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Abstract: - An effective key vocabulary extraction is significant for English Language Learning, assisting the learners to achieve 

proficiency in English. However, the process of vocabulary extraction is often challenging and multifaceted, leading to inaccurate 

vocabulary acquisition, which reduces the learner's proficiency. To address these issues, we presented a novel key vocabulary extraction 

using the combination of Radial Basis Function Neural Network (RBFNN) and Emperor Penguin Optimizer (EPO). The primary objective 

of this research is to identify the most relevant vocabulary from the huge English language corpus to assist learners in improving their 

proficiency levels and learning process. The proposed work commences with the collection of English corpus and the collected database 

undergoes pre-processing steps like tokenization, stop word removal, and stemming to improve the efficiency of subsequent analysis. Then, 

the developed EPO-RBFNN was designed to extract the most informative and relevant features from the pre-processed database. The 

RBFNN module was trained using the pre-processed database to learn and capture the semantic patterns and interconnections within the 

corpus, while the EPO was employed for selecting the vocabulary sequence considering their relevance and importance in English learning. 

The proposed framework was implemented in the Python tool, and the results are evaluated in terms of accuracy, precision, recall, and f-

measure. Furthermore, a comparative assessment was made with existing vocabulary extraction methodologies to validate the outcomes. 

The comparative analysis showcases that the proposed strategy outperformed the conventional models, making it a suitable solution for key 

vocabulary extraction.     

Keywords: Radial Basis Functional Neural Network, Heap-based Optimizer, English Language Learning, Key Vocabulary 
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1. INTRODUCTION 

In recent years, the data management of education resources has transitioned progressively towards automated 

systems. The evolution of web-based educational resources significantly enhanced the data management level 

and service capabilities [1]. Vocabulary is one of the fundamental resources of the English language, hence 

teaching vocabulary is one of the key ways of teaching the English language [2]. However, the increasing 

dependence on automated data management in the educational field demands an advanced technique for 

extracting and capturing key vocabulary effectively for enhancing English learning. Vocabulary extraction is the 

process of identifying the most important vocabulary, which enhances the process of English learning [3]. The 

conventional process of vocabulary extraction depends on the categorization of words done by teachers or 

trainers, which is time-consuming and personalized. This creates a demand for automatic vocabulary extraction 

approaches for effectively identifying key vocabularies from the large corpus data.  

The automatic algorithms use advanced techniques like natural language processing (NLP), artificial 

intelligence, data analytics, etc., to process the large corpus of data and extract words, that are more relevant and 

significant for English language learning [4]. These techniques analyze the textual data available online and 

extract the key vocabulary. Also, it extracts and identifies domain-specific terms relevant to different 

educational disciplines [5]. By automating this identification process aids in allocating time and resources more 

effectively in online English learning. In addition, it offers more personalized learning experiences and 

improves the English proficiency level of individual learners [6]. Many researches are conducted using these 

advanced techniques for extracting keywords and phrases to improve the proficiency level of English learners.  

In [9], a study developed a supervised algorithm for automatic keyword extraction from a single document. In 

this algorithm, the text was modeled as a complex network, and the feature sequence was constructed by 

capturing select node properties from it. Further, the node properties are examined using an unsupervised 

algorithm, and a graph-assisted keyword extraction technique was deployed for differentiating keywords and 
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non-keywords. In addition, the training sequence was constructed from the feature sequence by allocating a 

label to each candidate keyword based on whether the candidate is listed as a gold-standard keyword or not. 

This system utilizes two public databases from the scientific domain for training and is validated using three 

unknown scientific corpora. However, this system is dependent on domain and language. In [10], the author 

developed a vocabulary extraction algorithm for improving English vocabulary online teaching using the 

application of deep learning and a target visual identification algorithm. The deep learning approach uses non-

linear mapping functions to determine high-level abstract representation of textual data. By capturing attributes 

from data, the identifiable elements in the textual information are tracked and extracted. The implementation 

outcomes suggest that it offers 90% accuracy in extracting key vocabulary, and also assists the student in 

improving the English vocabulary knowledge. However, the acceleration of the training process is still a 

concern.  

In [12], an innovative feature extraction algorithm using deep learning to capture the relevance of words in the 

English corpus. This study develops a multi-modal neural system for analyzing the features in the corpus. The 

primary concern of this research is to resolve the challenges in vocabulary segmentation by analyzing the 

semantic interconnections within the document. This study uses  BI-GRU (Bidirectional Gated Recurrent Unit) 

for English word segmentation and uses the CRF (Conditional Random Field) model to annotate sentences in 

sequence. The implementation results suggest that it improved the document processing speed by 1.94 times 

compared to the existing techniques and enhanced the effectiveness of word segmentation processing. Although 

various studies are developed for extracting the keywords or key vocabularies from the large document corpus, 

they face challenges like domain dependency, high computational complexity, large training time, inaccurate 

extraction, etc. To resolve these issues, we developed an innovative hybrid key vocabulary extraction algorithm 

using a combination of deep learning and meta-heuristic optimization algorithms. The utilization of deep 

learning captures the semantic relations within the textual data in the corpus, while the optimization algorithm 

enables to selection of the most relevant and optimal vocabulary sequence for enhancing English vocabulary 

learning.  

The enduring sections of the article are organized as follows: section 2 presents the system model and its 

problem statement, section 3 illustrates the developed strategy, section 4 depicts the results of the developed 

work, and section 5 provides the conclusion of the research.  

2. SYSTEM MODEL AND PROBLEM STATEMENT 

English vocabulary learning is the basic aspect of improving language proficiency. Key vocabulary extraction 

involves identifying the most significant and relevant vocabulary from a large textual corpus, assisting the 

learners to focus on the most important words for learning. Typically, the trainers or teachers identify the 

keywords or vocabulary. This type of vocabulary selection is more personalized, and may adversely influence 

the knowledge of the learners. Hence, the automation of this process is essential for identifying and prioritizing 

key vocabularies for learners. The general system model comprises an English corpus, pre-processing module, 

key vocabulary extraction module, and user interface. Initially, the collected English corpus data was pre-

processed using the NLP steps to improve the efficiency of further analysis. The vocabulary extraction 

algorithm module analyzes the contextual relevance, semantic relations, and correlations to identify words 

significant for understanding the document. Finally, these vocabularies are ranked based on their relevance to 

the text. Currently, advanced techniques such as artificial intelligence, deep learning, and machine learning 

algorithms are employed for automating the vocabulary extraction process. However, handling large volumes of 

English corpus is difficult and complex, making them ineffective. Moreover, training these models is complex 

and they need fine-tuning. Also, the selection of an optimal sequence of vocabularies is still a concern because 

of the diverse nature of language and the varying needs of individual learners. To resolve these challenges, we 

proposed an innovative algorithm to automate the extraction of key vocabulary. The proposed strategy combines 

the efficiency of deep learning and a meta-heuristic optimization algorithm for optimally selecting the key 

vocabulary sequence from the large English document corpus. Through this research, we aim to assist English 

vocabulary learners by identifying and prioritizing the most relevant and significant words to enhance their 

learning process.  
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3. PROPOSED EPO-RBFNN FOR KEY VOCABULARY EXTRACTION 

This study proposed an innovative algorithm for extracting key vocabulary from the large English corpus 

database to enhance the proficiency level of English. The developed algorithm combines the Radial Basis 

Functional Neural Network (RBFNN) and Emperor Penguin Optimizer (EPO) for extracting the key vocabulary. 

The proposed methodology follows three steps: data collection, pre-processing, and vocabulary extraction. In 

the data collection phase, we accumulate the English corpus dataset and train the system. In the pre-processing 

phase, the collected dataset undergoes steps like tokenization, stop word removal, and stemming to enhance the 

quality of the dataset for further analysis. In the vocabulary extraction phase, we integrate the proposed EPO-

RBFNN for extracting and capturing the most relevant and important vocabulary. The RBFNN was trained 

using the dataset to understand the correlation and significance of the vocabularies within the corpus, while the 

EPO was employed for selecting the most relevant vocabularies by analyzing the learned RBFNN outcomes. 

Figure 1 presents the architecture of the developed methodology.  

3.1 Data collection  

The proposed study commences with the collection of the English language corpus database. This database 

includes textual information written in English, which can be collected from diverse sources through assessment 

or from literature. The presented study utilized 100 English literature randomly selected from the British 

Academic Written English (BAWE) Corpus [13]. This corpus database contains 672 keywords, and the content 

of the literature is presented in Table 1. 

Table 1: Content of the input English database  

Subject Number of documents  

Military  6 

Electrical engineering  9 

Chemical engineering  7 

Biology  12 

Power engineering  10 

Chemical engineering  7 

Natural science  15 

Mechanical engineering  11 

Water conservancy project 8 

Mineral Engineering  10 

Architecture science  12 
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Figure 1: Architecture of the proposed framework 

3.2 Pre-processing 

In NLP, pre-processing includes three major steps namely, tokenization, stop-word removal, and stemming, 

which are significant for improving the quality of the raw text data.  

Tokenization: 

Tokenization indicates the process of splitting the text into a sequence of meaningful pieces, which are 

commonly referred to as tokens. This step enables to standardization and structure of the textual corpus data and 

makes them effective and reliable for further analysis. Depending upon the task, we can divide the textual data 

into words or subwords, which assists in analyzing the intricate patterns and semantic relations within the 

corpus.  

Stop-word removal: 

Stop-word removal is one of the common steps in NLP in which the stop words in the English language 

including "a," "the," "are," "is," etc., are removed from the tokenized dataset. This step helps to identify the 

words, which are not relevant and significant for English vocabulary learning, making the extraction algorithm 

more effective. Moreover, the removal of the stop-words makes the database more concise; thereby reducing the 

computational time and improving the processing speed of the system.  

Stemming: 

In NLP, stemming defines the process of minimizing a word to its root word (stem) by eliminating the suffixes 

or prefixes from the words. This process enables the transformation of the word to its common form, 

minimizing the dimensionality of the database and enhancing the accuracy of data analysis for key vocabulary 

extraction.  

The utilization of these steps in data pre-processing standardizes the textual corpus data, and makes them more 

effective and reliable for further analysis.  

3.3 Radial Basis Function Neural Network 

RBFNN is an artificial neural network commonly deployed for approximation problems. The unique feature of 

this network is its universal approximation and quick learning ability. This is a simple feed-forward neural 
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network with three important layers. Each layer performs a certain function depending upon the task. In the 

proposed work, we utilized RBFNN for understanding the semantic interconnections within the pre-processed 

corpus database for extracting the most significant vocabularies. The first layer is the input layer, which accepts 

the input of the network. The second layer is the hidden layer, which contains numerous RBF non-linear 

activation units for performing the above-mentioned task. The final layer is the output layer, which produces the 

final results of the network. The non-linear activation functions in RBFNN are typically executed as Gaussian 

functions. The structure of the RBFNN is presented in Figure 2.  

 

Figure 2: Structure of RBFNN 

In the developed work, the input layer accepts the pre-processed corpus database as input. The neuron in the 

input layer transforms the input data into a suitable format for further analysis. The hidden layer consists of 

several neurons, which apply a non-linear transformation to the input data using an RBF (Gaussian function). 

This layer analyzes the input database and converts it into a high-dimensional data sequence in which the 

semantic interconnections within the input corpus are more apparent. Each neuron in the hidden layer evaluates 

its output considering the similarity between the input data sequence and its associated center (Gaussian 

functions). The outcome of the 
tha activation function in the hidden layer is determined based on the distance 

between the input pattern and the center and is expressed in Eqn. (1). 
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Where aG  represents the Gaussian activation function, 
acd −  indicates the Euclidean distance between the 

input data d  and the center ac , and bw denotes the width of the hidden neuron. This output provides the 

correlations and semantic interrelationships within the corpus data, and it is fed into the output layer of the 

network. Each neuron in this layer combines the outputs of the neurons in the hidden layer to produce the final 

output, which indicates the feature vector representing the significance of each vocabulary within the corpus. 

The final output of the network is represented in Eqn. (2).  
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Where ny  defines the output of the nth neuron in the output layer, gbnw denotes the weight connecting the 
thb

neuron in the hidden layer to the nth neuron in the output layer, and m represents the number of neurons. At 

each iteration, RBFNN is trained to produce the feature vector by iteratively adjusting its parameters such as the 

width of the neuron, weight, center, etc. The training of the system is terminated when the calculation error is 
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less than 0.01 or when it reaches the maximum iterations. The calculation error is determined in terms of Mean 

Square Error, and it is minimized by using the backpropagation algorithm.  

3.4 Emperor Penguin Optimizer  

The EPO is a nature-inspired algorithm developed based on the huddling characteristics of emperor penguins 

(EPs) for solving optimization problems. Generally, the EPs travel in rafts/colonies for foraging, and this unique 

feature found in these animals during foraging is defined as huddling characteristics. The major objective of this 

algorithm is to determine an effective mover from the swarm. In the presented study, we applied EPO to select 

the key vocabulary from the English corpus for improving English vocabulary learning. Here the EPs define the 

sequence of vocabularies, and the objective is to select the vocabulary with greater correlation score. A 

correlation score indicates the significance of the word to improve English vocabulary learning. If the 

correlation score is high for a word, then the word will be selected, and vice versa. The formula for calculating 

the correlation score is expressed in Eqn. (3). 
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Where u  indicates the frequency of the word, k represents the number of words, and v denotes the 

effectiveness of the word in improving English vocabulary learning. The optimal selection of vocabulary 

commences with the random initialization of the feature vector, which contains relative vocabularies. Each 

parameter v  in the vector indicates a vocabulary, and it is initialized using Eqn. (4).  

( )  rv vvvvrK ,......,,, 321=  (4) 

Where r defines the population size. After initialization, the fitness value of each vocabulary is determined 

based on the pre-defined objective function (correlation score). For each vocabulary in the feature vector, the 

fitness value was determined. The fitness evaluation is represented in Eqn. (5). 

( ) ( )isi vCvf =  (5) 

Then, determine the vocabulary with the highest correlation based on the fitness value. In the EPO algorithm, 

before position updation, the EPs normally huddle together to preserve temperature to protect them from 

collisions. In the developed work, each vocabulary term tends to huddle together to preserve its significance in 

enhancing English vocabulary learning. For this reason, it uses two vectors X


 H


which are expressed in Eqn. 

(6), and (7).  

( )( ) ( )  ppp sRandvfsmX −+=
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Where pm indicates the movement parameter, and ps denotes the significance profile. Then, the significance of 

the vocabulary was updated to determine the optimal sequence of vocabulary for English vocabulary learning. 

This updation is influenced by the movement direction and distance from the optimal solution, and it is 

mathematically represented in Eqn. (8).  

( ) ( ) osd dmtvtv .1 −=+  (8) 

Where dm  denotes the movement direction, and osd  defines the distance from the optimal solution. After 

position updation, the fitness value of each vocabulary was upgraded. Finally, the vocabulary terms with a 

fitness value greater than 0.5 are selected for English vocabulary learning. This optimization process is an 
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iterative mechanism and it continues until maximum iteration count or convergence is reached. The step-by-step 

procedure of the developed key vocabulary extraction algorithm is illustrated in Algorithm 1.  

Algorithm 1: EPO-RBFNN 

Start { 

Input: English corpus; 

Output: Extracted vocabularies  

Initialize the input corpus database; 

Pre-process the database; 

Design RBFNN { 

    Initialize RBFNN parameters (weights, center, hidden neuron, width); 

    Determine semantic relations within the corpus using the non-linear activation function in Eqn. (1); 

    Determine the feature vector using Eqn. (2); 

    EPO { 

    Initialize EPO parameters (population size, maximum iteration count); 

   Initialize the feature vector; 

   Define objective function; 

   while (t< maximum iteration) 

        Calculate the fitness value for each vocabulary term; 

        Find the best solution based on fitness value; 

      for each vocabulary term: 

             Generate huddle behavior; 

             Update current position using Eqn. (8) 

       end for 

             Calculate fitness for each vocabulary term; 

              Update current iteration count (t++); 

     end while 

    Select vocabulary with a fitness value greater than 0.5; 

}End  

4. RESULTS AND DISCUSSION 



J. Electrical Systems 20-6s (2024): 177-187 

184 

In this study, we proposed a hybrid algorithm for effective and optimal extraction of key vocabulary from the 

large English corpus. The proposed algorithm was modeled in the Python language, version 3.8, and the 

experimental computer environment is a Windows 10 operating system, CPU for Intel four core, memory 8 G, 

and hard disk 1T. The experimental results are examined in terms of precision, recall, and computational 

efficiency.  

4.1 Performance analysis 

In this section, the training and testing performances of the proposed algorithm were assessed in terms of 

accuracy, and loss. Initially, the English corpus database was split into 80:20 ratios for training and testing 

purposes. The accuracy measures how well the proposed algorithm learns the semantic relations within the 

corpus, while the loss defines the incorrect extractions made by the system. Figure 3 presents the training and 

testing performances of the proposed system.  

 

Figure 3: Training and testing performances  

The training accuracy measures how effectively the developed algorithm understands the relevance, semantic 

relations, and correlations within the train corpus set, and the high accuracy of 0.95 depicts that the developed 

algorithm accurately learns the relations. On the other hand, the designed strategy achieved 0.94 accuracy in the 

testing phase, which depicts that it can generalize well on unseen corpus databases. This makes it more effective 

and reliable for real-world vocabulary extraction scenarios. Consequently, we assessed the loss performances to 

validate how precisely the developed algorithm extracts the key vocabularies. The presented algorithm obtained 

minimum training and testing losses of 0.08, and 0.09, illustrating that it precisely extracts the key vocabularies 

for improving English learning proficiency. From this evaluation, it is clear that the developed algorithm quickly 

and accurately learns the semantic relations within the corpus, and generalizes well on the unseen corpus, 

making them more effective and reliable for real-world scenarios.  

Comparative assessment  

In this section, we compare the results of the proposed strategy with the conventional models to validate its 

effectiveness and robustness in key vocabulary extraction. The existing techniques used for comparative 

analysis include Convolutional Neural Network (CNN) [14], Deep Neural Network (DNN) [15], Web 

Embedded System with Machine Learning (WES-ML) [16], and Unsupervised Algorithm with Graph-assisted 

keyword extraction (UA-GKE) [11], and BI-GRU [12]. The parameters used for comparative analysis include 

precision, recall, and computational time.  
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(a)  

(b) 

Figure 4: Comparative analysis: (a) Precision, (b) Recall 

The precision metric quantifies the accuracy of the extracted key vocabularies compared to a reference set of 

true positives. It indicates the proportion of correctly identified key vocabularies among the total extracted. 

Figure 4 (a) presents the comparative evaluation of precision. Here, the precision value of the models are 

evaluated by increasing the epoch count from 100 to 500. The existing techniques such as CNN, WES-ML, UA-

GKE, DNN, and BI-GRU obtained an average precision of 96.1%, 96.57%, 97.22%, 95.45%, and 96.11%, 

respectively, while the proposed EPO-RBFNN obtained higher precision of 99.86%. The improved precision 

depicts that the developed strategy accurately extracts the key vocabularies from the corpus database. Moreover, 

the improvement of precision over epochs signifies that the presented algorithm extracts more relevant and 

important vocabulary, highlighting its reliability and effectiveness. Recall measures the completeness of the 

extracted key vocabularies. It quantifies the ratio of true key vocabularies that were correctly identified by the 

algorithm among all true key vocabularies present in the dataset. Figure 4 (b) presents the comparative 

evaluation of recall. Here, the recall value of the models are evaluated by increasing the epoch count from 100 

to 500. The existing techniques such as CNN, WES-ML, UA-GKE, DNN, and BI-GRU obtained an average 

recall rates of 96.84%, 96.87%, 97.31%, 95.92%, and 96.73%, respectively, while the proposed EPO-RBFNN 

obtained higher recall of 99.90%. The increased recall rate manifest that the developed the vocabularies 

extracted by the developed algorithm are correct and matches with the true key vocabularies in the database. 

This illustrates that the combination of RBFNN and EPO precisely extracts the key vocabularies. Moreover, the 

increase of recall over the epoch count highlights its scalability and robustness, making the designed system 

effective for real-time vocabulary extraction.  

 

Figure 5: Comparison of computational time  
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Consequently, we compared and equated the computational efficiency of the system with the conventional 

techniques such as CNN, WES-ML, UA-GKE, DNN, and BI-GRU. The computational time measures how 

quickly the developed strategy processes the corpus database and extracts the key vocabularies. The comparison 

of computational time is presented in Figure 5. The above-stated conventional models obtained computational 

time of 5.5s, 6.2s, 7.1s, 5.8s, and 4.7s, while the developed algorithm obtained minimum computational time of 

2.3s. The minimum computational time manifests that the presented algorithm quickly understands the patterns 

and extracts the key vocabularies 

From this evaluation, it is clear that the presented strategy is accurate and reliable in extracting the key 

vocabularies than the conventional models. These improved performances manifest that the developed algorithm 

extracts the vocabularies accurately, assisting the learners with optimal words sequence and improving their 

learning proficiency.  

5. CONCLUSION 

This study proposed a distinct hybrid key vocabulary extraction algorithm using the combination of deep 

learning and meta-heuristic optimization algorithms. The developed strategy integrates the Emperor Penguin 

Optimizer into the Radial Basis Functional Neural Network for optimally selecting the most relevant and 

important vocabulary sequences from the large English corpus. The developed strategy utilizes the publicly 

available document corpus dataset as input, and the corpus was pre-processed to improve the efficiency of the 

subsequent analysis. Further, the developed EPO-RBFNN was applied for extracting the key vocabularies by 

examining the semantic relations and patterns within the corpus. The RBFNN was trained to understand the 

semantic interconnections within the database, while the EPO was employed for selecting the optimal 

vocabulary sequence based on the fitness value calculated based on its correlation score. The developed 

algorithm was implemented in Python tool, and the experimental results suggest that it achieved higher 

precision of 99.86%, and greater recall rate of 99.90%. Also, the proposed algorithm obtained minimum 

computational time of 2.3s, highlighting its computational efficiency. Moreover, we made a comparative study 

with the conventional algorithms like CNN, WES-ML, UA-GKE, DNN, and BI-GRU and it manifest that the 

performances like precision and recall are enhanced in the developed strategy by 2.64%, and 2.59%. These 

improved outcomes validates its effectiveness and reliability over the conventional models, making it robust and 

optimal for real-time vocabulary extraction for enhancing the English vocabulary proficiency of the learners.  
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