity Market consumers & prosumers. 

Keywords: Electricity market, Energy Resource Management, Metaheuristic optimization Algorithm, Smart Grid, 

Aggregator, Profit maximization. 

I.  INTRODUCTION 

Smart grid technologies offer the potential for widespread adoption of distributed renewable energy sources, 

presenting numerous challenges for utilities and operators [1]. Within this framework, local energy markets (LEMs) 

facilitate energy trading among small-scale sectors at the community level, contributing to reduced environmental 

impact [2]. LEMs empower end-users, encouraging their involvement in energy communities and the adoption of 

fully transactive energy systems [3]. Previously, individuals with limited energy production capabilities faced 

barriers to participation in electricity markets due to regulatory constraints [4]. LEMs address this issue by providing 

a platform for prosumers, consumers, and producers to actively engage in energy trading [5]. The energy dealings 

in LEMs can be termed as a bi-level optimization problem, with all participants want to maximize their profits by 

refining their bidding strategies [6]. 

The optimization challenge within local electricity markets presents a multifaceted problem that can be approached 

and resolved through various perspectives and methodologies. One common formulation involves framing the 

participation of stakeholders in LEMs as a bi-level optimization problem [6]. Despite diverse assumptions, 

adaptations, and hybrid algorithmic approaches, attaining optimal or near-optimal solutions remains a significant 

hurdle within this domain. 
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As a result, creating a reliable optimization technique that may yield nearly ideal solutions to this challenging 

problem is crucial. In order to solve a challenging bi-level bidding optimization problem in the context of LEMs, 

this work compares two metaheuristic optimization algorithms, RCEDUMDA (Ring-Cellular Encode-Decode 

Univariate Marginal Distribution Algorithm) [7] and CL_HC2RCEDUMDA (Hill Climbing to Ring Cellular 

Encode-Decode Univariate Marginal Distribution Algorithm) [8]. The following are this work's primary 

contributions: 

• A proficient computational intelligence approach is proposed to address the inherently nonlinear and 

intricate bidding optimization problem within LEMs [9]. 

• The problem is conceptualized as a multi-period bi-level optimization challenge, wherein competitive 

agents at the upper-level aim to maximize their profits (referred to as a multileader problem) [10]. The bids or offers 

made by these agents influence the market clearing price determined at the lower-level problem (a single-follower 

problem), establishing a significant interdependence among their decisions [6]. 

• This paper provides a comparison of the leading optimization algorithms, RCEDUMDA (Ring-Cellular 

Encode-Decode Univariate Marginal Distribution Algorithm) and CL_HC2RCEDUMDA (Hill Climbing to Ring 

Cellular Encode-Decode Univariate Marginal Distribution Algorithm). The mentioned algorithms have been tested 

on the testbed available for the joint competition of GECCO & IEEE WCCI 2022 [11]. Notably, these algorithms 

demonstrated superior performance in solving the testbed "bi-level optimization of end-users' bidding strategies in 

local energy markets" during the international competition "Evolutionary Computation in Uncertain Environments: 

A Smart Grid Application," held at both the Genetic and Evolutionary Computation Conference (GECCO 2022) 

and the IEEE World Congress on Computational Intelligence (WCCI 2022). 

• Furthermore, the efficacy of the proposed algorithm was evaluated through a case study involving a power 

system distribution network integrated with renewable energy sources. A comparative analysis was conducted, 

showcasing that RCEDUMDA consistently generates higher profits for all agents when compared to various 

algorithms. 

This is how the remaining content is arranged. Following the introduction in Section 1 and in Section 2, 

methodology of algorithm of RCEDUMDA is mentioned. Section 3 shows the test system which have been adopted 

in real world scenario to compare the mentioned algorithms. In Section 4, the comparative results are tabled, which 

are obtained by running both the algorithms on a real-world case study involving a distribution system. Section 5 

concludes by summarizing the key findings and recommendations for further study. 

II. METHODOLOGY 

In this section, the mathematical model for the measurement of risk taking into account the CVaR mechanism, is 

presented. Fig.1 [12] shows the proposed problem methodology of ERM. The model has the inputs like total 

generation data, Load Demand data, EVs data, Energy Storage Systems (ESS) data and Local Electricity Market 

data. The some of the input data are chosen as the extreme events for the consideration of risk-based management. 

With the use of VaR (Value at risk) and CVaR (Conditional value at Risk) methodology the aggregator can be 

protected. 

 

Fig.1. Energy Resourse Management [ERM] [12] 
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With the help of some case studies based on real scenarios the impacts of VaR and CVaR can be evaluated. Fig. 2 

[11] the solution vector representation of the mentioned problem. In that the participants with the quantities are 

mentioned. Fig. 3 [11] shows the fitness function evaluation flowchart, according to which the mentioned ERM 

problem has been optimized. 

The function is first called with the database containing the developed scenarios as an argument, and the value of 

the variable controlling risk aversion is also initialized. Each scenario is then assessed using the formulas found in 

the appendix section. The purpose of this review is to determine each scenario's cost, which is then saved in order 

to determine the estimated cost. Using the formula in [13], the 𝑉𝑎𝑅𝛼 and 𝐶𝑉𝑎𝑅𝛼 values are determined by taking 

into account the projected cost, the cost of each scenario, and the probability of each scenario. 

 

 Fig. 2. Solution Vector of ERM 

The aggregator makes a judgment based on the risk aversion factor after the risk-measuring parameters have been 

computed. Stated otherwise, the aggregator selects the optimal approach based on the OF's value. 
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Fig. 1 Fitness Function Evaluation 

When 𝛽=0, the metaheuristic just minimizes the expected cost because it does this evaluation in an effort to 

minimize the value of the OF in a specific number of repetitions. Nevertheless, the metaheuristic attempts to 

minimize both the predicted cost and the 𝐶𝑉𝑎𝑅𝛼 for the 𝛽=1 [14]. 

A risk-averse plan of action for the upcoming day ERM takes into account the unpredictable behaviour of an 

aggregator's technology, including market prices, renewable energy generation, load consumption, and EV use 

patterns. In this instance, the method utilized takes into account the stochastic behaviour of these factors by running 
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through a number of scenarios with corresponding probabilities of occurrence. The expected scenario is used to 

determine this aggregator's scheduling when risk is ignored. If a risk aversion strategy is not implemented, the 

expected cost determines the cost and value of the objective function. This can be formulated as follows: [11] 

𝑍𝑠
tot = 𝑍𝑠

OC − 𝑍𝑠
In + 𝑃𝑠                                                                (1) 

Z𝐸𝑥 = ∑ (𝜌𝑠 ∗ 𝑧𝑠
𝑡𝑜𝑡)

𝑁𝑠

𝑠=1
                            (2) 

  Where, Zs
tot = Total value of Objective Function     

                          (OF) for each scenario 

               𝑍𝑠
OC = Cost of Operation 

               Zs
In = Every scenario income 

               ρs = Respective scenario probability 

               ZEx = OF expected cost 

               Ps = Limit violation penalty 

A risk-aversion strategy takes into account the risk arising from the unpredictability of the aforementioned 

technologies. In (1−𝜌)% of the scenarios with the highest prices, 𝐶𝑉𝑎𝑅𝛼 is an extra cost applied to 𝑍Ex. The 

following formula [13.8] is used to compute the 𝐶𝑉𝑎𝑅𝛼 after determining the value of 𝑉𝑎𝑅𝛼 [13] 

𝐶𝑉𝑎𝑅𝛼(Zs
tot)=𝑉𝑎𝑅𝛼(Zs

tot)+
1

1−𝛼
∑ (𝜌𝑠 ∗ ∅)𝑁𝑠

𝑠=1                                              (3) 

Where,           𝜙 = {𝑧𝑠
𝑡𝑜𝑡 − 𝑧𝐸𝑥 − 𝑉𝑎𝑅𝛼(𝑧𝑠

𝑡𝑜𝑡)        𝑖𝑓, 𝑧𝑠
𝑡𝑜𝑡 ≥ 𝑧𝐸𝑥 + 𝑣𝑎𝑅𝛼 (𝑧𝑠

𝑡𝑜𝑡) 

Otherwise,     𝜙 = 0                                                                                   (4) 

              𝑉𝑎𝑅𝛼 (Zs
tot) = z – score(α) * std(Zs

tot) 

The Objective Function can be given by, 

             OF = ZEx  + β * 𝐶𝑉𝑎𝑅𝛼 (Zs
tot)                                                        (5) 

The 𝛽 parameter in this case denotes the proportion of risk aversion. This option has a range of 0 to 1. The OF value 

is only equal to the expected cost when 𝛽=0, indicating a risk-neutral approach. Conversely, 𝛽=1 indicates that the 

approach has a 100% risk aversion, making it the safest option in the worst-case situations [11]. 

 

Ring-Cellular Encode-Decode Univariate Marginal Distribution Algorithm (RCEDUMDA) [7] 

Input: 

𝑐 = number of cells,  

𝑚 = size of the cells, 

𝑚𝑎𝑥𝐼𝑡 = maximum iteration,  

𝑙 = number of elitist individuals, 

𝑠 = number of selected individuals,  

𝑟 = neighbourhood ratio, 

𝛼 = additional occurrence,  
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𝑘 = number of codes, 

𝑚𝑖𝑛𝐵 = vector of min bounds,  

𝑚𝑎𝑥𝐵 = vector of max bounds 

Output: Best Solution 

𝑡 ← 1 

𝑃𝑜𝑝 ← 𝐶𝑟𝑒𝑎𝑡𝑒 Ring cellular structure of 𝑐 cells of size𝑚 

foreach cell do 

𝑃𝑜𝑝 (𝑐𝑒𝑙𝑙) ← 𝑚 individuals generated randomly in [𝑚𝑖𝑛𝐵, 𝑚𝑎𝑥𝐵] 

while 𝑡 ≤ 𝑚𝑎𝑥𝐼𝑡 do 

Select globally 𝑙 elitist individuals 

foreach cell do 

𝑀 ←the𝑚 best individuals in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (𝑐𝑒𝑙𝑙, 𝑟) 

𝑒𝑀 ←𝑒𝑛𝑐𝑜𝑑𝑒 (𝑀, 𝑘,𝑚𝑖𝑛𝐵,𝑚𝑎𝑥𝐵) 

Estimate the distribution   

𝑝(𝑥) = ∏ 𝑝(𝑥𝑖
𝑙
𝑖=1 ) from 𝑒𝑀 

𝑝 (𝑥) ←𝑠𝑐𝑎𝑙𝑒 (𝑝 (𝑥), 𝛼) 

𝑒𝐶 ←𝑐 new individuals generating according to 𝑝 (𝑥) 

𝐶 ←𝑑𝑒𝑐𝑜𝑑𝑒 (𝑒𝐶, 𝑘, 𝑚𝑖𝑛𝐵, 𝑚𝑎𝑥𝐵) 

Insert 𝐶 in the same cell of an auxiliary population 𝑎𝑢𝑥𝑃𝑜𝑝 

Replace the 𝑃𝑜𝑝 with 𝑎𝑢𝑥𝑃𝑜𝑝 

Include the elitist individuals, replacing the individuals in their positions 

𝑡 ← 𝑡 + 1 

𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← the best individual in 𝑃𝑜𝑝 

Given a continuous variable with the domain [𝑚𝑖𝑛𝐵, 𝑚𝑎𝑥𝐵], a number of codes 𝑘, and a value 𝑣 ∈ [𝑚𝑖𝑛𝐵, 𝑚𝑎𝑥𝐵]. 
The domain is divided into 𝑘 uniform intervals via the encoding method, which yields the encode value 𝑒𝑣 as the 
interval index. The decoding method takes a value from 𝑒𝑣 and returns 𝑚𝑖𝑛𝐵 for the minimum 𝑒𝑣, 𝑚𝑎𝑥𝐵 for the 
maximum 𝑒𝑣, and the middle value of the interval with index 𝑒𝑣 for the remaining situations. Third, using the best 
people (encoded individuals) in the neighbourhoods, RCEDUMDA estimates the univariate marginal distribution 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑖
𝑙
𝑖=1 ) scales each 𝑃(𝑥𝑖), and uses probability sampling to create new individuals (encoded individuals) 

based on this distribution. The scaling approach involves increasing the number of times each 𝑥𝑖 in the 𝛼 value. 
Hence, none of 𝑃(𝑥𝑖) is 0. 

III. TEST SYSTEM 

In the BISITE laboratory in Salamanca, Spain, a smart city's medium voltage distribution network was used for this 

case study [15]. A 30MVA substation, 15 DG units (13 PV plants and 2 wind farms) and four 1Mvar capacitor 

banks are all located in bus 1. There are twenty-five different loads on this network, ranging in consumption from 

office and residential buildings to a few service buildings like a hospital, Railway station, and shopping centre etc. 
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Fig.4. 13-Bus network system [11] 

Table 1. Energy Sources Specifications 

 

There are three 50kW fast charging stations and four 7.2kW slow charging stations available for EV charging. The 

13-bus distribution network's line diagram is shown in Fig. 4. Table 1 displays the energy resource specifications. 

Energy Resource
Prices (m.u./MWh) 

min-max

Capacity (MW)      

min-max

Forecast (MW)     

min-max
Units

PV 29-29 -- 0-0.81 13

Wind 31-31 -- 0.3-3.07 2

External supplier 50-90 0-30 -- 1

Storage (charge) 110-110 0-1.25 -- 2

Storage (Discharge) 90-90 0-1.25 -- --

EV (charge) 0-0 0.01-0.05 -- 500

EV (Discharge) 90-90 0.01-0.05 -- --

Demand Response 100-100 0-1.21 -- 25

Load 0-0 -- 0.01-2.38 25

Electricity Market buy & sell 29.85-104.61 -- -- 1
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IV. RESULT ANALYSIS 

This section compares the outcomes produced by the suggested algorithm RCEDUMDA [9] with the results 

produced by the competition organizers [11] using CL_HC2RCEDUMDA. Tables 2 and 3 display the 

CL_HC2RCEDUMDA benchmark results and benchmark situations, respectively. 

            Table 2. Benchmark Results of                                             Table 3. Benchmark Scenarios of                                        

                          CL_HC2RCEDUMDA                                                         CL_HC2RCEDUMDA 

 

 

The objective function, expected cost (Fex), value at risk, and conditional value at risk outcomes are provided by 
the benchmark results. The results of the benchmark scenario are assessed for the standard, minimum, maximum, 
and average scenario values. For the comparative analysis, the identical outcomes for RCEDUMDA will be 
acquired.  

            Table 4. Benchmark Results of                                             Table 5. Benchmark Scenarios of                                        

                          RCEDUMDA                                                                        RCEDUMDA 

 

 

Row OF Fex VaR CVaR

Run 1 15594.48 9358.87 3951.62 6235.61

Run 2 15679.27 9417.15 3958.81 6262.12

Run 3 15620.10 9467.70 3930.12 6152.39

Run 4 15544.04 9340.95 3946.99 6203.09

Run 5 16119.97 9196.15 4304.24 6923.82

Run 6 16054.55 9050.63 4124.40 7003.92

Run 7 15561.21 9398.95 3925.43 6162.26

Run 8 15562.64 9342.68 3942.34 6219.96

Run 9 16028.56 9114.93 4193.06 6913.63

Run 10 16176.06 9251.38 4206.05 6924.68

Run 11 16011.63 9085.83 4179.54 6925.80

Run 12 15534.86 9377.01 3923.87 6157.85

Run 13 15688.62 9425.84 3958.47 6262.79

Run 14 15633.79 9471.28 3925.49 6162.51

Run 15 15473.71 9340.90 3769.25 6132.81

Run 16 16177.47 9274.92 4109.01 6902.54

Run 17 16141.36 9178.41 4195.86 6962.95

Run 18 16869.67 9155.59 4535.79 7714.08

Run 19 16214.80 9292.96 4205.60 6921.83

Run 20 15476.93 9305.18 3671.44 6171.75

Row OF Fex VaR CVaR

Run 1 15285.20 9140.29 3920.45 6144.91

Run 2 15261.15 9114.30 3918.20 6146.85

Run 3 15303.05 9132.29 3926.66 6170.76

Run 4 15280.19 9132.17 3918.69 6148.02

Run 5 15252.22 9090.09 3924.81 6162.13

Run 6 15248.19 9104.20 3919.93 6143.99

Run 7 15263.43 9098.02 3925.36 6165.41

Run 8 15281.71 9055.85 3943.12 6225.85

Run 9 15287.04 9106.23 3929.83 6180.80

Run 10 15014.89 9325.96 3645.25 5688.93

Row
Avg 

Scenario

Min 

Scenario

Max 

Scenario

Std 

Scenario

Run 1 9909.63 8640.23 16630.45 2402.42

Run 2 9969.01 8680.72 16696.65 2406.78

Run 3 10015.29 8744.26 16720.93 2389.34

Run 4 9891.67 8615.33 16596.93 2399.60

Run 5 9781.41 8438.22 17429.75 2616.79

Run 6 9566.43 8360.80 17326.87 2507.46

Run 7 9944.63 8678.28 16675.74 2386.49

Run 8 9892.25 8608.44 16599.90 2396.77

Run 9 9666.69 8385.79 17375.70 2549.20

Run 10 9806.53 8513.47 17530.75 2557.10

Run 11 9634.19 8363.33 17330.28 2540.98

Run 12 9922.50 8649.63 16638.11 2385.55

Run 13 9977.46 8691.73 16705.27 2406.58

Run 14 10016.97 8750.70 16735.88 2386.53

Run 15 9848.91 8651.47 16628.89 2291.54

Run 16 9791.78 8567.55 17570.10 2498.10

Run 17 9728.79 8455.57 17444.82 2550.90

Run 18 9714.73 8400.78 18458.82 2757.57

Run 19 9848.10 8556.21 17572.91 2556.83

Run 20 9777.90 8638.34 16609.87 2232.08

Row
Avg 

Scenario

Min 

Scenario

Max 

Scenario

Std 

Scenario

Run 1 9685.79 8424.81 16396.27 2383.47

Run 2 9659.32 8387.90 16375.47 2382.09

Run 3 9679.15 8406.77 16389.05 2387.24

Run 4 9677.33 8405.51 16392.99 2382.40

Run 5 9636.05 8367.07 16354.44 2386.11

Run 6 9649.60 8387.83 16360.23 2383.15

Run 7 9644.08 8374.57 16362.27 2386.45

Run 8 9605.42 8322.33 16313.62 2397.25

Run 9 9653.21 8378.92 16367.92 2389.17

Run 10 9844.80 8625.88 15619.05 2216.16
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Table 4 & 5 shows the results of benchmark and scenario for RCEDUMDA respectively. The ranking index, 

standard deviation (PstdOF), minimum deviation (PminOF), maximum deviation (PmaxOF), variance (PvarOF) 

and average time are compared for both the algorithms is shown in table 6. 

Table 5. Benchmark Summary 

 

A lower ranking index and higher value of cost saving reflects that RCEDUMDA gives better results than 

CL_HC2RCEDUMDA. The time taken for the iteration is the only positive side of CL_HC2RCEDUMDA as 

compared to RCEDUMDA. 

 

Fig.5. Worst Case Scenario Comparison 

Run 11 15289.83 9124.93 3925.55 6164.90

Run 12 15287.60 9121.69 3927.43 6165.91

Run 13 15240.84 9085.82 3920.33 6155.02

Run 14 15297.15 9127.82 3928.42 6169.33

Run 15 15333.32 9127.08 3936.18 6206.24

Run 16 15304.53 9101.88 3938.39 6202.65

Run 17 15268.24 9092.39 3929.00 6175.86

Run 18 15246.33 9101.90 3917.42 6144.43

Run 19 15312.51 9123.38 3934.39 6189.13

Run 20 15249.59 9103.22 3918.32 6146.38

CL_HC2RCEDUMDA RCEDUMDA

Ranking Index 15858.18 15265.35

Pstd OF 362.91 63.95

Pmin OF 15473.71 15014.89

Pmax OF 16869.67 15333.32

Pvar OF 131705.45 4089.32

Avg Time 383.71 499.87

Run 11 9671.07 8401.44 16388.46 2386.56

Run 12 9668.36 8394.45 16383.36 2387.71

Run 13 9631.17 8359.93 16348.39 2383.39

Run 14 9674.83 8412.03 16382.83 2388.31

Run 15 9675.41 8396.91 16381.17 2393.03

Run 16 9650.91 8379.59 16353.38 2394.37

Run 17 9639.11 8366.80 16357.05 2388.66

Run 18 9646.54 8381.59 16359.75 2381.62

Run 19 9670.86 8398.36 16398.60 2391.94

Run 20 9648.32 8376.39 16363.62 2382.17
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Fig. 5 shows the comparison of the worst-case scenario among the algorithms RCEDUMDA and 

CL_HC2RCEDUMDA. The shorter bars indicate the worthiness of RCEDUMDA over CL_HC2RCEDUMDA 

algorithm. 

 

Fig.6. Bound Violations Comparison 

Similarly, fig.6 & 7 shows the comparisons of bound violation and run time respectively. In case of time taken to 

solve the iterations CL_HC2RCEDUMDA is better but RCEDUMDA take more time to solve them efficiently with 

better results. 

 

  Fig.7. Run Time Comparison 

As compared to the algorithm CL_HC2RCEDUMDA, RCEDUMDA algorithm demonstrated far better cost saving 

and profit maximization for aggregators, ranking index is lower and even in worst case scenario RCEDUMDA 

performed better. The future scope for this article can include the consideration of wind energy for the optimal 

planning of the micro grid [16], energy resources size optimization [17], smart metering [18] and EVs (Electrical 

Vehicles) [19] by using RCEDUMDA algorithm. 
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V. CONCLUSION 

Energy resource management for microgrid applications has been the main emphasis of this article. The challenge 

of optimizing renewable power generation under harsh conditions is recognized. The outcomes were attained in 

compliance with GECCO & IEEE WCCI 2022 guidelines and specifications. CL_HC2RCEDUMDA, an 

optimization technique, is compared with RCEDUMDA for the IEEE 13 bus system and was employed in the 

aforementioned event. Tests were conducted for OF value, ranking index, VaR, CVaR, and run time for both 

metaheuristic algorithms. Comparing RCEDUMDA to CL_HC2RCEDUMDA, a notable increase in grid operating 

resilience is seen. 
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