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1Jianqing Ye Prediction Model of Ancient Village 

Pottery Building Microspace Design Style 

by Integrating Machine Learning 

 

Abstract: - Microspace design styles on pottery fragments offer a captivating window into the artistic heritage and cultural practices of past 

societies. These intricate details and recurring patterns hold valuable clues about rituals, beliefs, and artistic expressions. However, existing 

approaches struggle to capture the relationships between design elements within a single piece. This limitation hinders the ability to capture 

the holistic meaning conveyed by the microspace design style. To overcome this limitation, this research proposes a novel approach called 

MoANN-DSOA for predicting microspace design styles based on ancient village pottery. MoANN-DSOA utilizes a Mosaic Attention Neural 

Network (MoANN) to analyze both the visual image and the relationships between design elements. This allows for a more detailed 

understanding of the artistic message encoded within each fragment. Additionally, a Dove Swarm Optimization Algorithm (DSOA) optimizes 

the MoANN architecture, potentially enhancing the accuracy of capturing intricate details. The proposed MoANN-DSOA method attains 

7.78%, 27.89% and 33.335% higher accuracy and 14%, 20.81% and 32.36% higher F-Score compared to the existing methods like 

Categorization and Retrieval of Painted Pottery with CNNs (CNN), Utilizing CNN-VGG16-VGG19 Approach for Distinguishing Surface 

Treatments in Wheel-Thrown Pottery (CNN-VGG16-VGG19) and Unsupervised Feature Extraction of Ceramic Profiles using a Deep 

Variational Convolutional Autoencoder (DVCA) respectively. By this, the proposed MoANN-DSOA methodology paves the way for efficient 

information extraction from pottery image, unlocking deeper understanding and facilitating the construction of more informed historical 

narratives.    

Keywords: Microspace design styles, ancient village pottery image, Dove Swarm Optimization Algorithm, Mosaic Attention 

Neural Network, Cultural Heritage. 

1. INTRODUCTION 

The artistic heritage of ancient villages holds a wealth of information about past cultures. Intricate details and 

recurring patterns found on pottery objects (pots, vessels, and bowls) hold valuable clues [1]. This concept is 

known as microspace design styles. Imagine these objects (pots, vessels, and bowls) were not simply functional 

vessels, but canvases for stories [2]. Decorative elements, filled with symbolic meaning, and crafted with distinct 

artistic choices, offer a window into the lives of these communities [3]. By meticulously analyzing these 

microspace design styles, researchers can gain valuable insights into the cultural practices and artistic expressions 

that shaped these ancient communities [4]. The recurring patterns, symbols, and design choices might offer clues 

about the villager’s rituals, beliefs, and symbolic systems [5-7]. Studying these styles can also reveal artistic 

techniques employed by the potters, preferred symbols or patterns used in decoration, or the evolution of artistic 

expression over time within the village [8]. Additionally, the pottery designs might showcase social hierarchies, 

reflect economic activities, or even hint at trade relations with neighboring communities [9]. In essence, 

microspace design styles serve as a window into the artistic heritage of past societies [10]. 

Traditional archaeological methods, such as analyzing pottery typology and decorative elements, offer valuable 

insights but can be time-consuming and subjective. Machine learning offers a promising alternative for objectively 

analyzing microspace design styles. Existing machine learning approaches, particularly those focused on image 

classification, have achieved remarkable success in various tasks [11-13]. However, these methods often struggle 

to capture the intricate relationships between different design elements within a single pottery piece [14-15]. These 

relationships are crucial for understanding the holistic meaning conveyed by the microspace design style [16]. 

This research addresses this limitation by proposing a novel approach that leverages a Mosaic Attention Neural 

Network (MoANN) optimized with a Dove Swarm Optimization Algorithm (DSOA). Unlike traditional image 
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classification models, MoANN can analyze both the visual image and the relationships between different design 

elements. This allows for a more nuanced understanding of the artistic message encoded within each piece. 

Furthermore, DSOA optimizes the MoANN architecture, potentially leading to improved accuracy and efficiency 

in capturing the intricate details of these design styles. 

By applying this optimized MoANN to a rich dataset encompassing design details and cultural context, this 

research aims to achieve more accurate and detailed insights into the cultural practices, artistic expressions, and 

social structures reflected in ancient village pottery. This has the potential to revolutionize archaeological research 

by offering a more sophisticated and objective approach. Accurately predicting these design styles can 

significantly benefit archaeologists by enabling them to efficiently extract a wealth of information from pottery, 

unlocking deeper understanding of past cultures and facilitating more informed historical narratives. The main 

contribution of this proposed MoANN-DSOA: Predicting Microspace Pottery Styles methodology is given below, 

➢ It creates a rich dataset of ancient village pottery with high-resolution images and detailed cultural 

context, which enables the MoANN-DSOA: Predicting Microspace Pottery Styles model to learn diverse 

styles and their significance. 

➢ It implements a pre-processing process with resizing, normalization, and data augmentation to ensure 

consistent image format, training stability, and generalizability for the MoANN model. 

➢ It introduces a new deep learning model with FDCT-WRP specifically designed for analyzing microspace 

design styles. MoANN utilizes the Fast Discrete Curvelet Transform with Wrapping (FDCT-WRP) for 

effective feature extraction, specifically designed to analyze microspace design styles by handling image 

data and relationships between design elements within the pottery. 

➢ It recognizes the potential to further enhance MoANN's performance by exploring the integration of a 

novel DSOA algorithm, which leads to even more accurate insights into cultural practices. 

➢ It offers a significant advancement in analyzing ancient village pottery. This approach has the potential 

to revolutionize archaeological research by efficiently extracting a wealth of information from pottery 

and unlocking deeper understanding of past cultures. 

The rest of the manuscript is as follows: Section 2 examines related work, highlighting limitations in analyzing 

microspace design styles. Section 3 details about proposed MoANN-DSOA: Predicting Microspace Pottery Styles 

methodology. Section 4 evaluates MoANN-DSOA's performance and presents experimental results. Finally, 

Section 5 concludes by summarizing our findings, acknowledging limitations, and suggesting future directions 

for this research on predicting microspace design styles in ancient village pottery. 

2. Related Works 

Numerous recent studies have investigated for predicting the design styles of ancient village pottery. Below are 

some of the recent studies closely related to this topic, 

In 2023, Zhao, X. et.al [11] investigated categorizing and retrieving pottery types using Convolutional Neural 

Networks (CNNs). Their approach involved training a CNN to extract feature vectors from pottery images. These 

feature vectors captured essential characteristics of the pottery, allowing for the calculation of similarity 

coefficients between the images. This enabled the CNN to categorize pottery based on cultural types. While the 

study achieved high precision, a potentially low F-score suggested a trade-off between correctly identifying 

pottery types. 

In 2022, Wilczek, J. et.al [12] have utilized Transfer learning approach for distinguishing Surface Treatments in 

Wheel-Thrown Pottery. They classified pottery images using three convolutional neural network (CNN) 

architectures: VGG16 and VGG19 pre-trained with transfer learning, and a custom CNN. However, the study 

achieved a low accuracy rate. 

In 2022, Cardarelli, L., [13] have suggested Unsupervised Feature Extraction of Ceramic Profiles using a Deep 

Variational Convolutional Autoencoder. Here, Deep Variational Convolutional Autoencoder was employed to 

extract features from drawings of archaeological ceramic profiles. Additionally, it utilized multivariate analysis 

for dimensionality reduction. However, the method achieved a low precision value. 
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In 2022, Wang, N., [14] presented LeNet image classification algorithm in fostering the innovative design of 

freshly painted pottery pieces. Here Majiayao colored pottery was utilized for LeNet image classification 

algorithm. It analyzed the pattern of pottery culture. It attains a low F-Score value with low error rate. 

In 2022, Anglisano, A. et.al., [15] investigated the effectiveness of supervised machine learning techniques for 

predicting the provenance (origin) of archaeological pottery fragments. They compared the performance of 

various classifiers, including weighted k-nearest neighbors (kkNN), random forest (RF), artificial neural network 

(ANN), linear discriminant analysis (LDA), and generalized linear models (GLM). However, their approach 

resulted in both high computation time and a high error rate, suggesting limitations in accurately identifying 

pottery origins using these methods. 

In 2021, Pawlowicz, L.M. and Downum, C.E., [16] explored the application of deep learning for classifying 

pottery types, using Tusayan White Ware, a specific type of ancient painted pottery from the American Southwest, 

as a case study. Their approach utilized convolutional neural network (CNN) models for image classification. 

While the study demonstrated the potential of deep learning in pottery classification, it also reported a high error 

rate, suggesting room for improvement in accuracy. 

3. PROPOSED METHODOLOGY 

In this section, the proposed MoANN-DSOA methodology for Predicting Microspace Pottery Styles is discussed. 

The block diagram of the proposed MoANN-DSOA methodology is given in Figure 1. The detail description 

about each stage is given below, 

Predicting Microspace Pottery Styles using Mosaic 

Attention Neural Network

Hyper parameter tuned by 

Dove Swarm Optimization 

Algorithm 

Zoomorphic Style 

Pre-processing phase

1. Resizing and Normalization

2. Data Augmentation 

Floral StyleGeometric Style

Image acquisition

Feature extraction phase

Fast Discrete Curvelet Transform with 

Wrapping  method

 

Figure 1: Block diagram of Proposed MoANN-DSOA methodology 

3.1 Image acquisition 

To explore microspace design styles based on ancient village pottery, this work employed a multifaceted data 

acquisition strategy. Collaborations with museums in prominent Taozhu cultural regions (Yellow & Yangtze River 
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Valleys) yielded high-resolution images of diverse ancient village pottery (pots, vessels, bowls). Archaeological 

institutions with Taozhu pottery collections or excavation experience in relevant sites further enriched the dataset 

with data on pottery origin (location, culture), types, and archaeological context (settlement type, social context). 

This multifaceted approach ensured a comprehensive dataset encompassing both pottery images and architectural 

styles. 

3.2 Pre-processing phase 

To optimally identify design styles from ancient pottery images, this work employs a crucial pre-processing stage. 

This stage ensures the deep learning model receives data in a consistent and well-formatted manner. To achieve 

this, two core techniques for pre-processing were utilized, such as Resizing and Normalization. Along with that, 

the Data Augmentation process is also employed. The detail description about pre-processing process is given 

below,  

Step 1: Resizing and Normalization 

For Resizing process, all pottery and microspace design input images are converted to a standard dimension, based 

on the input requirements of proposed MoANN. This guarantees a consistent input format for all images. Then 

for Normalization process, pixel values within the resized images are transformed to a specific range, typically 

between 0 and 1 or -1 and 1. This step improves the training stability and efficiency of the proposed MoANN.  

Step 2: Data Augmentation  

During data augmentation process, it enriches the training normalized image by applying random transformations. 

The random transformations such as rotations (90 degrees left/right) and flips (vertical/horizontal) create 

variations in the input pottery and microspace design images. Fundamentally, data augmentation expands the 

dataset for training without requiring additional image collection. By encountering a wider range of variations 

during training, the model learns features robust to slight changes in orientation or mirroring, common in real-

world pottery images. This ultimately leads to a more generalizable model, capable of making accurate design 

style predictions based on unseen pottery data. 

3.3 Feature extraction phase 

The feature extraction phase utilizes the Fast Discrete Curvelet Transform with Wrapping (FDCT-WRP) method. 

This method is particularly effective for capturing the intricate design styles present in ancient village pottery. It 

exploits the curvelet transform's ability to capture curvilinear features. Mathematically, this feature extraction 

finds the similarity between the pre-processed ancient village pottery image represented as  I (x,y)   and the 

curvelet basis function , ,p q r  at a specific scale ( p ), position ( q ), and orientation ( r ). It is given in equation 

(1) 

( ) , ,, , I (x,y), (x,y)p q rCC p q r =                                                                                                    (1) 

Where ( ), ,CC p q r   denotes the curvelet coefficient representing the similarity between the image and the 

curvelet basis function at a particular scale, position, and orientation [17]. However, FDCT-WRP uses the Discrete 

Curvelet Transform (DCT) for a more efficient implementation and it is given in equation (2) 

( )
1 1

1 1 , , 1 1

,

, , I ( , ) ( , )D D

p q r

a b

CC p q r a b a b
 

=                                                                                       (2) 

Here, ( ), ,DCC p q r


 represents the discrete curvelet coefficient, 1 1I ( , )a b represents the pixel intensity value 

at a specific location 1 1( , )a b  in the pre-processed image, and , , 1 1( , )D

p q r a b


 signifies the discrete curvelet 

waveform.  
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To achieve faster computations, FDCT-WRP employs a series of steps. Initially, 2D FFT is used which converts 

the ancient village pottery image from the spatial domain (pixel intensities) to the frequency domain. Next 

Windowing focuses the analysis on specific scales and orientations by applying a window function in the 

frequency domain. Next Wrapping, here the curvelet domain exhibits symmetries that can be exploited for 

efficiency. This step re-indexes the product from the previous step to take advantage of these symmetries. Then 

Inverse FFT transforms the data back from the frequency domain to the spatial domain, resulting in the final 

discrete curvelet coefficients. Finally Feature Vector Creation was used, here FDCT-WRP coefficients for all 

scales and orientations are combined into a single feature vector for further analysis. 

Then the number of scales ( Scale ) is determined by image size r cm m and it is represented as equation (3) 

( )( )2log min , 3r cScale ceiling Function m m = −                                                                         (3) 

By following these steps, FDCT-WRP efficiently extracts features that capture the curvilinear characteristics 

present in ancient village pottery and microspace design images. These features are given as the input for proposed 

Mosaic Attention Neural Network (MoANN). 

3.3 Predicting Microspace Design Style Phase 

In this section, the proposed Mosaic Attention Neural Network (MoANN) is discussed to predict the design style 

for microspace design based on ancient village pottery. It tackles the challenge of understanding the intricate 

relationships between design elements within a single pottery image. The Network Architecture of MoANN can 

be visualized as a multi-stage architecture, which consists of Input Layer, Superpixel Segmentation, Mosaic 

Attention Module, Relationship Modeling Layer, and prediction layer. 

In Input layer, it receives a pre-processed pottery image represented as a 3D tensor  of dimensions ( ), ,Ht Wd Cl

, where Ht  and Wd  represent the pre-processed image height and width, and Cl  denotes the number of color 

channels. In the Superpixel Segmentation layer, the proposed MoANN method begins by segmenting the pre-

processed image into smaller, more manageable regions called superpixels. This is achieved using simple linear 

iterative clustering (SLIC) algorithm, which generally works by iteratively grouping neighboring pixels with 

similar characteristics. These superpixels become the building blocks for further analysis in the Mosaic Attention 

Module. 

The Mosaic Attention Module is responsible for identifying design elements and their relationships within a 

superpixel. This module is armed with knowledge about common design symbols found in Taozhu pottery culture. 

It utilizes a set of pre-defined design element priors. These priors, acting as a reference guide, are encoded as 

reference feature vectors
Dim( Real )jP  . Where Real signifies the set of real numbers (index of the design 

element), Dim  represents the dimensionality of the feature space. During the superpixel feature analysis stage, 

MoANN leverages these priors to recognize potential design elements within superpixels. Feature extraction using 

FDCT-WRP is applied to each superpixel, resulting in feature vectors denoted by (
Dim( Real )iFeature   , 

where i  denotes the superpixel [18]. To assess the similarity between a superpixel's features and a particular 

design element prior, MoANN calculates a similarity score using Euclidean distance. This distance function, 

( )
2

distance ,i j i jFeature P Feature P= − , measures the difference between the superpixel's feature vector 

( iFeature ) and the design element prior ( jP ). A lower distance indicates a closer match between the superpixel's 

features and the corresponding design symbol. 

Generally, Not all superpixels hold equal weight in determining the overall design style. So, MoANN incorporates 

an attention mechanism to identify the most informative superpixels likely containing crucial design elements. 

This mechanism assigns an attention weight ( iaw ) to each superpixel based on the relevance of its features to the 

design style. It is represented in the following equation (4) 
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( )( )1 2softmax , ,......,T

i i a Saw Feature Weight Feature Feature Feature=                                     (4) 

Where 
T

iFeature  represents the transpose of the feature vector iFeature  for superpixel i  . aWeight   is a 

weight matrix learned by the network during training. It has dimensions ( SDim Dim ), where Dim  is the 

dimensionality of the feature space and SDim   is the total number of superpixels S   in the image. 

( )1 2, ,......, SFeature Feature Feature represents the concatenation of feature vectors for all superpixels in the 

image. The SoftMax function ensures that the attention weights sum to 1, indicating the relative importance of 

each superpixel based on its features and their alignment with the design element priors. Superpixels with features 

closely matching the priors will receive higher attention weights, signifying their potential role in defining the 

pottery's style.  

This information is then processed in the subsequent Relationship Modeling Layer.  It analyzes the connections 

between design elements found within superpixels, providing a deeper understanding of the overall artistic 

language.  This layer constructs a graph where nodes represent superpixels and edges connect them, capturing the 

relationships between design elements across the image. Then the strength of the connection ( ijEW ) between 

superpixels i   and j   is determined by their spatial proximity ( ( , ))spatial i jFeature V V   and design element 

similarity ( ( , ))design i jFeature aw aw  . Spatial proximity is calculated as a function of the physical distance 

between superpixels. Design element similarity leverages the attention weights ( iaw ) assigned by the Mosaic 

Attention Module, reflecting the alignment of features in superpixels i   and j   with design element priors. A 

hyperparameter ( ) controls the relative importance of these factors in the overall edge weight with equation (5) 

( )( , ) 1 ( , )ij spatial i j design i jEW Feature V V Feature aw aw =  + −                                                      (5) 

Information about design elements flows across the graph. Each superpixel i iteratively updates its representation 

( ih
) by considering weighted messages ( ijmessage

) from its neighbors ( j ). The weight ( ijaw ) of a message 

reflects its importance and is calculated using a learnable weight matrix ( aWeight ) and activation function (

) is represented in the following equation (6) 

( )( )LeakyReLU ,T

ij a i jaw Weight CONCAT h h  = 
 

                                                                   (6) 

Where ( ),i jCONCAT h h represents the concatenation of the current superpixel's representation        ( ih ) and 

its neighbor's representation ( jh ). These scores are then normalized ( ijNWM ) using SoftMax to ensure they 

sum to 1, indicating the relative importance of each neighbor's message with equation (7) 

 SoftMax  ij j ijNWM aw=                                                                                                            (7) 

The normalized attention weight ( ijNWM ) is then applied to the message ( ijmessage ) before it's used to update 

the superpixel's representation ( ih
) with equation (8) 

ij ij ijmessage NWM message =                                                                                                       (8) 

Finally, an aggregation function ( AF ) combines the weighted messages using equation (9) 
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( ) ( {  |  ,  V Edge } )i ji j ih AF message V =                                                                                 (9) 

Finally, the output layer predicts pottery design style. It analyzes enriched superpixel data ( ih
)  that captures 

design elements, relationships, and artistic language. This data can be processed individually using SoftMax 

function to predict a style (Geometric, Floral, Zoomorphic) for each superpixel, or combined using SoftMax 

function to generate overall probabilities for the entire image. By considering relationships between design 

elements through the Relationship Modeling Layer's graph, the proposed MoANN method predicts the dominant 

microspace design style for the pottery image. 

3.3.1 Hyperparameter Optimization for MoANN using DSOA: 

The effectiveness of MoANN in capturing intricate design details from ancient village pottery depends on optimal 

hyperparameter configuration. These hyperparameter settings, such as learning rate, number of hidden layers, and 

neurons per layer, significantly impact the network's ability to capture intricate design details, affecting both 

accuracy and efficiency. Traditional manual tuning is a time-consuming process with no guarantee of finding the 

best configuration. 

So, Dove Swarm Optimization Algorithm (DSOA) offers a solution inspired by the foraging behavior of doves. 

Each dove represents a candidate hyperparameter configuration for MoANN. DSOA initializes a flock of "doves" 

with random hyperparameter settings within the defined search space. 

 Then each dove's fitness is evaluated by training MoANN with its corresponding hyperparameter configuration 

and measuring performance on the validation set is denoted as ( )( )Fitness Function Z . Here, Z represent a 

hyperparameter configuration with a specific learning rate, a certain number of hidden layers, and a particular 

number of neurons per layer.  

Generally, Doves keep track of their performance compared to others. Here "satiety degree"                (
t

vSD ) is 

calculated for each dove, reflecting its relative performance (higher satiety indicates a configuration closer to the 

optimal settings). This update considers both their past performance and the current performance landscape of the 

flock with epoch t . It is represented in equation (10-11) 

( ) d =arg max Fitness Function Z ; 1,2,......,t t

v v for v P=                                                           (10) 

( ) ( )( )1 v HFFitness Function Z Fitness Function Zt t

v vSD SD e
−−=  +                                                                       (11) 

Where    is a learning rate parameter that controls the influence of previous satiety on the update. 

( )HFFitness Function Z  represents the fitness value of the dove with the highest fitness at epoch t . 

Then doves update their positions (hyperparameter settings) based on social learning. They are influenced by their 

own past performance and the location of the dove with the highest satiety dt

satisfied   (best performing 

configuration) [19]. The influence of the top performer is controlled by a social influence term. It is 

mathematically represented in equation (12-13) 

 1d =arg max ; 1,2,......,t t

satisfied v P vSD for v P  =                                                                          (12) 

( )1Z Z Z Z
Satisfied

t t t t t

v v v d v + = +  −                                                                                                    (13) 



J. Electrical Systems 20-6s (2024): 425-436 

432 

Where Z
Satisfied

t

d signifies the position (hyperparameter settings) of the dove with the highest satiety ( dt

satisfied ) at 

epoch t .   represents the learning rate controls the overall step size of the update. A higher learning rate leads 

to larger movements towards successful doves. 
t

v  is a social influence term determining how much dove v  is 

influenced by the best performer ( dt

satisfied ). The process iterates until a termination criterion ( )1t t= + is met 

till achieving a desired performance level. 

By leveraging the collective intelligence of the flock, DSOA efficiently explores the hyperparameter space, 

guiding the search towards configurations that improve MoANN's ability to analyze pottery designs. This allows 

for more accurate and efficient extraction of intricate details from ancient village pottery. 

4. Results and Discussion 

This section delves into the performance of the proposed MoANN-DSOA methodology for Predicting Microspace 

Pottery Styles in ancient village pottery. The experiment was conducted on a system equipped with an Intel Core 

i5, 2.50 GHz CPU, 8GB RAM, and running Windows 7. The initial dataset consisted of 7,358 high-resolution 

pottery images. Data preprocessing was performed in Python using libraries like OpenCV for image resizing and 

normalization. Data augmentation techniques were employed in Python to enrich the dataset and improve model 

generalizability. This process increased the dataset size to 58,864 high-resolution pottery images. The training set 

is used to train the MoANN-DSOA model; the validation set is used for hyperparameter tuning with DSOA 

optimizing a subset of MoANN's hyperparameters, while leveraging fixed settings for core functionalities; and 

the testing set is used for final evaluation. 

Following this, evaluation metrics such as Accuracy, F-Score, Precision and Recall are analyzed. The performance 

of the proposed MoANN-DSOA: Predicting Microspace Pottery Styles methodology is then assessed and 

compared with existing methods like Categorization and Retrieval of Painted Pottery with CNNs (CNN) [11], 

Utilizing CNN-VGG16-VGG19 Approach for Distinguishing Surface Treatments in Wheel-Thrown Pottery 

(CNN-VGG16-VGG19) [12] and Unsupervised Feature Extraction of Ceramic Profiles using a Deep Variational 

Convolutional Autoencoder (DVCA) [13] respectively. 

4.1 Performance measures  

The confusion matrix visually represents the number of correct (True Positives) and incorrect predictions (False 

Positives, False Negatives) for each style category. These counts from the confusion matrix are then used to 

calculate scaled performance metrics like accuracy, precision, recall, and F1-score. 

➢ True Positive (TP): These represent the pottery pieces where the model correctly predicted (particular) 

style, and the actual style according to the ground truth was also that (particular) style. 

➢ False Positive (FP): These represent the pottery pieces where the model incorrectly predicted (particular) 

style, while the actual style according to the ground truth was different style. 

➢ False Negative (FN): These represent the pottery pieces where the model failed to predict (particular) 

style correctly, while the actual style according to the ground truth was (particular) style. The model 

might have predicted other style. 

True Negative (TN) is not applicable in multi-class classification. 

4.1.1 Accuracy: It measures the overall proportion of pottery pieces where the predicted style matches the ground 

truth. This is computed via following equation (14) 

( )Sum of True Positives across all Style
Accuracy=

Total Samples
                                                                (14) 

4.1.2 Precision: It reflects the model's ability to identify true positives for a specific style (avoiding false 

positives). This is computed via following equation (15) 
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( )
TP for that Style

Precision (for particular Style)=
TP for that Style+FP for that Style

                                   (15) 

4.1.3 Recall: It indicates the model's success in capturing all instances of a particular style (avoiding false 

negatives). This is scaled via equation (16) 

( )
TP for that style

Recall (for a specific style)=
TP for that style+FNfor that style

                                            (16) 

4.1.4 F Score: It is a mean harmonic of precision and recall, providing a balanced view of model performance. 

This is determined by equation (17) 

2 (Precision Recall)
FScore =

(Precision + Recall)

 
                                                                                             (17) 

4.2 Performance Analysis 

The proposed MoANN-DSOA methodology for Predicting Microspace Pottery Styles was evaluated on a testing 

set containing approximately 17,658 images (from augmented dataset of 58,864 images). The confusion matrix 

for proposed MoANN-DSOA: Predicting Microspace Pottery Styles methodology is given in Table 1. 

Table 1: Confusion matrix 

Predicted Style Geometric Floral Zoomorphic Total 

Geometric (Actual) 5862  11  24 5897 

Floral (Actual) 7 5881  17 5905 

Zoomorphic (Actual) 12 9 5835 5856 

Total 5881 5901 5876 17,658  

 

Figure 2-5 shows the performance of the proposed MoANN-DSOA methodology to the existing method such as 

CNN [11], CNN-VGG16-VGG19 [12] and DVCA [13] respectively. 

Figure 2 shows the accuracy analysis of Pottery Style Prediction. The proposed MoANN-DSOA method shows 

significantly higher accuracy compared to existing methods for all three pottery styles (Geometric, Floral, and 

Zoomorphic). The proposed MoANN-DSOA method attains 7.83%, 38.59% and 21.02% higher accuracy for 

Geometric Style; 6.32%, 26.12% and 44.73% higher accuracy for Floral Style; 9.19%, 18.97% and 34.24% higher 

accuracy for Zoomorphic Style compared to the existing method such as CNN, CNN-VGG16-VGG19 and DVCA 

respectively. These results indicate that MoANN-DSOA predicts pottery styles more accurately than the other 

methods. 

 

Figure 2: Accuracy Analysis of Pottery Style Prediction 
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Figure 3 shows the Precision analysis of Pottery Style Prediction. The proposed MoANN-DSOA method again 

outperforms existing methods in precision for all pottery styles. The proposed MoANN-DSOA method attains 

11.29%,47.05% and 18.19% higher precision for Geometric Style; 20.71%,42.41% and 12.87% higher precision 

for Floral Style; 25.603%, 37.06% and 21.05% higher precision for Zoomorphic Style compared to the existing 

method such as CNN, CNN-VGG16-VGG19 and DVCA respectively. High precision suggests that the proposed 

MoANN-DSOA method classifies a pottery piece into a particular style compared to other methods. 

Figure 4 shows the Recall analysis of Pottery Style Prediction. The proposed MoANN-DSOA method attains 

18.45%, 25.703% and 15.54% higher recall for Geometric Style; 36.32%, 21.81% and 55.71% higher recall for 

Floral Style; 56.61%,27.81% and 18.1% higher recall for Zoomorphic Style compared to the existing method such 

as CNN, CNN-VGG16-VGG19 and DVCA respectively. Like accuracy and precision, the proposed MoANN-

DSOA method demonstrates considerably higher recall for all pottery styles. High recall means proposed 

MoANN-DSOA method is more effective in identifying all instances of a particular style, minimizing false 

negatives. 

 

Figure 3: Precision analysis of Pottery Style Prediction 

 

Figure 4: Recall analysis of Pottery Style Prediction 

Figure 5 shows the F-Score analysis of Pottery Style Prediction. The proposed MoANN-DSOA method attains 

12.67%,22% and 26.74% higher F-Score for Geometric Style; 15.86%,19.906% and 35.94% higher F-Score for 

Floral Style; 13.46%, 20.52% and 34.41% higher F-Score for Zoomorphic Style compared to the existing method 

such as CNN, CNN-VGG16-VGG19 and DVCA respectively. The F1-score, combining precision and recall, 

highlights MoANN-DSOA's overall superior performance in both identifying true positives and avoiding false 

positives/negatives. 

The proposed MoANN-DSOA methodology demonstrates promising results for predicting microspace design 

styles based on ancient village pottery. A key strength lies in its Mosaic Attention Module, which focuses on 

identifying design elements and their relationships within the pottery image. This allows MoANN-DSOA to 

capture the overall design style more comprehensively compared to methods that might only focus on individual 

features. Additionally, the data augmentation process used in MoANN-DSOA likely contributes to its robustness 

against slight variations in pottery images. 
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Figure 5: F-Score analysis of Pottery Style Prediction 

While current results are promising, future work can further enhance MoANN-DSOA's capabilities. One potential 

direction involves incorporating 3D scans of pottery to capture the full design elements in three dimensions, 

potentially leading to even more accurate style prediction. Additionally, investigating the application of MoANN-

DSOA to study the evolution of design styles over time could provide valuable insights into cultural and artistic 

development. By addressing these future directions, MoANN-DSOA has the potential to revolutionize 

archaeological research, offering a robust and efficient approach to unlocking the wealth of information hidden 

within ancient village pottery. This can significantly benefit archaeologists by enabling them to extract deeper 

cultural understanding and inform more comprehensive historical narratives. 

5. Conclusion 

This research presented MoANN-DSOA, a novel approach leveraging a Mosaic Attention Neural Network 

(MoANN) optimized by a Dove Swarm Optimization Algorithm (DSOA), for predicting microspace design styles 

based on ancient village pottery. MoANN tackles the challenge of understanding complex relationships between 

design elements within a single pottery image, while DSOA optimizes MoANN for better accuracy and efficiency. 

The proposed methodology offers several advantages. A rich dataset with cultural context empowers MoANN-

DSOA to learn diverse styles. Robust pre-processing techniques ensure consistent image format and training 

stability. FDCT-WRP feature extraction effectively captures intricate design styles. Finally, the Mosaic Attention 

Module focuses on identifying design elements and their relationships, leading to a more comprehensive 

understanding of the overall design style. The proposed MoANN-DSOA method attains 19.2%,42.17% and 

17.37% higher precision value and 37.13%, 25.1% and 29.78% higher recall value compared to the existing 

method such as CNN, CNN-VGG16-VGG19 and DVCA respectively. Future research can further enhance 

MoANN-DSOA's capabilities. Incorporating 3D pottery scans could potentially lead to even more accurate style 

prediction, paving the way for a deeper understanding of ancient cultures and artistic traditions. 
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