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Abstract: - When tunneling, detecting abrupt changes in geological circumstances can be difficult. In recent years, the proliferation of 

tunneling characteristics has been strongly related to the surrounding geology. These parameters offer significant potential for using data-

driven artificial intelligence (AI) approaches to infer patterns from information without reference to known consequences. This research 

introduces the Simulated Fire Hawk Optimizer-based Deep Action Selection Network (SFHO-DASN) model, which uses a Simulated Fire 

Hawk Optimizer to anticipate the geological conditions needed for tunneling. The optimized hybrid neural network technique can anticipate 

geological conditions effectively, as demonstrated by a case study of the constructed model. It is especially significant for rock types, water 

intrusion, karst caverns, and surface subsidence, for which the predicted accuracy is greater than 95%. These findings imply that the geological 

circumstances behind the tunnel face could be reliably and correctly predicted by a DASN that has received the proper training. This 

procedure's most significant advantage is its ability to adjust every scored parameter's weighting in response to variations in geological 

circumstances. The accuracy performance of the proposed neural network outperforms the conventional neural network, as indicated by the 

area under the curve (AUC) and performance analysis. A proposed model for geology prediction can attain predictive accuracy with a small 

number of tunneling parameters, according to an analysis of the feature relevance of each tunneling parameter. The suggested approach ought 

to be more practical for proposals about tunnel support architecture in the East Asian geological region and for future tunnel building.    
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1. INTRODUCTION 

The rapid population growth and the consequent scarcity of living space have necessitated a significant increase 

in underground development, a process aimed at improving human well-being [1]. Tunnel engineering, a field 

that plays a crucial role in this underground expansion, involves the construction of artificial, primarily horizontal 

apertures in the earth that are significantly longer than their other dimensions and typically have a uniform cross-

section [2]. These tunnels are vital connections in numerous railroads, urban transportation systems, and highways. 

They are also essential for large-scale operations such as mining, hydroelectric power production, wastewater 

collection and disposal, flood prevention, and urban water distribution and supply [3]. Furthermore, tunnels have 

a long history of military use for offensive and defensive purposes. However, the complex geological conditions 

and potential hazards during tunnel construction pose serious challenges that can lead to significant loss of life 

and property. 

The geological analysis method is the most commonly used method for identifying the types and properties of 

rock formations and forecasting the geological conditions in front of the tunnel face. Geohazards and engineering 

mishaps, including collapses, flood and mud inrushes, and tunnel boring machine (TBM) jams, can happen during 

tunnel excavation without prompt diagnosis and prediction techniques [5-6]. Similarly, underground mining can 

experience rock bursts, groundwater outbursts, and coal bursts. Hence, to minimize such losses, it is crucial to 

enhance the precise and efficient diagnosis and forecast of unfavorable geological conditions flaws, such as faults, 

karst caves, and groundwater penetration. This study investigates how data-driven AI approaches are used to 

determine the kind of geological conditions encountered, which might lessen the likelihood of jamming and 

geohazard [7-8]. For this, a number of the most well-liked AI methods that have been described in the literature 

were taken into consideration. 

                                                        
 
 
 
1 1 College of Highways, Henan College of Transportation, Zhengzhou, Henan, 450052, China 

*Corresponding author e-mail: hnjyzhao@126.com 

Copyright © JES 2024 on-line : journal.esrgroups.org 



J. Electrical Systems 20-6s (2024): 106-115 
 
 
 

107 
 
 
 

Combining covariance with a genetic algorithm (GA) for information-based construction in tunnel engineering, 

Kaiyun Liu and Baoguo Liu [9] introduced the Gauss process regression coupled algorithm (GA-CCGPR). This 

approach may be applied broadly because of its quick processing benefits, ease of usage, and high accuracy. 

However, there is a maximum inaccuracy for prediction. Qian Zhang et al. [10] employed the ANN, KNN, SVM, 

and CART algorithms to create a geological recognition classifier while considering complicated correlations. It 

demonstrates how the suggested ANN predictor works better than other models. However, more research is 

needed on using ANNs in tunnel engineering. A tunnel hazards database is constructed by Si  W. et al. [12] using 

data mining technology to achieve the organized representation of tunnel multi-source structural security data, 

which is then successfully applied to the engineering field.  

Wu et al. [11] have suggested a novel multi-source data integration approach that combines the use of the support 

vector machine (SVM), cloud model (CM), and evidence-based reasoning (ER). There is a more significant delay 

between decision-makers and a disaster. Li, X et al. [13] describe a unique subsea TBM tunnel intelligent 

construction system and utilize a case study to determine its adaptability. The system is based on automated 

compliance checking (ACC) optimization, fuzzy set theory integrated with Dempster-Shafer (D-S) connection 

theory. Using a fuzzy C-means method, Yan T. et al. [14] present a system for identifying geological features 

based on operational and drilling data during shield tunneling. Tunneling performance is effectively increased, 

and construction hazards are significantly reduced by the operational approach, which complies with the criteria 

of the construction code. Owing to the shortcomings of some initial models, some researchers enhance the initial 

neural networks using methods like genetic algorithms (GA) and particle swarm optimization (PSO) to improve 

prediction outcomes. 

 The primary objective of this research is to develop an intelligent algorithm that combines the deep belief and 

neuro-fuzzy algorithm-based deep learning function with metaheuristic optimization of simulated and fire hawk 

algorithms. This algorithm is designed to identify and analyze geological conditions in tunnel engineering. The 

proposed method is validated through a case study in the East Asian geological region. The features from the 

database are extracted and selected using the EfficientNet B7 algorithm. The performance of the proposed method 

is then compared with conventional methods using various metrics. 

This article is structured as follows: Section 2 presents the proposed methodology, outlining the steps to develop 

the intelligent algorithm. Section 3 provides a detailed study of the results, including a discussion and comparative 

analysis of the research. Finally, Section 4 summarizes the conclusions drawn from the study and outlines potential 

areas for future research. 

2. PROPOSED METHODOLOGY 

This paper introduces a novel approach, the SFHO-DASN method, for identifying and analyzing geological 

information systems in tunnel engineering. This method, which we propose for the first time, is applied to the 

Yanjingwan tunnel in the Chinese province of Guizhou as a case study for validation. We comprehensively 

analyze the tunnel's geological mapping information, considering various geological factors that influence tunnel 

development, such as the overburden's traits and depth, the layout of the bedrock surface, the rock's characteristics, 

materials, and mineral composition, the structural characteristics of the rock mass, and the presence of gas, unusual 

rock temperatures, and ground-level water. The data on TBM and geological circumstances are sourced from the 

database. We begin with preprocessing using Z-score normalization to mitigate the main impacts caused by the 

disparity in dimensions and magnitudes between various parameters in the TBM in-situ information. Then, we 

employ the EfficientNet B7 method to identify the critical parameters exhibiting high sensitivity to geological 

variation. 
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Fig.1 Proposed Methodology 

Moreover, the SFHO-DASN method is not just a theoretical concept but a practical tool for executing the 

geological type classification in tunneling. This classification is obtained by training data sets with geological 

categories using our suggested method. We use the SFHO method to optimize the DASN algorithm's variables. 

We utilize the test set data to assess the method's efficacy and verify the correctness of the geological data system. 

This practical application of the SFHO-DASN method underscores its relevance and usefulness in tunnel 

engineering. 

2.1. Data pre-processing 

The shield's initial tunneling data contains many incorrect and aberrant data, which must be discarded in advance. 

To reduce the negative impacts produced by the varying magnitudes of the excavation variables, we employ the 

z-score standardization approach, which linearly changes the information to have a mean of 0 and a standard 

deviation of 1. 

                                                                    (1) 

Where, and  is denoted as the raw and normalized tunnelling parameter data, and  is the standard 

deviation and mean value of the data, respectively. 

2.2. Geological Feature Engineering 

After normalizing the raw data, the feature engineering function is applied to extract and select the significant 

features for the identification algorithm. Here, the EfficientNet B7 algorithm is used for the feature engineering 

function. The network's stem is considered before any input modifying, rescaling, normalization, zero padding, 

conv2D, batch normalization, and activation begin. After that, each of them has seven parts. Furthermore, there 

are varying numbers of sub-blocks in each of these blocks. The EfficientNet B7 has a total of 813 levels. Increasing 

the number of channels, layers, or input image resolution can enlarge data. The MBConv does a 1 1 convolution 

operation to widen the channel in addition to a Depthwise convolution operation that convolutions each image 

channel individually. During depthwise convolution, a k-k kernel convolution approach is used for each picture 
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layer. Each feature map in a channel used in Depthwise convolution is unique. Group normalization is done to all 

the layers before the RELu algorithm activates any of them. Eqn (2) provides the formal formula for RELu.. 

     (2) 

A feature map that omits the Squeeze and Excitation Layer may be added to the recovered map to emphasize 

significant features. The 1x1 convolution method is then used to decrease the channel. When channels are limited 

to 1:1, confidential information is less likely to be on other channels and sensitive material is eliminated using the 

activation function.  

Consequently, only group normalization is used. This technique concatenates the input skip-connected data with 

the output value that traverses many levels. The multilayer perceptron is connected to the last layer. Here, the two 

dense and dropout layers construct three activation functions. Additionally, softmax and ReLU activation 

algorithms are employed. The softmax activation function is represented by eqn. (3). 

    (3) 

In this instance, it represents the numbers received from the neurons in the output layer. The complex function is 

defined by the exponential. These standardized numbers are divided by the total of the exponential values to 

produce probabilities. Finally, the most needed geological features are selected by the EfficientNet B7 method, 

such as Soil, soft rock, hard rock, internal friction angle, upper earth pressure, Groundwater, slope stability, lower 

earth pressure, natural severity, cohesive strength among rock mass and anchors and coefficient of lateral pressure. 

2.3. SFHO-DASN based Geological Identification 

The proposed SFHO-DASN algorithm combines SFHO-based metaheuristic optimization with the combination 

of deep neuro-fuzzy method. The DASN method combines a deep belief network with the action selection 

intelligent fuzzy system. The proposed SFHO algorithm tunes the hyperparameter of the DASN model. The 

architecture of the proposed SFHO-DASN in tunnel engineering is illustrated in Fig. 2. 

 

Fig.2 Architecture of proposed SFHO-DASN in tunnel engineering 
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a) DASN model 

In DASN method, the selected features from the EfficientNet B7 output is provided as the input. For training the 

data, the concept of deep belief network is inbuild to the action selection intelligent algorithm. Examine the visible 

and concealed units  as components of the data. Subsequently, and unit rates are represented as 

binary numbers, either 0 or 1. Eqn (4) is used to estimate the visible unit probabilities. 

                                                                 (4) 

Where is the data function of visible and hidden units, and where  is the featured data function. 

Furthermore, the issue of producing a feasible activation function has been addressed by the establishment of a 

Restricted Boltzmann Machine. Eqn. (5) is used to supply the training function with the accurate units.  

                                  (5)         

In this case, the number of visible units and hidden units is shown by and , and the weights of the data 

between the visible and hidden nodes are indicated by and  is the bias term. The weight of inconsistencies 

is the next log possibility for a training vector. Eqn (6) is utilized to determine the weights of the data in the 

gradient technique.  

                                           (6) 

Where the mean difference between the training and tested data is used to evaluate the gradient part as 

. Furthermore, Boltzmann's hidden units don't offer a particular answer to help create the 

perfect, unbiased sample. Contrastive Divergence is the strategy commonly used to train deep belief systems. To 

optimize the likelihood of the training data under the model, this technique resembles the gradient of the log 

probability and updates the weights and biases. These Restricted Boltzmann machines are stacked in a deep 

network. One Restricted Boltzmann Machine's visible layer is the concealed layer of the subsequent one. 

Following this layer-by-layer, unsupervised training and supervised techniques such as backpropagation are used 

to maximize the network and minimize the discrepancy between what is expected and the actual label of the data 

used for training. After training, the data from the action selection intelligence system is applied for accurate 

identification based on the rule condition. The trained data is initially converted to fuzzified data using the 

fuzzification phase; the function is expressed as eqn. (7) 

                                                            (7)  

where indicates the label's fuzzy membership values' center, left, and right spreads, respectively, 

and a stands for a linguistic value (e.g., medium value, high value, low value, etc.). The triangular Membership 

function is executed in this layer. A rule in the rule base relates to a node in previous layer. One label for each 

observed variable is the antecedent of a de, therefore the inputs of node  in this layer are the outputs of  nodes 

in the preceding layer. The combination of the antecendents is the result of node , or the firing strength of rule 

. The minimal operator is the combination that is most frequently encountered. In the next layer, it receives 

inputs from all rules that employ this specific consequent label. The   local mean-of-maximum membership 

function is executed using eqn. (8) 
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        (8)     

Where   is the degree of all rule. The outputs from the preceding layer are combined by the node in layer final 

to provide a single non-fuzzy controller output, which is expressed using eqn. (9), 

                                                                                                          (9)     

where P is created in all cases where all of the input space's dimensions are surrounded by the antecedent label 

functions. The only input connections with movable weights are the second and fourth layers. One remains for 

the remaining weights. This demonstrates that just two of the five weight layers are used by the SFHO algorithm. 

a) SFHO Tuning for DASN algorithm 

The SFHO method incorporates both simulated annealing and the Fire Hawk optimization function. The position 

update procedure in the FHO algorithm is carried out by employing the superior solution, not the global best, and 

the average of the solution candidates. It prevents the search process from being trapped in local optimal spots. 

Including a simulated annealing approach to the FHO algorithm improves these concerns, and the suggested 

algorithm is now known as the SFHO algorithm. First, DASN solution candidates are identified based on hawk 

and prey position vectors. Vectors' starting coordinates in the search space are determined via a random 

initialization method. 

                                     (10) 

where  denotes the problem's size and  stands for the  potential solution in the search space;  is the 

overall amount of candidates for solutions in the field of search space;  is the  solution candidate's  

selection variable; and denotes the candidates' starting positions. The lowest and highest bounds of the 

 selection variable for the  solution candidate are represented by the numbers  and , 

whereas  is a random number that is evenly distributed within the interval [0,1]. The hyperparameter represents 

the remaining solution choices, and Fire Hawks have higher objective function values. The prey is surrounded by 

the fire from the chosen Fire Hawks in the search area to facilitate hunting; furthermore, the primary fire that the 

Fire Hawks use to disperse fire throughout the search space is the best global solution. Furthermore, the best and 

worst point of hyperparameter distance is estimated. The hyperparameter values are selected and tuned from the 

DASN algorithm using eqn. (11) in each iteration, 

                                     (11) 

Where  and  is evenly distributed random values with the limit of (0,1),  is denoted as the new tuning 

vector of the function, the global optimal solution is denoted as  and the neighbourhood tuning values are 

considered as . Consequently, the safe position of the hyperparameter tuning within and exceeds the limits 

are expressed using eqn. (12) and (13), 
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                                     (12) 

                                     (13) 

Where  is the new value of the  parameter enclosed with the  composition.  and  are the safe 

place of parameter value within and exceeds the limit,  and  is evenly distributed random values 

with the limit of (0,1). This way, the global best solution is estimated, and the local best solution is analyzed using 

a simulated annealing function. Initialize the limit of the hyperparameter values as minimum and maximum 

Generate the primary solution  and computes its tuning function. Generate the new tuning solution  and 

find its capacity. Analyse the variation of new and old parameters values as  , if the difference is less 

than zero, compute the probability based on both exceptional values with a random number of intervals; otherwise, 

accept the new tuning solution. Moreover, if the random value is less than the probability, the latest local best 

solution is estimated; otherwise, the parameter value is. Once the optimal solution is achieved for both the global 

and best part, the criteria are stopped; otherwise, return to the next iteration. 

3. RESULT AND DISCUSSION 

This research presents a method for geological identification of real-world tunnel engineering. This section 

analyzes the effectiveness and identification performance of several intelligent algorithms. In this paper, the effect 

of the SFHO-DASN method is analyzed by using the tunnel project of the Yanjingwan tunnel in the Chinese 

province of Guizhou as an experimental project [20]. This paper uses these four indices to evaluate geological 

recognition results. The calculation method of each evaluation index is as follows: 

                                                               (14) 

                                                                    (15) 

                                                                    (16) 

                                                         (17) 

where a correct Geological state identification is predicted to be true positive ( ), a class that is incorrectly 

identified to be true negative ( ), A false positive ( ) occurs when an incorrect class is predicted to be a positive 

class. and a correct identification to be false positive ( ). 

3.1. Performance analysis 

The performance of the proposed model in tunnel engineering based on the geological data is compared with the 

different conventional methods such as GPR-SVM [15], ANN [16], GCN-LSTM [17], DM [18], and M-KNN [19] 

in terms of performance metrics. Figure 3 displays the ROC curve, which was used to evaluate the proposed 

model's predictive capacity compared to traditional techniques. A bigger ROC area shows a better identification, 

indicating the model's capacity to discriminate between 0′s and one ′s. Additionally, a high separability measure 

is indicated by an AUC value closer to 1, while the poorest measure of detachment is indicated by an AUC value 

closer to 0. With an ROC curve score of 99.73, it is evident that the suggested model outperforms the other models. 
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Fig.3 ROC for different Identification algorithms 

Moreover, the performance of the developed model in tunnel engineering is compared with the earlier models in 

terms of accuracy, precision, recall, and F1-score, which is illustrated in Fig.4 (a-d). The analysis shows that the 

proposed model has achieved higher accuracy, precision, recall, and score than the conventional methods under 

varying geological features. The proposed model has achieved the highest accuracy of 99.5%, and the GCM-

LSTM method attained a significantly lower accuracy of 87.9% for 11 features. 

 
(a) 

 
(b) 

 
(c) 

 

(d) 

Fig.4 Performance Measures a) Accuracy, b) Precision, c) Recall and d) F1-score 
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The proposed model's average identification accuracy is higher than the previous models. This is probably because, 

unlike the EfficientNet B7, which is based on reducing dimensionality through the extraction and selection of the 

most significant features, the proposed framework is a sort of hybrid deep learning optimization in which the 

output from the previous step is provided as input to the current step. Consequently, the suggested works well 

while resolving geological problems related to tunnel engineering. 

 

Fig.5 Comparative analysis of Error metrics MAPE and MSE 

When the suggested technique identified the various geological parameters and GPR-SVM [15], ANN [16], GCN-

LSTM [17], DM [18], and M-KNN [19], the indices of MSE and MAPE are presented in Fig. 5. The identification 

accuracy of the proposed technique was much greater than that of the standard methods when estimating different 

geological factors. When it came to determining the presence of rock type, soil, and water supply, the proposed 

approach performed better than the traditional neural network. 

4. CONCLUSION 

This paper proposes an incorporated deep learning method based on the geological data recorded during tunnel 

engineering work. The proposed method includes feature engineering, optimization, and identification of deep 

learning. The advanced EfficientNet B7 model is chosen for feature extraction and selection in feature engineering. 

The proposed method is used to identify the geology of the Yanjingwan tunnel in the Chinese province of Guizhou. 

The comparison of the recognition results to the measured geological types demonstrates that the suggested 

technique works. The degree of identification progressively rises as the input grows, finally reaching a plateau 

when the algorithm's accuracy exceeds 99%. Based on this, a selection approach for optimum input features is 

provided, as is the ideal number of input parameters for this validation instance. The accuracy, precision, recall, 

F1 score, Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and receiver operating 

characteristic (ROC) curve findings demonstrated that the new model was more resilient in learning and 

interpreting than the previous models. The proposed EfficentNet B7 and SFHO-DASN models can support tunnel 

engineering under geological variation. In the future, more regions can develop for the identification and analysis 

of geological data in tunnel construction functions with the same methods. 
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