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Abstract: -This research explores the integration of zero-trust cryptographic protocols and differential privacy techniques to 

establish scalable secure multi-party computation in the context of big data analytics. The study delves into the challenges of 

collaborative data processing and presents a comprehensive framework that addresses the intricate balance between security, 

scalability, and privacy. The framework focuses on zero-trust cryptographic protocols, advocating for a fundamental shift in trust 

assumptions within distributed systems. Differential privacy techniques are then seamlessly integrated to preserve individual privacy 

during collaborative data analytics. This model employs a layered approach and distributed architecture and leverages serverless and 

edge computing fusion to enhance scalability and responsiveness in dynamic big data environments. This also explores the 

optimization of computational resources and real-time processing capabilities through serverless and edge computing fusion. A 

distributed architecture facilitates efficient collaboration across multiple parties, allowing for seamless data integration, 

preprocessing, analytics, and visualization. Privacy preservation takes centre stage in the big data privacy component of the 

framework. Context-aware attribute analysis, distributed federated learning nodes, and Attribute-Based Access Control (ABAC) 

with cryptographic enforcement are introduced to ensure fine-grained access control, contextual understanding of attributes, and 

collaborative model training without compromising sensitive information. Smart Multi-Party Computation Protocols (SMPCP) 

further enhance security, enabling joint computation of functions over private inputs while ensuring the integrity and immutability of 

data transactions. In essence, the achieved results manifest a paradigm shift where the layered approach, distributed architecture, and 

advanced privacy techniques converge to heighten data security, drive efficient computation, and robustly preserve privacy in the 

expansive landscape of big data analytics. Fault tolerance and resource utilization exhibit significant advancements, with fault 

tolerance experiencing a 10% boost and resource utilization optimizing by 12%. These enhancements underscore the robustness and 

efficiency of the system's design, ensuring resilience and optimized resource allocation. 

Keywords: Attribute-Based Access Control, Cryptographic Enforcement, Distributed Federated Learning Nodes, 

Fault tolerance, Context-Aware Attribute Analysis, Distributed architecture. 

 

I. INTRODUCTION 

Under the umbrella of big data fusion and analytics, a sophisticated layered approach unfolds, characterized 

by a nuanced interplay of distributed nodes and the seamless integration of serverless and edge computing [1]. 

This architectural design aims to optimize data processing speed, fault tolerance, and resource utilization, 

fostering a dynamic system that adapts to the evolving demands of the analytics landscape [2]. Within the 

domain of big data privacy, the spotlight is on advanced techniques ensuring the robust protection of sensitive 

information. Context-aware attribute analysis allows the nuanced data analysis while upholding individual 

privacy [3]. The incorporation of distributed federated learning nodes introduces collaborative data analysis 

without centralizing sensitive information, fostering a secure and privacy-centric environment [4]. ABAC 

fortified with cryptographic enforcement takes centre stage in ensuring secure access control and encryption 

measures, contributing to an enhanced overall security posture [5]. The exploration of blockchain security 

unveils a tamper-resistant structure, encompassing intricate block architecture and the proof of stake consensus 

mechanism, reinforcing data integrity and security in the face of dynamic analytics challenges [6]. SMPCP 

within the blockchain framework solidify data protection, ensuring confidentiality and integrity throughout the 

big data analytics process. This comprehensive exploration envisions a paradigm shift where the layered 

approach, distributed architecture, and advanced privacy techniques synergize to deliver heightened data 
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security, efficiency in computation, and robust privacy preservation within the expansive landscape of big data 

analytics [7]. The objectives are 

• Evaluate and optimize the layered approach, distributed architecture, and fusion of serverless and edge 

computing to enhance data processing speed, fault tolerance, and resource utilization. 

• Investigate the efficacy of ABAC fortified with cryptographic enforcement in enhancing secure access 

control and encryption measures for heightened overall security. 

• Implement and assess SMPCP within the blockchain framework to solidify data protection, ensuring 

confidentiality and integrity throughout the entire process of big data analytics. 

• Implement and analyze context-aware attribute analysis to ensure nuanced data analysis while preserving 

individual privacy. 

• Evaluate the holistic convergence of the layered approach, distributed architecture, and advanced privacy 

techniques to achieve a paradigm shift in data security, computation efficiency, and robust privacy 

preservation. 

I. LITERATURE REVIEW 

Existing research emphasizes the fundamental principles of zero-trust cryptographic protocols, advocating 

for a paradigm shift in trust assumptions within distributed systems [8]. The essence lies in assuming that every 

entity, whether internal or external, is untrusted, requiring strict authentication and authorization mechanisms 

[9]. However, the implementation of zero-trust models faces challenges, especially in the context of scalable 

secure multi-party computation in big data analytics. The need for secure computation across multiple parties 

introduces complexities in cryptographic protocols, with scalability concerns and potential performance 

bottlenecks [10]. Differential privacy techniques, known for their efficacy in preserving individual privacy 

during data analysis, play a crucial role in the context of big data analytics. Differential privacy techniques aim 

to balance privacy protection with data utility by adding noise to query responses [11]. However, this trade-off 

between privacy and precision can limit the accuracy of analysis results, especially when dealing with sensitive 

or high-dimensional data [12].  

Adapting these techniques to scalable multi-party computation can pose unique challenges [13]. The 

literature reveals that achieving a balance between privacy preservation and computation scalability is a non-

trivial task [14]. Existing approaches often grapple with the trade-off between ensuring robust privacy 

guarantees and maintaining the efficiency required for large-scale data processing [15]. Attention mechanisms, 

a key element in the integration of privacy-preserving techniques, have shown promise in enhancing the 

security of multi-party computation [16]. However, challenges persist in adapting these mechanisms to the 

complexities of big data scenarios[20-22]. The literature underscores the necessity for advanced attention 

models capable of addressing the nuances of scalable secure computation, ensuring effective protection against 

potential privacy breaches [17].  

The authors in [18] address the vulnerabilities in current IoT security frameworks by introducing a novel 

Vectorization-Based Boost Quantized Network (VBQ-Net), leveraging Vector Space Bag of Words (VSBW) 

for feature reduction, Boosted Variance Quantization Neural Networks (BVQNNs) for intrusion classification, 

and a Multi-Hunting Reptile Search Optimization (MH-RSO) algorithm for efficient intrusion anticipation, 

aiming to enhance the defense mechanism against cyberattacks on IoT systems. [19] develops a security 

protocol in MANET for IoT, employing an enhanced chaotic map for encryption. It introduces three optimized 

key management algorithms, with ABRR-CHIO outperforming others by 96% at the 60th iteration. The model 

is superior in statistical analysis, convergence, and communication overhead, addressing MANET-IoT 

integration complexities. 

II. PROPOSED WORK 

In the dynamic landscape of big data analytics, the imperative task of achieving scalable, secure multi-party 

computation while safeguarding individual privacy has risen to the forefront. This proposed work undertakes 

the challenge by proposing a comprehensive integration of zero-trust cryptographic protocols and differential 

privacy techniques. The research is structured with a meticulous exploration of key dimensions, spanning big 

data fusion and analytics, privacy preservation measures, and block chain security. 
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Figure.1 Framework of privacy techniques in big data analytics 

A. Big Data Fusion and Analytics 

The proposed work advocates for a layered approach in big data fusion and analytics. This involves the 

systematic organization of data processing into distinct layers, each serving a specific purpose. Such a stratified 

architecture facilitates the efficient management of complex analytics processes. The integration of security 

measures at each layer ensures a robust defence against potential threats, aligning with the principles of zero-

trust. Distributed architecture, delves into decentralized frameworks for handling big data analytics. By 

distributing computation across various nodes, this approach enhances scalability and security. The 

implementation of zero-trust principles in such a distributed setup ensures that no single node is implicitly 

trusted, contributing to a more resilient and secure analytics. The dynamic scaling and efficient resource 

utilization offered by serverless architectures are coupled with edge computing, which brings computation 

closer to data sources, reducing latency. The fusion of these technologies is underscored by the application of 

zero-trust cryptographic protocols, ensuring secure communication and computation in a decentralized manner. 

 

B. Big data privacy  

Privacy in big data analytics adopts a context-aware attribute analysis approach, delving into contextual 

factors surrounding data attributes to achieve a nuanced understanding of sensitivity. This methodology is 

fortified by the integration of cryptographic protocols, specifically those rooted in zero-trust principles, 

bolstering the privacy of attribute analysis and safeguarding against unauthorized access or compromise. The 

research advances privacy preservation through a federated learning approach, establishing distributed nodes for 

collaborative learning. This decentralized structure ensures the maintenance of individual data privacy. The 

incorporation of differential privacy measures during federated learning further enhances privacy by 

safeguarding sensitive information contributed by each node in the collaborative model-building process. This 

approach allows for fine-grained control over data access based on attributes. Adding an additional layer of 

security, cryptographic enforcement prevents unauthorized access, emphasizing the importance of securing 

sensitive information. The integration of zero-trust principles into this framework ensures that access decisions 

undergo rigorous scrutiny and verification, aligning with a robust security posture. 
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C. Blockchain Security 

The chosen block structure is thoughtfully aligned with the principles of zero-trust and privacy 

requirements, exploring innovative designs that elevate the overall security posture of the blockchain. The 

research strategically incorporates a Proof of Stake (PoS) consensus mechanism, leveraging participants' stakes 

in the network to validate transactions. This alignment of economic incentives with security not only enhances 

the integrity of the blockchain but also promotes scalability and energy efficiency critical considerations within 

the expansive landscape of big data analytics. The SMPCP is introduced as a ground breaking alternative to 

traditional smart contracts. With a focus on privacy, security, and efficiency, SMPCP empowers computations 

on encrypted or private data without compromising sensitive information. The seamless integration of SMPCP 

within the blockchain framework establishes a privacy-preserving and secure multi-party computation 

environment, reshaping the landscape of secure transactions and data handling. 

D. Implementation 

The system architecture is designed to ensure robust security and efficiency across various components. The 

first aspect, big data fusion and analytics, adopts a layered approach to fortify the security infrastructure. Each 

layer contributes distinct security measures, creating a comprehensive shield against potential threats. The 

distributed architecture enhances scalability and fault tolerance by decentralizing computational processes 

across multiple nodes. This not only mitigates the risk of a single point of failure but also optimizes resource 

utilization. The integration of serverless and edge computing further enhances the system's agility. By fusing 

these technologies, computational tasks are distributed across edge devices, accelerating data processing and 

bolstering security. This dynamic approach ensures that the system remains responsive and adaptive to the 

evolving landscape of big data analytics. The system incorporates context-aware attribute analysis for data 

privacy. This technique allows for nuanced data analysis without compromising individual privacy. The 

implementation of distributed federated learning nodes ensures collaborative data analysis without centralizing 

sensitive information. This decentralized approach to learning nodes fosters a secure and privacy-centric 

environment for data analytics. ABAC fortified with cryptographic enforcement becomes a cornerstone of data 

privacy. This component ensures that access to data is granted based on predefined attributes, and cryptographic 

enforcement adds an extra layer of protection by encrypting and securing these attributes from unauthorized 

access. The system also integrates blockchain security, leveraging a tamper-resistant structure. The block 

architecture ensures the integrity of data, and the PoS consensus mechanism enhances security. SMPCP within 

the blockchain framework further solidify data protection, ensuring confidentiality and integrity throughout the 

big data analytics process. Thus, this comprehensive system design aims to provide a secure, efficient, and 

privacy-centric environment for handling large-scale data analytics.  

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 =
∑ 𝑇𝑖

𝑁
𝑖=1

𝑁
 

(1) 

Mean time between failures is a measure of a system's reliability. It represents the average time between 

failures. Here, 𝑇𝑖  is the time until the  𝑖𝑡ℎ failure and  𝑁 is the total number of failures. 

𝑃 =
𝑆𝑡𝑎𝑘𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑘𝑒 𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘
 

(2) 

 

The probability of a node being chosen to validate the next block in a PoS system can be calculated using a 

formula based on the node's stake. Where, P is the probability of being chosen, stake of node refers to the 

amount of cryptocurrency the node has staked and total stake in network is the sum of all cryptocurrency staked 

by all nodes in the network. 

Proof of Stake (PoS) 

The PoS algorithm starts with a genesis block. Participants take turns providing stakes for generating 

subsequent blocks. Each block includes information such as index, timestamp, data, and the participant's stake. 

In the simulated scenario, four blocks are added to the blockchain, each with a randomly selected participant 

contributing the stake. Genesis_block, participants are input and blockchain, a list containing the generated 

blocks, starting with the genesis block and expanding as new blocks are added. Each block includes information 

such as index, timestamp, data, hash, and the participant's stake are considered to be output.  
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Algorithm.1 PoS 

1. import hashlib 

2. import random 

3. class Block: 

4. def __init__(self, index, previous_hash, timestamp, data, hash, stake): 

5. self.index = index 

6. self.previous_hash = previous_hash 

7. self.timestamp = timestamp 

8. self.data = data 

9. self.hash = hash 

10. self.stake = stake 

11. def calculate_hash(index, previous_hash, timestamp, data, stake): 

12. value = str(index) + str(previous_hash) + str(timestamp) + str(data) + str(stake) 

13. return hashlib.sha256(value.encode()).hexdigest() 

14. def generate_genesis_block(): 

15. return Block(0, "0", "Genesis Block", "Genesis Data", calculate_hash(0, "0", "Genesis 

Block", "Genesis Data", 0), 0) 

16. def generate_new_block(previous_block, data, stake): 

17. index = previous_block.index + 1 

18. timestamp = "current_timestamp" 

19. hash = calculate_hash(index, previous_block.hash, timestamp, data, stake) 

20. return Block(index, previous_block.hash, timestamp, data, hash, stake) 

21. def proof_of_stake_algorithm(previous_block, data, participant_stakes): 

22. random_participant = random.choice(participant_stakes) 

23. new_block = generate_new_block(previous_block, data, random_participant) 

24. return new_block 

             # Example Usage 

25. genesis_block = generate_genesis_block() 

26. blockchain = [genesis_block] 

             # Simulating participants with stakes 

27. participants = ["Participant_A", "Participant_B", "Participant_C"] 

             # Generating new blocks using PoS algorithm 

28. for i in range(1, 5):  

# Generating 4 additional blocks for demonstration 

29. new_block = proof_of_stake_algorithm(blockchain[-1], f"Block {i} Data", participants) 

30. blockchain.append(new_block) 

31. print(f"Block #{new_block.index} added to the blockchain with stake from 

{new_block.stake}") 

III. RESULT 

Establishing an experimental setup for zero-trust cryptographic protocols and differential privacy techniques 

in scalable secure multi-party computation within the realm of big data analytics involves a meticulous 

configuration. To fortify the system's security, layered security architecture is implemented, incorporating 

industry-standard cryptographic protocols like Transport Layer Security (TLS) for data encryption in transit. 

This is complemented by the deployment of firewalls, intrusion detection systems, and secure gateways at each 

layer, collectively forming a robust defense mechanism against potential threats. The distributed architecture is 

realized through the utilization of a container orchestration platform such as kubernetes. Computational tasks 

are strategically distributed across multiple nodes, facilitating parallel processing and ensuring fault tolerance in 

the event of system failures. Incorporating serverless and edge computing into the experimental framework is 

achieved through the adoption of serverless computing frameworks like AWS lambda and edge computing is 

integrated by deploying azure IoT edge. The deployment of distributed federated learning nodes, facilitated by 

frameworks like tensorflow federated, ensures collaborative learning across decentralized nodes while 

preserving data privacy. blockchain security is established by suitable blockchain platform such as hyperledger 

fabric. The block architecture is carefully designed to accommodate encrypted data, and smart contracts are 

employed for access control. The PoS consensus mechanism is implemented to enhance both security and 

energy efficiency SMPCP form an integral part of the experimental setup, with libraries like TenSEAL for 

Python being chosen. The integration of these components is conducted meticulously to simulate a realistic big 

data analytics scenario.  



J. Electrical Systems 20-5s (2024): 2114-2123 

 

2119 

 

 
Figure.2 Heatmap of metrics for different layers 

 

The depicted heatmap offers a visual representation of diverse metrics across different architectural layers, 

providing a comprehensive insight into the evolving performance of the system. The layers, including layer 1, 

layer 2, layer 3, distributed nodes, edge computing, and serverless, are analysed against key metrics like data 

processing speed, fault tolerance, resource utilization, data privacy level and scalability index. Numerically, 

each cell in the heatmap corresponds to a specific metric's value within a particular layer. For instance, in layer 

1, the data metric is quantified at 1200, fault tolerance at 95, resource utilization at 85, data privacy level at 93, 

and scalability index at 89. As we progress to layer 2, the heatmap reveals changes in these metric values, with 

data processing speed dropping to 900 and fault tolerance increasing to 98, signifying a nuanced evolution in 

the system's characteristics. The color intensity in the heatmap serves as a visual cue, with brighter hues 

indicating higher metric values. Observing the heatmap, we notice a gradient shift across layers, illustrating the 

intricate interplay of metrics within the system architecture. The color variation assists in identifying patterns, 

trends, and areas of improvement or optimization. The colorbar on the right side provides a reference for the 

metric values, aiding in the interpretation of the heatmap. As the color transitions from cooler to warmer tones, 

it reflects the numerical progression from lower to higher metric values. 

 

 
Figure.3 Weighted average system performance across different metrics 
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The generated graph encapsulates a comprehensive view of system performance across various metrics, 

emphasizing the significance of weighted averages as a measure of the system's overall capabilities. 

Numerically, the weighted average values are calculated by considering the contributions of each architectural 

layer, with assigned weights reflecting their relative importance. In this context, layer 3 holds the highest weight 

(30%), followed by layer 2 (20%) and edge computing (20%), indicating their pronounced impact on the 

system's aggregated performance. The graph illustrates the trajectory of the weighted average values across 

these critical metrics. Notably, the system's data processing speed exhibits a discernible increase, reaching a 

weighted average value that aligns with the cumulative influence of the layers. Fault tolerance experiences a 

weighted average boost, reflecting the amalgamated resilience achieved through the layer’s collaborative 

efforts. Resource utilization, with its own weighted average, portrays the efficiency gains achieved through a 

harmonized approach to resource management. The numerical values, juxtaposed against the metric's evolution, 

provide a quantitative understanding of the optimized resource allocation facilitated by the layered architecture. 

The weighted average values for data privacy level and scalability index encapsulate the collaborative impact of 

layers on privacy measures and scalability enhancements, respectively. These numerical benchmarks serve as 

tangible indicators of the system's evolution in safeguarding data privacy and scaling seamlessly in response to 

varying workloads. 

 
Figure.4 Percentage change in metrics between different layers 

 

Figure 4 delves into the nuanced landscape of system performance across various architectural layers, 

offering a numerical portrayal of the percentage changes in key metrics. In the transition from layer 1 to layer 2, 

the graph reveals a notable improvement in fault tolerance, with a 3% increase from 95 to 98. Simultaneously, 

resource utilization experiences a modest uptick of 7%, ascending from 85 to 92. These numerical insights 

illuminate the tangible enhancements introduced at Layer 2, indicating a strengthening of the system's resilience 

to faults and more efficient resource utilization. Layer 3 further refines the system, showcasing a 10% increase 

in data processing speed, a 4% improvement in fault tolerance, and a 2% boost in scalability index. The 

numerical values of 1100, 98, and 94 for data processing speed, fault tolerance, and scalability index, 

respectively, quantify the incremental advancements achieved in these critical aspects. As the architectural 
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complexity extends to distributed nodes, the graph demonstrates a nuanced interplay of metrics. Notably, data 

privacy level witnesses a 3% increase, reaching 91, indicative of the heightened privacy measures introduced at 

this layer. Simultaneously, fault tolerance experiences a 4% improvement, underscoring the distributed 

architecture's inherent fault-tolerant design. The subsequent integration of edge computing introduces a 3% 

increase in data processing speed, emphasizing the system's responsiveness at the network's edge. Additionally, 

fault tolerance sees a 3% enhancement, reinforcing the system's reliability in distributed environments. The 

numerical values of 95 and 98 for data processing speed and fault tolerance, respectively, provide concrete 

evidence of these advancements. Finally, the incorporation of serverless architecture maintains the upward 

trajectory, with a 1% increase in fault tolerance and a 2% improvement in data privacy level. The numerical 

values of 96 and 93 for fault tolerance and data privacy level, respectively, quantify the sustained progress in 

these metrics. 

 

Table.1 Data Privacy and Security Metrics 

Metric 

Context-Aware 

Attribute Analysis 

(%) 

Federated 

Learning 

Nodes (%) 

ABAC with 

Cryptographic 

Enforcement (%) 

Blockchain 

Security 

(%) 

SMPCP 

(%) 

Individual Privacy Preservation 92 88 95 98 95 

Collaborative Data Analysis 85 96 94 97 90 

Access Control and Encryption 94 92 90 99 96 

Tamper-Resistance and Data 

Integrity 

90 95 92 98 93 

Confidentiality and Integrity 

Assurance 

96 98 96 99 97 

 

 
Figure.5 Changes in percentage for each security measures 

 

Figure 5 depicts the variations in percentage values for five distinct security measures across five specific 

aspects. The aspect 1, 2, 3, 4, 5 are initial performance, significant improvement, fluctuation and recovery, peak 

performance, steady state performance. Context-aware attribute analysis initiates at a percentage of 92 in aspect 

1, experiences an upward trend to 98 in aspect 4, and undergoes a slight decline in aspect 5. This nuanced 

fluctuation signifies the sensitivity of this security measure to varying aspects, with aspect 4 contributing 

significantly to its peak performance. For federated learning nodes, the percentage starts at 85 in aspect 1, 

undergoes a remarkable increase to 96 in aspect 2, and maintains a relatively stable performance thereafter. The 

substantial improvement in aspect 2 underscores the positive influence of specific aspects on enhancing the 
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effectiveness of federated learning nodes. ABAC with cryptographic enforcement starts at 94 in aspect 1, 

declines to 90 in aspect 3, then exhibiting an upward trajectory in aspect 4 and aspect 5. This dynamic 

performance underscores the influence of multiple aspects, with a notable recovery observed in the later stages. 

Blockchain security initiates at 90 in aspect 1, steadily increases to a peak of 98 in aspect 3, and maintains a 

high level in aspect 4 and aspect 5. This consistent improvement signifies the robust and adaptive nature of 

blockchain security, showcasing its resilience across diverse aspects. SMPCP commences at 96 in aspect 1, 

experiences a minor fluctuation in aspect 2, and steadily improves in aspect 3, aspect 4, and aspect 5. This 

resilience and consistent enhancement across various aspects underscore the reliability of SMPCP in ensuring 

secure multi-party computation protocols. 

IV. CONCLUSION 

In the intricate domain of secure multi-party computation in big data, the meticulous examination of security 

measures unravels profound insights across diverse aspects. The weighted averages, strategically assigned to 

different architectural layers, illuminate the nuanced interplay of factors that underpin the system's overall 

performance. The meticulously designed layered approach demonstrates tangible outcomes, with distributed 

nodes and integrated serverless and edge computing contributing to a substantial increase in data processing 

speed, showcasing a remarkable 15% improvement. With layer 3 commanding the highest weight (30%), layer 

2 (20%), and edge computing (20%) following suit, the system orchestrates a harmonized symphony of 

capabilities. Fault tolerance experiences a commendable boost in its weighted average, indicative of the 

collaborative resilience fostered through the layer’s concerted efforts. Resource utilization, depicted by its 

weighted average, underscores the efficiency gains achieved through a unified approach to resource 

management. Context-aware attribute analysis ensures a substantial preservation of individual privacy, while 

federated learning nodes contribute significantly to collaborative data analysis, showcasing a remarkable 

percentage increase. ABAC with cryptographic enforcement exhibits robust access control and encryption 

measures, with a notable percentage representing its pivotal role in ensuring data integrity. The integration of 

blockchain security introduces a tamper-resistant structure, reflected in a high percentage that underlines its 

effectiveness in maintaining data integrity across diverse aspects. Finally, SMPCP impresses with a significant 

percentage, affirming its reliability in providing robust confidentiality and integrity assurance in multi-party 

computation protocols. 
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