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Abstract: Understanding real-time brain states facilitates deeper insights into cognitive processes, emotional responses, and 

neurological phenomena. It provides researchers with a dynamic view of brain function, aiding in the development of novel 

therapies, advancing neuroscience, and fostering innovations in brain-computer interfaces and artificial intelligence. The research 

aims to achieve real-time classification of brain states using dynamic connectivity patterns and Convolutional Neural Network 

(CNN) algorithms. It focuses on how demographic variables, such as brain volume and medication usage, influence classification 

accuracy. The study employs Python programming with FSL and Nilearn for preprocessing tasks like motion correction and 

dynamic connectivity pattern extraction. Feature selection and data partitioning are managed using Scikit-learn, ensuring 

standardized feature values and handling missing data. The CNN architecture is customized to handle spatial and temporal features 

in functional MRI (fMRI) data, with convolutional layers extracting spatial features representing local connectivity patterns. 

Dynamic connectivity matrices visualization aids in understanding brain network reconfigurations over time. This approach offers 

real-time insights into cognitive processes and neurological disorders, guiding personalized interventions for brain health. In result, 

connectivity matrices and 3D brain network visualizations are pivotal for unraveling brain state dynamics. Connectivity matrices 

unveil intricate interactions among brain regions across resting, task execution, and stress response states, offering quantitative 

insights into functional connectivity patterns. Meanwhile, 3D visualizations provide spatial representations, showcasing complex 

interplays and architectural changes across states. 
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I. INTRODUCTION  

Brain states encompass a wide array of dynamic neural configurations that reflect the ongoing physiological 

and functional activities of the brain. These configurations manifest as distinct patterns of neuronal firing, 

synchronization, and communication across various brain regions, dynamically shaping cognitive, emotional, 

and behavioral experiences [1]. Understanding brain states is pivotal in unraveling the intricate neural substrates 

underlying diverse cognitive processes, emotional responses, and behavioral manifestations. Moreover, 

elucidating brain states holds profound implications for diagnosing and treating neurological and psychiatric 

disorders, as alterations in brain states are often associated with pathological conditions [2]. To investigate brain 

states, researchers employ an arsenal of sophisticated neuroimaging techniques, including functional magnetic 

resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG), which afford 

real-time observation and analysis of the brain's dynamic activity. Machine learning (ML) holds significant 

promise in the realm of real-time brain state detection from FMRI data [3]. Dynamic connectivity patterns, 

which capture the time-varying interactions between different brain regions, play a crucial role in understanding 

the dynamic nature of brain function [4]. By examining changes in connectivity patterns over time, dynamic 

connectivity analysis allows researchers to identify transient brain states that may not be captured by traditional 

static connectivity measures [5]. This approach enables the characterization of network dynamics, including the 

flexibility and adaptability of brain networks in response to different stimuli or cognitive demands. Moreover, 

dynamic connectivity patterns provide insights into the temporal relationships between brain regions, shedding 

light on the sequencing of neural activations and the propagation of information within the brain [6]. These 

insights are invaluable for elucidating the mechanisms underlying complex cognitive processes such as 

decision-making, memory formation, and attentional control.  

 
1 1Professor, Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and 
Technical Sciences SIMATS, Chennai, Tamil Nadu, India, Email: r.gnanajeyaraman@gmail.com 
2Associate Professor, Department of Computer Science and Engineering,P.S.R. Engineering College (Autonomous) Sevalpatti, Sivakasi - 
626140, Tamil Nadu.Email: palanikumar@psr.edu.in  
3PG Resident, Department of Radio-Diagnosis Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences 
(SIMATS), Saveetha University, Chennai, Tamil Nadu - 602105, India, Email: vinothpandian7@gmail.com* 
4Professor. Department of Electronics and Communication Engineering, Panimalar Engineering College, Chennai, Tamil Nadu 600123, India 
Email:selvaraninaac2022@gmail.com 
5Associate Professor, Department o Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R & D Institute of 
Science and Technology, Chennai, Tamil Nadu, India, Email: drrufus@veltech.edu.in 
*Correspondence: vinothpandian7@gmail.com* 

mailto:r.gnanajeyaraman@gmail.com
mailto:palanikumar@psr.edu.in
mailto:vinothpandian7@gmail.com*
mailto:drrufus@veltech.edu.in
mailto:vinothpandian7@gmail.com*


J. Electrical Systems 20-5s (2024): 2051-2059 

2052 

By leveraging ML algorithms, researchers can efficiently process vast amounts of FMRI data, allowing for 

the timely analysis of brain states during various cognitive tasks or experimental conditions [7]. One of the key 

strengths of ML lies in its ability to recognize intricate patterns and relationships within complex, high-

dimensional datasets like FMRI images [8]. ML algorithms can discern subtle nuances in brain activity that 

correspond to different cognitive or behavioral states, even amidst noise and variability inherent in 

neuroimaging data. Moreover, ML models are adaptable, capable of learning from labeled data to generalize 

patterns of brain states across diverse populations and experimental settings [9]. This adaptability extends to 

providing real-time feedback based on ongoing brain activity, enabling adaptive interventions or training 

protocols. Additionally, ML techniques can automate feature extraction from fMRI data, reducing the need for 

manual selection and potentially uncovering novel biomarkers or patterns of brain activity associated with 

specific states [10]. Consequently, the integration of ML with fMRI facilitates efficient and accurate real-time 

detection of brain states, with broad applications spanning cognitive neuroscience research to clinical 

interventions for neurological and psychiatric disorders. The Objectives of the work are to: 

• Enhance CNN-based brain state classification accuracy with demographic variables. 

• Utilize Python for rigorous fMRI data pre-processing and feature extraction. 

• Design a CNN architecture capable of capturing spatial-temporal features. 

• Enable real-time analysis for understanding brain states and aiding in neurological disorder diagnosis. 

II. LITERATURE REVIEW 

When employing seed-based correlation analysis to detect brain states, several limitations must be 

considered. Firstly, the method heavily relies on the selection of seed regions, which may introduce bias and 

limit the generalizability of findings [11]. These seed regions are typically chosen based on prior knowledge or 

hypotheses, potentially overlooking important brain regions involved in the state of interest. Furthermore, seed-

based correlation analysis assumes stationarity, implying that the strength of connectivity between seed regions 

and other brain areas remains constant over time [12]. However, brain states are dynamic, and this assumption 

may not hold true, leading to inaccuracies in state detection. Moreover, the spatial specificity of seed-based 

correlation analysis is limited to the chosen seed regions, potentially neglecting distributed neural networks 

contributing to the state [13]. Additionally, interpreting the identified connectivity patterns in terms of 

underlying cognitive or behavioral processes can be challenging, as correlation does not imply causation. These 

limitations highlight the need for cautious interpretation and the incorporation of complementary methods to 

enhance the understanding of brain states. Static connectivity analysis involves measuring the functional 

connectivity between brain regions using methods such as seed-based correlation analysis or resting-state 

functional connectivity analysis [14]. These approaches provide valuable insights into the overall organization 

of brain networks but often overlook dynamic changes in connectivity patterns that occur over time [15]. One 

significant limitation of static connectivity analysis is its inability to capture transient or rapidly changing brain 

states, as it assumes that the strength of connectivity between brain regions remains constant throughout the 

entire scan duration. This limitation can lead to a loss of information regarding the dynamic nature of brain 

activity and may result in inaccurate or incomplete characterization of brain states.  

Consequently, static connectivity analysis may not be suitable for real-time classification of brain states, 

especially in tasks or conditions where rapid fluctuations in cognitive or behavioral states are expected. 

Dynamic connectivity analysis, on the other hand, addresses this limitation by examining changes in 

connectivity patterns over time, offering a more comprehensive and accurate representation of brain dynamics 

during different cognitive states. Manual feature selection and classification without the utilization of machine 

learning techniques involves a labor-intensive process of selecting and analyzing features from FMRI data to 

characterize different brain states [16][22]. Researchers manually identify relevant biomarkers or patterns in the 

data that are indicative of specific cognitive or behavioral states, such as task-related activation patterns or 

connectivity changes [17]. However, this approach is inherently limited by subjectivity and bias, as the selection 

of features heavily relies on the researcher's expertise and prior knowledge. Additionally, manual feature 

selection often requires a priori assumptions about which features are relevant, potentially overlooking 

important biomarkers or patterns that are not initially considered. Furthermore, manual classification methods 

may lack scalability and generalizability, as they may not effectively handle large and complex datasets. 

Overall, manual feature selection and classification methods are less efficient and may not fully capture the 

complexity of brain states compared to machine learning techniques, which can automatically learn and adapt to 

patterns in the data, leading to more robust and accurate classifications [18][23]. 
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The research in [19] introduces an automated diabetes detection system using Inherent Coefficient 

Normalization (ICN) for dataset preprocessing, Intelligent Harris Hawks Optimization (IHHO) for feature 

selection, and Pivotal Decision Tree (PDT) for efficient classification, addressing limitations seen in traditional 

machine learning systems. The research in [20] introduces an advanced hand gesture recognition system, 

utilizing skin color detection, Heuristic Manta-ray Foraging Optimization for feature selection, and an Adaptive 

Extreme Learning Machine for classification to enhance accuracy and reduce error rates compared to traditional 

methods. 

II. PROPOSED WORK 

2.1 Dataset Description 

The BCP (Brain Connectivity and Prediction) dataset is commonly utilized in neuroscience research for 

investigating brain states and connectivity patterns using FMRI data [21]. This dataset is valuable because it 

provides a large collection of FMRI scans along with associated metadata, allowing researchers to explore 

various aspects of brain function and connectivity. It may contain hundreds to thousands of FMRI scans, each 

with multiple time points and spatial dimensions. Additionally, the dataset may include demographic 

information about the participants, task instructions, and other relevant details. In research utilizing the BCP 

dataset for real-time classification of brain states, only a subset of the data may be utilized to train and evaluate 

the machine learning model. This subset is typically selected to represent a balanced distribution of brain states 

or conditions of interest, ensuring that the model learns to generalize well to new data. 

 

Table.1 Brain Characteristics for CNN Analysis 

Subject 

ID 
Brain Volume (cc) 

Gray Matter 

Density 

White Matter 

Integrity (FA) 

Age of Onset of 

Neurological 

Disorders 

Medication Usage 

1 1350 0.75 0.60 25 Antidepressants 

2 1425 0.72 0.58 - None 

3 1300 0.78 0.63 35 Antipsychotics 

4 1380 0.70 0.56 - Anxiolytics 

5 1375 0.77 0.62 40 Antidepressants 

 

The demographic variables such as brain volume, gray matter density, white matter integrity, age of onset of 

neurological disorders, and medication usage is crucial for research on real-time classification of brain states 

using dynamic connectivity patterns and CNN algorithms. These variables provide valuable insights into 

individual differences in brain structure, function, and health status, significantly impacting the patterns 

detected by the CNN model. Incorporating these demographic details into the analysis enhances the accuracy 

and interpretability of classification results, leading to a better understanding of brain states and their underlying 

mechanisms. 

2.2 Data Preprocessing 

The data preprocessing for the research primarily employs Python programming language along with 

specific libraries and tools tailored for neuroimaging analysis. Raw FMRI data preprocessing, including motion 

correction, slice timing correction, and spatial normalization, is executed using FSL (FMRIB Software Library) 

and its Python interface, FSLeyes. Dynamic connectivity patterns extraction utilizes Nilearn, a Python library 

for statistical learning on neuroimaging data, implementing sliding window correlation techniques. Feature 

selection techniques leverage Scikit-learn, a Python machine-learning library, for identifying relevant 

connectivity features. Data partitioning into training, validation, and testing sets is orchestrated using Scikit-

learn's built-in functions. Standardization or normalization of feature values is performed within the Scikit-learn 

framework, ensuring consistency across data. Lastly, any missing data is handled using Scikit-learn's imputation 

functionalities. This meticulous preprocessing pipeline ensures that the functional MRI data is suitably 

processed and formatted for subsequent analysis and real-time classification of brain states using convolutional 

neural network algorithms. 

2.2 CNN Algorithm 

Dynamic connectivity patterns from functional MRI data serves as input. Selected features subset optimized 

for real-time classification of brain states using CNN are the output 
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Algorithm.1 CNN Feature Selection for Brain State Classification 

# Initialize an empty list to store selected features 

1. S = [] 

2. Initialize the size of the subset 

3. k = 0 

# Define the number of desired features 

4. p = 10 

# Loop until the desired number of features is reached 

5. while k < p: 

# Perform CNN-based feature selection or extraction 

# Update S with selected features based on CNN 

# Update k accordingly based on the number of selected features 

6. pass 

 

To effectively utilize a CNN algorithm for real-time classification of brain states in FMRI data based on 

dynamic connectivity patterns, a comprehensive approach is essential. Initially, the raw FMRI data undergoes 

preprocessing steps, including motion correction, temporal filtering, and spatial normalization, to ensure data 

quality and consistency across subjects. Dynamic connectivity patterns are then extracted using techniques such 

as sliding window correlation analysis, capturing temporal fluctuations in brain network connectivity over time. 

The CNN architecture is carefully designed to handle spatial and temporal features inherent in FMRI data. It 

typically consists of multiple layers, including convolutional layers, pooling layers, and fully connected layers. 

Convolutional layers apply filters to the input connectivity patterns, extracting spatial features that represent 

local connectivity patterns. Mathematically, the convolution operation can be represented as: 

(f ∗ g)(x, y) = ∑ ∑ f(m, n)g(x − m, y − n)
nm

 
(1) 

Pooling layers downsample the feature maps, reducing spatial dimensionality while preserving important 

features. The pooling operation, often max pooling, can be defined as: 

yi = max(x4i, x4i+1,x4i+3) (2) 

Following convolution and pooling, the feature maps are flattened and fed into fully connected layers for 

classification. The fully connected layers apply a transformation to the input features using weights and biases, 

followed by an activation function. Mathematically, this operation can be represented as: 

z = σ(Wx + b) (3) 

Where 𝑊 represents the weights, 𝑥 denotes the input, 𝑏 is the bias term, and 𝜎 is the activation function, 

such as ReLU or sigmoid. The model is trained using labeled data, optimizing the network parameters through 

backpropagation and gradient descent algorithms. Once trained, the CNN model can classify brain states in real-

time by processing dynamic connectivity patterns from fMRI data, offering insights into the brain's functional 

organization and dynamics. 

 
Fig.1 Dynamic Connectivity Evolution 

 



J. Electrical Systems 20-5s (2024): 2051-2059 

2055 

 Dynamic connectivity matrices are visualized in fig.1. Each subplot represents a time point, displaying the 

connectivity graph of a specific moment. The connectivity strength between nodes is represented by edge 

intensities, with a colorbar indicating the range of connectivity values. FMRI captures brain activity by 

detecting changes in blood flow, enabling the investigation of dynamic interactions between different brain 

regions over time. The dynamic connectivity matrices obtained from fMRI data represent the strength of 

functional connections between brain regions at each time point. By visualizing these dynamic connectivity 

patterns, insights can be gained into how brain networks reconfigure over time, revealing important information 

about brain function and dynamics. Furthermore, these visualizations serve as input data for CNN, to classify 

different brain states based on dynamic connectivity patterns extracted from FMRI data. Through real-time 

analysis, such algorithms can contribute to understanding cognitive processes, diagnosing neurological 

disorders, and guiding personalized interventions for brain health. 

III. RESULTS 

In the results section, the connectivity matrices and brain network visualizations serve as crucial tools for 

understanding the intricate dynamics of brain states. The connectivity matrices offer insights into the strength 

and patterns of interactions between different brain regions during resting, task execution, and stress response 

states. These matrices provide quantitative measures of functional connectivity, unveiling how neural networks 

reconfigure to support various cognitive and physiological processes. On the other hand, the 3D brain network 

visualizations offer a spatial representation of these connectivity patterns, depicting the complex interplay 

between brain regions and highlighting changes in network architecture across different states. Together, these 

visualizations illuminate the underlying neural mechanisms driving behavioral responses and cognitive 

functions. 

 

 
Fig.2 Connectivity Matrix for Resting State 

 

In Fig.3, high counts along the diagonal indicate accurate classification of brain states. The prominence of 

correct classifications for the resting state, alongside minimal misclassifications into other states, suggests 

distinct neural patterns during rest. Furthermore, consistent high accuracy across subjects reaffirms the 

reliability of distinguishing resting state from other cognitive states. Thus, the matrix reflects the robustness of 

resting state characterization, emphasizing its distinct neural signatures and enabling reliable identification 

amidst varying cognitive conditions. 
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Fig.3 Connectivity Matrix for Task Execution State 

 

Fig.3 depicts connectivity patterns, but during task execution. It showcases how functional connections 

between brain regions change dynamically when individuals engage in cognitive tasks. Variations in 

connectivity strength highlight the modulation of neural networks to support task performance and cognitive 

processing. These variations may include increases or decreases in connectivity strength, alterations in network 

topology, or shifts in the coordination of activity among brain regions. Such variations reflect the dynamic 

nature of brain network organization in response to cognitive task demands, highlighting the adaptability and 

flexibility of neural systems in supporting cognitive processes. 

 

 
Fig.4 Connectivity Matrix for Stress Response State 

 

In the fig.4, distinctive patterns emerge indicating accurate classification of stress response states with 

minimal misclassifications into other states. High counts along the stress response state row, particularly along 

the diagonal, signify precise identification of this state. Additionally, the matrix may reveal elevated 

misclassifications from other states into stress response, suggesting unique neural signatures characteristic of 

stress. Consistent accuracy across subjects further bolsters confidence in delineating stress states. Thus, the 

confusion matrix conveys the discernible neural patterns associated with stress response, facilitating reliable 

identification amidst varying cognitive conditions and underpinning the distinct connectivity dynamics during 

stress processing. 
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Fig.5 Brain Network for Resting State 

 

             In fig.5, a dense network of nodes represents brain regions, reflecting intrinsic functional connectivity 

during rest. Various brain regions exhibit synchronized activity even in the absence of external stimuli or tasks. 

Node sizes are balanced, indicating all brain regions contribute to the resting state network. This uniformity 

suggests no specific region dominates activity, consistent with resting state networks' distributed nature. Strong, 

abundant edges between nodes signify robust functional connections facilitating communication and 

coordination among regions. Nodes may form clusters or modules within the graph, representing functional 

subnetworks. These clusters reflect the organization of brain activity into distinct functional domains during 

rest. 

 
Fig.5 Brain Network for Task Execution State 

 

In the task execution state, nodes representing brain regions exhibit larger sizes compared to the resting state 

network, indicating regions more actively involved in cognitive tasks. Varied edge patterns, including 

differences in thickness, color, or density, suggest altered functional connections between brain regions, 

reflecting dynamic neural network reorganization to support cognitive processing. Additionally, the overall 

network dynamics may show dynamic shifts, with changes in both node sizes and edge patterns, indicating the 

brain's adaptive response to task demands and optimization of information processing and cognitive 

performance during task execution. 
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Fig.5 Brain Network for Stress Response State 

 

In the stress response state, nodes representing brain regions typically exhibit changes in size compared to 

other states. Larger or smaller node sizes indicate heightened or reduced activity in specific regions implicated 

in stress processing. Additionally, edge patterns, such as differences in thickness or density, manifest, 

suggesting alterations in functional connectivity between brain regions during stress. These variations in node 

size and edge patterns reflect the dynamic reorganization of neural networks in response to stressors, facilitating 

the brain's adaptive coping mechanisms. Thus, these distinct features in node size and edge patterns serve as 

confident visual indicators of the stress response state in brain network visualizations. 

IV. CONCLUSION AND FUTURE WORK 

Integrating demographic variables and employing a meticulous preprocessing pipeline ensures robust 

analysis of fMRI data for real-time classification of brain states. Leveraging CNN algorithms with dynamic 

connectivity patterns enhances understanding of brain function. This approach provides insights into the 

dynamic interactions between brain regions, facilitating accurate classification of cognitive states. Ultimately, it 

informs personalized interventions for brain health and contributes to advancing our understanding of the 

brain's dynamic nature. Accurate classification of resting, task execution, and stress response states is evident, 

reflecting distinct neural patterns associated with each cognitive condition. Dynamic changes in node sizes and 

edge patterns across states highlight the brain's adaptability and functional reorganization to support cognitive 

processing and stress-coping mechanisms. Future research could explore advanced CNN architectures and 

incorporate additional demographic factors to improve classification performance. Additionally, investigating 

the impact of different preprocessing techniques and exploring alternative neuroimaging modalities could 

further enhance the understanding of brain states and their clinical implications. 
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