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Abstract: - Multi-objective energy optimization is critical for ensuring stable and power system operation securely. Though, multi-objective 

energy optimization is difficult because of an interdependence and opposing goals. To address conflicting objectives, a multi-objective 

optimization model is required, hence Monarch Butterfly African Vulture Optimization Algorithm (MBAVOA) is newly proposed for 

resolving multi objective issues. MBAVOA is the hybridized of two optimization algorithms, which includes Monarch Butterfly Optimization 

(MBO), and African Vulture Optimization Algorithm (AVOA). Here, charging cost, distance, and the user convenience are optimized while 

taking Renewable Energy Sources (RES) into consideration using MBAVOA. In addition, a load is computed using a Quantum Genetic 

Algorithm (QGA), describes intermittent and uncertain RES, such as wind and solar. The QGA-MBAVOA outperformed with the least 

charging cost 63%, fitness 0.010, and user convenience 0.819.    

Keywords: Monarch Butterfly optimization, Charging or discharging, Quantum Genetic Algorithm, Energy Storage, Energy 

Management. 

1. Introduction 

To meet the increased demand for electricity, RESs like wind and solar energy must be integrated into the 

distribution grid. Furthermore, adopting renewable energy sources contributes to lowering global temperatures by 

reducing greenhouse gas emissions. However, RESs generate fluctuating electricity depending on location, time, 

and a nature of weather where they are attached [10]. This volatility in generated power complicates the 

distribution side's control and energy management (EM) [2].  With a rapid growth of energy storage, traditional 

power systems that were previously functioned by real-time balancing of demand and supply are transitioning to 

use such methods.  Many potentials use for Energy Storage (ES) in power systems have been examined [11]. The 

goal of using ES is to contribute to the development of a dependable and effective smart grid [6]. 

 The primary advantages of an ES are the ability to time-shift electric energy, regulate frequency, and relieve 

transmission congestion [12][6]. An ideal energy management control must be implemented to reduce costs and 

improve network stability [13][2]. The control unit of a microgrid is designed to achieve energy management 

efficiently by optimally utilizing the energy storage system (ESS) when the microgrid is in isolated and/or grid-

connected mode. The ESSs are used in a microgrid to grip excess electricity and subsequently supply it when 

there are no RESs available. The central control unit's primary goal is to manage the charging and discharging of 

ESSs [14]. To generate a profit, the ESSs' is retailed when peak electricity hours. When the cost of electricity is 

cheap, they can store energy, lowering operating costs and achieving robust, malleable, and dependable energy 

management for an interconnected microgrid system [2]. 

Many scholars have investigated various features and techniques to value energy optimization [1]. In [15][4], the 

dual-layer control technique for a Battery Energy Storage Systems (BESS) was introduced to reduce wind power 

fluctuations.  Most of the existing studies use dynamic programming-based methods [9], Model Predictive Control 
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[16][9], or a Neural Networks to identify optimum storage plans in real-time or Time of Use (ToU) pricing.  

Research on the best demand-side reaction to electricity spot pricing for storage-type consumers is one of the 

initiatives focused on using ES to increase economic benefits. The authors in [7] report experiments on price-

based real-time control of thermal storage systems to save costs. However, most of the studies on ES design issues 

consider an influence of ES capacity and electricity price [10]. 

The intention is to create a model that optimizes three objective functions to increase microgrid performance and 

profitability by optimizing storage system charging/discharging cycles. The ES is maintained in EMS using a 

newly developed MBAVOA. The MBAVOA was developed by combining MBO with AVOA. A novel multi-

objective fitness measure has been designed, with factors including user preference, distance parameters, and 

charging cost. Moreover, QGA is utilized to evaluate load that increase voltage fluctuations, system reliability, 

power quality, and a grid utility stability. The Distribution System Operator (DSO) efficiently transfers power to 

end users over a transmission network with minimal losses. RES present new potential for DSOs to provide 

affordable power to end consumers. 

The paper's primary contributions are: 

• Using the MBAVOA, multi-objective energy optimization problems are solved for 

commercial, residential, and the industrial users. In addition, the Pareto fronts and the optimize solutions 

are identified using multi-criteria decision-making. The MBAVOA was developed by combining MBO 

with AVOA that optimizes the charging or the discharging of an ES units. In addition, the load is 

computed using QGA.  

• New parameters, including user choice, charging cost, and distance parameters, are used to model the 

multi-objective fitness function that identify renewable energy generation accurately. 

The following is the arrangement of the remaining sections: Section 2 covers a literature study charge or 

discharging of ES system. Section 3 describes a system paradigm for EM system. Section 4 discusses the 

MBAVOA for EM system. Section 5 calculates a QGA_MBAVOA efficiency compared to classical 

methodologies. Section 6 presents the conclusion. 

2. Literature survey 

Ahmad Alzahrani et al. [1] have presented a non-dominated genetic sorting method to maximize objectives, such 

as operation cost, pollution emission, and a Loss of Load Expectation (LOLE) while taking Renewable Energy 

Sources (RES) into account. A Probability Density Function (PDF) is used to describe RES, which are uncertain 

and intermittent like sun and wind. The method resulted in lower operation costs and environmental emissions, 

making it appropriate for addressing multi-objective issues but does not electrify the load, causing load shedding. 

Yomna O. Shaker et al. [2] devised a multi-objective hunger game search algorithm (MOHGS) is applied to 

minimize operating costs, ensuring a continuity of the feeding load, and a profit for a customer. The key goals of 

the MOHGS are to maintain uninterruptible power to the load with low running costs and low emissions from a 

storage systems while obtaining the high renewable factor. The method reduces emissions and improving 

Renewable Factor (RF) performance. However, an extra energy was needed to the grid for obtaining high profit. 

Tom Terlouw et al. [3] have presented two options for Community ES (CES) ownership. i) an Energy Arbitrage 

(EA) scenario in which the aggregator tries to reduce costs and a CO2 emission from the energy portfolio. ii) The 

Energy Arbitrage - Peak Shaving (EA-PS) scenario was evaluated using shared ownership model among 

Distribution System Operator (DSO) and the aggregator. In addition, a Mixed Integer Linear Programming 

(MILP) was introduced to reduce expenses and the CO2 emissions for the neighborhood in Cernier, Switzerland, 

by utilizing several battery methods in a CES system. The method delivers superior economic and environmental 

performance, but focus on integrating additional storage technologies for CES systems, taking into account costs 

and environmental effect indicators. 

Feng Zhang et al. [4] have developed a better sizing and control approach for the wind ESS to smooth wind. In 

addition, a cycle control technique was introduced with a progressive cycle time that includes one charge and 

discharge period, taking into account power market trading restrictions. Furthermore, the multi-objective 
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optimization model was employed to calculate a reference output and cycle control period duration, taking into 

account both the maximum time duration and the minimal power variance between discharge and charge intervals. 

Here, the method increases the dispatchability and trade reliability, but the seasonal changes in wind power have 

minimal impact. 

Elham Mokaramian et al. [5] employed multi-objective energy hub model to reduce operational costs and 

pollutant emissions. Moreover, the day-ahead scheduling paradigm for the energy hubs (EH) was introduced in 

reserve and energy markets focuses on balancing economic and environmental goals. The Mont-Carlo method 

was then used to account for variation in load, wind speed, and photovoltaic irradiation. In addition, a conditional 

value at risk (CVaR) assesses the risk level of energy hubs in order to improve their operational efficiency. Here, 

the environmental emissions and operational costs was minimized, it suffers from high storage costs. 

An improved multi-objective Particle Swarm Optimization (PSO) was presented by Yixing Xu, and Chanan Singh 

[6] for addressing ES design in the distribution systems. The PSO delivers a Pareto front to help decision makers 

and to determine a desired tradeoff among several objectives. An ES design factors encompass not only capacity 

and the power rate, but also the operation strategy. The method minimizes unserved energy and prevent load loss 

within operating limitations. However, several ES variables need to be included, and the to be applied to 

transmission networks. 

Qinhao Xing et al. [7] developed an energy aggregator model that optimizes and dispatches DERs, including 

generators, energy storages, and flexible charging loads to integrate renewables while evaluating the advantages 

of all energy resources under time-of-use tariff. A multi-objective optimal dispatch was utilized that takes into 

account power network flows, DER operational needs, and a user comfort. Meanwhile, conventional generators 

had less frequent regulation. A sensitivity analysis found that the starting state of charge for the storage affects 

charging and discharging, potentially impacting yield of storage owners participating in a dispatch. 

Rui Li, and Su Su et al. [8] have introduced a unique day-ahead operation method for ESSs using a fuzzy multi-

objective model that adheres to operational limitations. This model balances three objectives: operational 

friendliness, reliability, and an economic efficiency. To align these objectives, a fuzzy mathematical technique 

was used, thus attained slow rate convergence. The uncertainties of the renewable energy sources and the load 

needs need to be more effectively considered. 

The following are the issues experienced in the relevant job,  

The current global condition of the energy consumption and generation, in which several countries rely on the 

fossil fuels to supply their energy needs, presents enormous problems using energy security and the environmental 

deterioration. Moreover, renewable energy generators face installation limits in modern power grids for 

technological and policy reasons, complicating their integration into energy mix models. Energy production and 

the consumption around a world faces major difficulties by environmental degradation and the energy security. 

RES can help these problems can be solved to a large extent, so it has become widespread in recent years. Though, 

to fully switch to renewable energy, energy produced must be kept and utilized when there is a lack of renewable 

resources. In these instances, the significance of ESS and smart grid systems in the modern world cannot be 

underestimated. 

3. System model 

Figure 1 shows the ESS model for charging as well as discharging. The future power system is an Integrated 

Energy System (IES), which considers the best use of ES and flexible demand while fostering positive interaction 

between the generation source, load, and energy storage. Most IESs are now functioned by the aggregators, host 

a variety of generating and flexible resources, providing power to the load within regions while maximising 

revenues. In order to increase the degree of efficient and cost-effective use of renewable energy, the energy 

internet is applied beneath energy dispatch of the aggregators that allows load, generation, and an ES to engage 

in the energy system and trading operations. Let us consider that the ES battery is managed by aggregator or a 

Distributor system operator (DSO). Moreover, consider that every family has a Photovoltaic Panels (PV) system, 

resulting maximal renewable electricity penetration level. The community's total electricity and electric heat 

requirement can be met via electricity absorption from grid, direct consumption of the rooftop PV, or depleting 
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ES battery 
discharbatt

ug ,
 . The locally generated PV-electricity 

PV

uQ  can be consumed directly, stored in ES battery 

by charging battery 
charbatt

ug ,
, or injected into electricity grid 

INJGRID

ug ,
. 

Every family also has a localized EMS that they use to plan and manage both shiftable and the non-shiftable loads. 

In order to maximize the community's load and schedule, localized EMSs interact with a community EMS. It is 

possible to assess how the community affects transformer in the distribution network by looking at the 

transformer's capacity
TRANSQ . A battery's size is then determined. To begin, battery is expanded to ensure 

requisite storage capacity 
requbattD ,

at end of its life. Equation. (1) determines the installed energy size of ES 

battery 
ESbattD ,

 , taking into account the discharge efficiency 
dischar , depth-of-discharge (DoD), and a rated 

energy capacity at the End of the Life (EoL). 

GA

D
D

dischar

requbatt
ESbatt

..

,
,


=                                  (1)

     

 

where, A be the DoD, and the term G denotes the EoL. Next, battery deterioration is included in a optimization 

issue because battery degrades with each discharging/charging cycle (cycle losses) and over time (calendar losses). 

This can have the significant impact on the economic profitability, as decreasing battery performance might reduce 

the economic feasibility of a system layout, resulting in increased expenses. As a result, battery degradation is the 

simple way by oversizing batteries and introducing limitation to ensure battery's longevity. To include battery 

degradation in optimization issue, first, the average battery capacity 
averagebattD ,

is calculated across the battery 

lifespan, taking into account the needed CES battery capacity at end. 

( ) ESbattaveragebatt D
G

D ,, .
2

1+
=                                  (2)

 

 

Furthermore, we assume that the battery's health diminishes linearly over its lifetime. As a result, we employ each 

battery technology's average battery capacity 
averagebattD ,

 in optimization impact to improve comparability. In 

actuality, battery degradation is more intricate and significantly influenced by several stress parameters, like C-

rate, temperature and DoD, resulting in nonlinear relationship.  

 

Figure 1. System model of charging or discharging strategy of ESS 
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4. Proposed Methodology 

The distribution system operator (DSO) in the power network is in charge of sending power to the load of the 

final customer through transmission network with a high degree of efficiency as well as minimal losses. RES are 

alternative power sources that provide potential for DSO to offer cheap power to the end users' loads and satisfy 

its demand while minimizing operation costs, pollution emissions, and the load expectation loss. DSO, on the 

other hand, uses DSM methods to achieve effective load control. Implementing such infrastructure is achievable 

in the smart power grid (SPG), which has real-time monitoring, control, and two-way communication 

infrastructures between utilities and customers. The MBAVOA used to evaluate the performance of energy 

management system. Here, a MBAVOA combines AVOA [1] and MBO [2]. In addition, a charging cost, user 

preference, and distance parameters are used as the fitness measures. The model parameters will then be tweaked 

to demonstrate the method's efficacy. Figure 2 shows the MBAOA schematic view.  

 

Figure 2. Schematic view of MBAOA  

The model's primary elements are discussed below. 

 -Communication 

Optimal load management requires participation in Demand Side Management (DSM) and Demand Response 

(DR) programs in the electrical market. A bidirectional communication infrastructure between customers and 

DSO is necessary for active involvement in the electricity market. Smart power grid (SPG's) Distribution system 

operator (DSO) utilizes communication infrastructure to coordinate consumer loads with Distributed Energy 

Resources (DERs) and the power grid, resulting in optimal load operations. 

-Distributed Energy Resources 

DERs are the sources that are close to the load and produce distributed energy control. This work focuses on 

two categories of DERs: certain and uncertain energy sources. The first sort of energy source includes diesel 

generators (DGs). The second class includes RES, such as solar and wind. BESS are used to manage the 

intermittent nature of RES. In addition to DERs, the electricity grid is connected for increased reliability. 

-Load Side (End Users) 

The MBAVOA optimizes energy for three types of consumers: industrial (IC), commercial (CC), and the 

residential (RC). Shifting and scheduling consumers' deferrable and responsive loads optimizes charging cost, 

distance and the user convenience.  

4.1. Computing Load  
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Utilizing a forecasting technique can enhance scheduling performance when the load of a charging station is 

uncertain, as it guarantees that the load generated at each instance is not amplified.  Therefore, load forecasting, 

which boosts the precision and efficacy of scheduling methods. With the SOC target fixed to 1, the SOC 

preliminary values are created uniformly and arbitrarily in interval [0, 1]. Based on the outcomes of the load 

forecast, the base load data is produced. Hence, the base load unit is altered by, 

( )fore

ss

peakfore

sbase

s
A

AA
A

max


=

     (3)

 

where, the peak load under various EV configurations is denoted as
peakA , and the forecasted load is represented 

by 
foreA , in which the forecasted load is determined using Quantum Genetic algorithm.  

4.2. QGA architecture 

To efficiently enhance the global search capabilities of quantum algorithms, QGA leverages the coding 

mechanism of quantum probability vectors, the crossover operator from genetic algorithms and the update method 

from quantum computing. The steps of the QGA are outlined below. 

Step 1: Chromosome representation as a qubit population 

A population of quantum bits, or qubits, represents the chromosomes. A quantum bit is a least information held 

in two-state quantum computer. A qubit can be "1" or "0" state or any combination of atwo. The state of a qubit 

is described by, 

10  +=                                             (4) 

where, the complex numbers  and  indicate a probability of qubit in "0" or "1" states, respectively. 

Step 2: Decoding and encoding strategy 

Consider developing an encoding and decoding system for scheduling process applications in EV. The 

chromosome is denoted as ( )sWu . The chromosomal size refers to the total modules in an U -sized jobs. Every 

module will be assigned to nodes 0 through 1−L . ( )sWu is derived from the population of qubits ( )sYu , where 

Tu ,...,2,1= . Here, T represents the number of chromosomes). If the system has L  nodes, each qubit 

population requires v  qubits to represent those nodes. The node identifier is defined by its population of individual 

qubits. 

Step 3: Gate for Quantum Rotation 

The qubit can be modified using quantum gates. The operation is reversible and represented by a single operator 

X , which operates on a qubit basic state that meet: 
 = XXXX . 

Step 4: Generation of dynamic Rotation Angle  

The rotational angle u has minimum for a fine refinement and maximum for coerce refinement. The dynamic 

angle for rotation maintains a solution's convergence rate based on changing fitness values. The value of u

changes is on a basis of fitness of a present generation's 
thn  objective is compared to a preceding generation. An 

objective function with the most significant percentage change is chosen for adjusting a rotation angle. Initially, 

a value of u  is fixed as previously indicated. As fitness approaches the optimal solution, u  changes 

correspondingly. 

Step 5: NOT Gate (Mutation Operator)  
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The NOT gate functions operate for quantum mutation. Mutation enhances individual diversity and minimizes 

immature convergence. It also improves the capacity to search locally. The NOT gate is used to reverse the 

probabilities of the qubit population, allowing for mutation. 

Step 6: Comparison for Crowd Operator 

This operator is employed in non-dominated sorting to ensure diversity and uniformity in a Pareto front. If two 

people are in the same front, they are selected based on their rank in front, then on the crowding distance. Choose 

the answer with a lower rank if two solutions have different non-domination ranks based on front value. Based on 

crowding distance, select the less crowded option if both solutions are part of the same front. 

4.3. Computation of multi-objective fitness  

The fitness measure is illustrated using MBAVOA for solving EM issues. The fitness feature of the MBAVOA is 

a new design for choosing the optimal charging system. The fitness function containing distance, charging cost, 

and user convenience, which is expressed as, 

 ( )
=

+−+=
K

y

y

sx

y

sx

y

sx CVZFit
1

,,, 1                                (5)

 

 

where, the charging cost of 
y

xEV is denoted as 
y

sxZ , , the convenience of user is indicated as 
y

sxV , , 
y

sxC , be the 

distance, and the available power is represented as
y

sxR , . The charging cost [7] expression is provided by, 
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where, 0h and 1h be constants, which is the minimization parameter. 

The expression of convenience for user [7] is, 
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where, 
( )

y

x

cap

yx

y

sx

fin

sxy

sx
Q

DSOCSOC
w

max,

,,,*

,

−
= and sqw y

x

y

sx −=, , which be the maximization function. 

The expression of distance is, 
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where, the normalizing factor is denoted as g , the CS position be ek , and 
s

yxk , be 
y

xEV position. It is a 

minimization parameter. 

4.4. Monarch Butterfly African Vulture Optimization Algorithm  

The hybrid algorithm MBAVOA, which was developed by merging AVOA [17] and MBO [19] is utilized to solve 

the optimization issue of EM system.  The MBO is a nature-inspired meta-heuristic algorithm, which operates 

imitating migration behavior. MBO is more significant for parallel processing and producing trade-offs among 

diversification and intensification. AVOA is based on the simulation of African vulture navigation and foraging 

habits, which has been customized to find the optimal solution. It can address a various engineering design issue, 

has lower computing complexity, and is more trustworthy than other techniques. Furthermore, it effectively 
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balances variability and resonance and has demonstrated the ability to achieve critical aspects in large-scale 

situations. It has a lower operating time and computational complexity. The algorithmic steps for the MBAVOA 

algorithm are explained below. 

Initialization 

Consider the 
thC population with the MB individuals, representing the highest generation maxI . Even though the 

counter for generation is defined by 1=f , the MB count in land-A is specified as 1X , the MB in land-B is 

denoted as 2X , the highest step is marked as maxV , p  represents the adjustment rate of butterfly, n  represents 

a migration duration, and a migration ratio.  

Computation of fitness  

The fitness function is used to find the optimal solution, which is regarded as a minimization impact. Thus, a 

solution that produces a least fitness is chosen as an optimal solution. Section 4.3 describes the fitness function. 

Updating migration operator 

MB are often present in land-A from April to August and in land-B from September to March. MB on land-A is 

referred to as sub-population-A, whereas butterflies on land-B are known as subpopulation-B. 

Updating adjusting operator of butterfly 

A butterfly’s position is upgraded via an adjusting operator where the butterfly every component m , if 1ran
, then update position is,  

d

rbest

d

rm YY ,

1

, =+
     (9) 

where, 
d

rmY ,  is the  element r of mY  at 1+d generation, which depicts 
thm butterfly location, and 

d

mbestY ,  be  

element r of bestY that means optimal butterfly placed in land-1 and 2. If vran , then the updated position is, 

d

rc

d

rm YY ,2

1

, =+
     (10) 

where, 
d

rcY ,2  be element 
thr of bestY , which is chosen randomly from land-2,  2,...,2,12 Xu  . If pran , 

then the position is updated by, 

( )5.011 −+= ++

r

d
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d

mr aYYY     (11) 

( )5.01 −+=+

r

d
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d

mr aYYY     (12) 

The revised equation from AVOA is as follows: 

ZRUY mr

d

mr

d

mr *1 −=+
     (13) 

where, 
1+d

mrY represents the next iteration vulture's position vector, 
d

mrU denotes the best vulture of the current 

iteration, Z be the vulture rate, To keep their prey safe from other vultures, the vultures move at random is denoted 

by O . 

|*| d

mr

d

mrmr YUOR −=      (14) 
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d

mr

d

mr

d

mr *|*|1 −−=+
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The above expression is substituted in equation (11),  
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Thus, from the above MBAVOA update equation, the EM issues are solved efficiently. 

Check the feasibility of the solution 

The feasibility of a solution is assessed to determine the optimal solution using the fitness equation. If a new 

solution improves on the prior one, the solution is updated with a new value. 

End 

The processes above are repeated until the optimal solution is achieved. Thus, the integration of MBO with the 

AVOA technique effectively charging/discharging of EM system. Algorithm 1 shows the MBAVOA pseudocode.  

Algorithm 1. Pseudo code of MBAVOA 

Input: Parameters are initialized 

Output: Optimal solution 

Start 

Population is initialized 

Compute fitness function  

while maxVd  or best solution is not found 

do 

Organize each monarch butterfly according to its fitness function 

Divide individual butterflies into land-A and land-B 

      Generate random integers using a uniform distribution 

Select a butterfly at random from subpopulation A 

   Produce 
thr  element of 

1+d

mY by equation (9) 

   else 

         Pick a monarch butterfly at random from subpopulation B 

Produce
thr  element of 

1+d

mY  by equation (10) 

     end 

  do 

      for Ktor 1=  
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  do 

  Randomly generated ranusing a uniform distribution. 

         if pran  

Produce 
thr  element of

1+d

mY  by equation (9) 

   else 

        Select a monarch butterfly at random from subpopulation B 

       Produce
thr  element of 

1+d

mY  by equation (10) 

   If pran  

              Update the MBAVOA solution by equation (21) 

     end if 

       end if 

          end for 

               end for 

    Combine two subpopulations into a single one 

       Use the updated location to estimate the subpopulation 

1+= dd  

    end while 

       Return the optimal solution 

5. Results and discussion 

This section describes a GQA+MBAVOA's outcomes and analysis for charging or discharging strategy of energy 

storage. The efficiency is assessed by comparing charging costs, fitness, and user convenience. 

5.1. Experimental setup 

GQA+MBAVOA is conducted in MATLAB using a Windows 10 operating system. 

5.2 Performance metrics 

The GQA+MBAVOA performance is measured in terms of user fitness, charging cost, and convenience, and the 

metrics are clearly mentioned in section 4.3. 

5.3. Competing methods and assessment 

This section compares the GQA+MBAVOA to other approaches, such as Genetic Sorting Method [1], MOHGS 

[2], MILP [3], and PSO [6] in terms of performance measures.  

 

 

i) ii) 
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iii) 

Figure 2. Comparative evaluation of GQA+MBAVOA i) Charging Cost, ii) Fitness, iii) User Convenience 

Figure 2 depicts a comparative examination of GQA+MBAVOA based on the number of iterations and several 

performance measures. Figure 2i) demonstrates charging cost. For 100 iterations, the charging cost assessed by 

Genetic Sorting Method, MOHGS, MILP, and PSO are 30%, 28%, 26%, 24%, and 22%, respectively. Figure 2ii) 

shows an assessment of approaches with fitness. The fitness values for Genetic Sorting Method, MOHGS, MILP, 

PSO, and GQA+MBAVOA for 200 iterations are 0.345, 0.187, 0.167, 0.351, and 0.134, respectively. In addition, 

for 400 iterations, the fitness evaluated by Genetic Sorting Method, MOHGS, MILP, PSO, and GQA+MBAVOA 

are 0.213, 0.209, 0.1, 0.107, and 0.101. Figure 2iii) displays the user convenience of various techniques compared 

to the GQA+MBAVOA. When 100 iterations are considered, the user convenience values of Genetic Sorting 

Method are 0.336, MOHGS is 0.342, MILP is 0.365, PSO is 0.385, and GQA+MBAVOA is 0.405.  

5.6. Comparative discussion 

Table 1 compares charging/discharging of energy management systems based on user convenience, fitness, and 

charging cost. The GQA+MBAVOA has the lowest % charging cost of 63%, while Genetic Sorting Method, 

MOHGS, MILP, and PSO have of 72%, 70%, 68%, 66%, respectively. The GQA+MBAVOA has the lowest 

fitness of 0.010, while Genetic Sorting Method, MOHGS, MILP, and PSO have fitness values of 0.114, 0.012, 

0.035, 0.025, respectively. The GQA+MBAVOA has the maximum user convenience of 0.819, while Genetic 

Sorting Method, MOHGS, MILP, and PSO have values of 0.636, 0.691, 0.703, and 0.752, respectively. 

Table 1. Comparative analysis 

Metrics  

Genetic 

Sorting 

Method 

 

 

MOHGS 

 

 

MILP 

 

 

PSO 

 

GQA+MBAVOA 

Charging cost 

(%) 72 70 68 66 63 

Fitness 0.114 0.012 0.035 0.025 0.010 

User 

convenience 0.636 0.691 0.703 0.752 0.819 

6. Conclusion 

This research presents GQA+MBAVOA for scheduling energy and load in EM system. The ES is maintained for 

charging or discharging using the MBAVOA, with a newly built algorithm. The suggested MBAVOA was created 

by combining MBO and AVOA. Here, user preference, charging cost, and distance, regarded as a minimization 
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function are used to create a new model of a multi-objective fitness function. According to MBAVOA, the EVs 

are allocated to a CS. The GQA_MBAVOA can yield the lowest possible charging cost while minimizing charging 

time. The GQA_MBAVOA showed exceptional performance, with the minimal charging cost of 63%, the fitness 

of 0.010, and the maximal user convenience of 0.819. Later on, examining the GQA_MBAVOA flexibility using 

other sophisticated optimization techniques. 
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