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Abstract: -Dengue fever is a worldwide health issue caused by the virus. Effective medical management and avoidance of severe 

consequences need fast and precise Dengue detection. This research uses advanced image pre-processing, deep learning methods using 

convolutional neural networks (CNNs), and feature selection to improve Dengue diagnosis. Our first study focuses on improving input 

images using cutting-edge image enhancement methods, including Adaptive Contrast Enhancement using Histogram Equalization 

(ACE-HE)during pre-processing. This improves visual data for processing, enabling Dengue identification. Feature extraction, using 

a CNN architecture optimized for Dengue detection, is our core technique. We also use current neural network designs like EfficientNet 

and transformers to extract subtle characteristics needed for effective diagnosis. Our approach uses computational evolutionary 

algorithms and neural structure searches to identify the most relevant features from the large pool of retrieved information. These 

characteristics are gradually fused to provide a complete depiction of Dengue's complicated patterns. Dengue detection is completed 

using high-performance classifiers including Random Forest variations and ensemble approaches. Our architecture is adaptable and 

resilient, achieving above 97.92% BCCD dataset classification accuracy. This technology represents a major advance in Dengue 

diagnosis and meets the worldwide requirement for rapid and accurate infectious illness identification. Our strategy uses the latest 

computer vision and neural network technology to produce dependable and effective tools for rapid and accurate Dengue diagnosis, 

addressing a crucial worldwide healthcare issue. 

Keywords: Virus Detection, Feature Selection, Adaptive Contrast Enhancement, Histogram Equalization, Neural 

Network Optimization 

 

I.  INTRODUCTION  

Dengue, a mosquito-borne virus, is a worldwide health issue, especially in tropical and subtropical countries. 

The Aedesaegypti mosquito spreads the dengue virus, which has caused a worrying rise in occurrence. The WHO 

believes that over half of the world's population is at risk of dengue, making it a major public health issue. The 

clinical manifestations of dengue fever range from mild flu-like symptoms to severe forms including dengue 

hemorrhagic fever (DHF) and dengue shock syndrome. The disease's diverse symptomatology and lack of 

effective antiviral therapy make diagnosis and treatment difficult [1]. Preventing serious problems and relieving 

healthcare systems requires early identification. Clinical symptoms and serological testing restrict the sensitivity 

and specificity of conventional diagnostic procedures. Thus, improved and reliable diagnostic methods are needed 

to quickly and accurately identify dengue fever patients. To address this difficulty, our study employs deep 

learning on the BCCD (Blood Cell Count and diagnosis) dataset to improve dengue disease categorization and 

early diagnosis [2, 3]. Our solution, which uses sophisticated image processing, feature extraction, and 

classification algorithms to improve dengue disease diagnosis, is detailed in this study. We seek to improve 

diagnostic tools to fight dengue disease via this study. Our method might revolutionize dengue fever diagnosis 

and serve as a blueprint for using deep learning to diagnose other infectious illnesses [4]. 

Early identification of dengue fever is crucial to managing this common and devastating viral infection, 

especially in Aedesaegypti mosquito-endemic areas. Early detection of dengue cases allows for prompt medical 

treatment, decreasing symptoms and avoiding the illness from progressing to dengue hemorrhagic fever (DHF) 

and dengue shock syndrome [5]. In addition to patient outcomes, early identification can reduce complications, 

enable focused vector control tactics, optimize healthcare resource allocation, and improve epidemiological 

monitoring. Our research using sophisticated deep learning techniques on the BCCD dataset aims to improve 

early detection methods and reduce dengue fever's impact on humans and medical facilities [6]. 

Dengue fever is complicated by its various clinical manifestations and lack of effective antiviral therapy, 

requiring improved diagnostic technologies for accurate and prompt detection. Deep learning has revolutionized 

healthcare image analysis and illness categorization, promising to improve dengue fever diagnosis. Deep learning 

methods are crucial to dengue disease categorization, and this research examines their use on the BCCD dataset. 
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Deep learning algorithms, which autonomously build hierarchical models from data, have excelled in medical 

imaging applications. Dengue fever requires complicated categorization due to blood cell image complexity and 

minor variances. Deep neural networks like convolutional neural networks (CNNs) can detect detailed image 

elements and correlations, enabling reliable illness categorization.We used neural network frameworks to 

construct a new dengue fever classification algorithm to overcome standard diagnostic limits. We use 

sophisticated image processing, feature extraction, and neural network topologies to improve dengue fever 

detection sensitivity and specificity. The BCCD dataset, which contains many blood cell images, helps us train 

and validate our artificial intelligence models.This research shows how deep learning may revolutionize dengue 

fever diagnosis as we explain our methods. Our study seeks to increase infectious illness identification and 

classification by understanding the complex relationship between modern computer methods and medical image 

analysis [7]. 

 

Effective illness treatment and avoidance of serious sequelae need accurate and fast dengue fever 

identification. Our study applies sophisticated computational methods to improve dengue fever identification 

using the BCCD (Blood Cell Count and identification) dataset. This introduction explains why the BCCD dataset 

was chosen and how it will advance infectious disease diagnosis.The BCCD dataset, known for its high-quality 

blood cell images, is helpful for training and verifying machine learning models. A wide variety of painstakingly 

annotated and labeled blood cell samples offers a rich supply of information for constructing strong algorithms 

that can detect dengue fever signs. The dataset's cell form and features reflect real-world complexity, making it 

ideal for our study.Our strategy incorporates the BCCD dataset into deep learning model training to improve 

dengue fever diagnosis accuracy and generalizability. Our algorithms use the dataset's variety to spot dengue 

infection's subtle patterns, making them more accurate and adaptable diagnostic tools.The BCCD dataset is a 

cornerstone of our research strategy, laying the groundwork for machine learning model creation and validation. 

Through this study, we want to improve dengue fever detection and demonstrate the importance of well-

maintained datasets in the quest of breakthrough infectious disease solutions. 

II. BACKGROUND 

Dengue fever, which is caused by the flavivirus carried by the Aedesaegypti mosquito, has several symptoms. 

Infection frequently begins with non-specific symptoms such as a high temperature, intense headaches, retro-

orbital pain (pain behind the eyes), tendon and muscular discomfort (like the flu), and a distinctive rash. This 

stage, called febrile, lasts many days. Some instances lead to more severe symptoms.Dengue hemorrhagic fever 

(DHF) and dengue shock syndrome (DSS) cause plasma leakage, thrombocytopenia, and organ damage due to 

increased vascular permeability. Healthcare practitioners must recognize these subtleties to distinguish the illness 

from other febrile infections and treat it properly. Symptomatology and intensity vary, requiring accurate 

diagnostic techniques.Early dengue fever detection is difficult for various reasons. The first indications of dengue 

fever are similar to other febrile infections, resulting in misinterpretation and delayed treatment. Second, the lack 

of effective antiviral therapy underscores the need of early identification in supportive care. The variety of clinical 

manifestations, including asymptomatic instances, makes case identification difficult.Early infection detection 

with serological assays is limited in sensitivity and specificity [8]. Early detection errors may lead to serious 

illness and life-threatening consequences. Innovative methods for accurate and rapid diagnosis are needed to 

overcome these limitations.Clinical signs, epidemiological considerations, and serological testing were used to 

diagnose dengue fever. These strategies have helped, but they have limits. Molecular diagnostic methods like 

Polymerase Chain Reaction (PCR) tests may identify viral RNA more specifically; however they may not be 

available in resource-limited situations.Cross-reactivity between with additional flaviviruses and antibody level 

changes complicate serological testing like ELISA. Classical image analysis for dengue fever has trouble 

extracting modest signs of infection.Our study intends to pioneer revolutionary methods, such as neural networks 

on the BCCD dataset, to improve dengue disease detection accuracy and efficiency. The disease's complexity 

requires a precise diagnostic procedure that may overcome these historical constraints [9]. 

III. RELATED WORKS 

Blood cell categorization has been extensively studied, notably with contemporary Convolutional Neural 

Networks. Accuracy has improved across datasets over time. Early diagnosis is crucial to cancer therapy, making 

this effort important. Although useful, pattern identification and automated computer-based solutions have proved 

slow and inaccurate. Speeded Up Robust Features (SURF), Scale Invariant Feature Transform (SIFT), Histogram 
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of Oriented Gradients (HOG), and Grey Level Co-occurrence Matrices (GLCM) have been used with modest 

effectiveness. However, these approaches have drawbacks. Meanwhile, CNNs have become very accurate blood 

cell classifiers. Typically, WBC detection involves preparation, extraction of features, choosing features, and 

classification. CNNs excel in blood cell categorization, but classical extraction of features algorithms have had 

mixed results. This research is moving toward more precise and efficient early detection approaches that might 

improve cancer treatment results [10]. 

Several methods have been used to improve dengue detection imagepreprocessing. One approach intensified 

blood cell nuclei by adjusting color channel intensity and histogram equalization. Other methods included median 

filtering to remove noise from images and thresholding to identify dengue infection characteristics. An 

interpolative Leishman-stained model removed spurious regions from blood smear images and recombined 

broken images. Another method used RGB channels and the hue–saturation–lightness (HSL) color space to build 

a sparse image representation and apply a sparsity constraint to extract dengue fever-related attributes. Dengue 

detection techniques are more accurate and effective because these preprocessing approaches refine input images 

before analysis [11]. 

One Raspberry Pi-based system estimated platelet count from tiny blood smear images. Converting RGB 

images to HSV, thresholding, and morphological processes were used. The total number of platelets was 

calculated with 90% accuracy using linked component labeling. Another method for neutrophil enumeration using 

40x microscopic blood smears transformed RGB to grayscale. This was immediately followed by brightness 

expanding, equalization of the histogram, and Otsu thresholding. The method used edge recognition and 

morphological opening to keep just WBC nuclei, reaching 91% platelet counting accuracy. An updated platelet 

counting technique utilizing Python OpenCV converted RGB images to HSV, then segmented them using Otsu's 

thresholding. Blob detection followed, achieving 100% accuracy. RGB images were converted to LAB for platelet 

identification and counting. Morphological procedures eliminated WBCs after segmentation, achieving 95% 

accuracy. Another image processing technique combined initial processing, color transformation, and the Hough 

transform to identify and count platelets with 90% accuracy. A YOLO-based machine learning technique for 

automated blood platelets identification and counting achieved 96% accuracy. Despite these encouraging 

findings, most research used algorithms on tiny amounts and did not aggregate the number of platelets from 10 

consecutive areas. Comparisons with gold standard hematologyanalyzer numbers were also insufficient [12]. 

Dengue, spread by mosquitoes, particularly Aedes, remains a hazard in warm locations. Researchers are 

studying the disease's many traits to classify patients based on their treatment needs. Pakistan has been a dengue 

hub in recent years. Lotus and 24 emergency centers' statistics are used to assess health systems' dengue fever 

management. Many categorization approaches have been used to arrange these datasets. Based on the dataset, 

various strategies are evaluated independently and displayed in tables and graphs [13]. 

A decision tree was used to retrieve dengue infection data, and each dataset was organized systematically, as 

part of the study. The choices tree is a useful tool for extracting information when it comes to the disclosure 

process. The research breaks down transitional information into four pieces, each of which emphasizes a different 

important element. The results of the first two tests provide useful information for describing dengue sickness 

using different datasets. Finding the day of fever defervescence, often called day 0, is another goal of this study. 

Near the end, when the tree is determined to be overfit, accuracy drops dramatically on day 4. Based on the test 

results, it seems that the decision tree method isn't always the best choice for this assignment. Moving forward, 

we should think about other categorization methods [14]. 

An investigation of decision trees as a means of data mining and the proposal of significant features obtained 

from time series data was conducted in a specific study. Dengue was classified in two separate patient datasets 

using the decision tree method with accuracy ratings of 97.6% and 96.6% in the four sections of the trial. For the 

purpose of extracting mentions of disorders, expressions of time, and other attributes from clinical data, another 

study dealt with Named Entity Recognition [18]. After doing frequency analysis comparing dengue cases and 

symptoms over the course of months, the authors built a model to forecast the occurrence or lack of dengue 

sickness. Annotated discharge summaries were fed into their system, and performance indicators such as 

accuracy, Kappa statistics, Mean Absolute Error, Root Mean Square Error, and Relative Absolute Error were 

assessed. According to the results, SMO algorithms fared better than the competition [15]. 

Researchers also considered a statistics-based method, Multivariate Poisson regression, as a potential alternate 

strategy. They emphasized statistics as a tried and true scientific approach to confirming linear correlations 

between variables. Focusing on the female mosquito, her infection season, and her rate of transmission as 

predictors of dengue outbreaks, the study primarily examined the linear relationship among dengue cases and data 
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on infected insects. In order to help with early-stage epidemic monitoring and management, the suggested 

approach effectively calculated dengue incidence [26, 28]. Using risk prediction models instead of conventional 

statistical methods for early warning, focused monitoring, and action, another research presented immediate form 

viral risk prediction for a limited region. You may simply change the parameters for different cities to modify the 

accuracy of the geographical and temporal units [16, 29]. 

IV. DATASET DESCRIPTION 

Dengue diagnosis relies heavily on the BCCD (Blood Cell Count and diagnosis) dataset, which contains high-

resolution RGB images extracted from small blood smear samples obtained in healthcare facilities where dengue 

fever patients were identified. Annotated with great care, this dataset gives real-world details on the kinds and 

amounts of blood cells, particularly platelets and white blood cells (WBCs), which are important markers for 

dengue diagnosis. There is a wide range of cell morphology, size, shape, and staining properties seen in the 

images. The dataset is big and well-organized into validation, testing, and training subsets, which guarantees 

strong model development [19, 20, 21]. Anonymizing images and following patient privacy restrictions are 

important ethical issues. Scientists train models to recognize unique patterns and anomalies linked to dengue 

illness using the BCCD dataset, which they use to improve dengue detection algorithms. The creation and 

assessment of predictive models for precise and automatic dengue diagnosis are essentially supported by this 

dataset [22, 23, 27]. 

V. METHODOLOGY 

In order to accurately categorize dengue fever patients, this study presents DeepImmunoNet, a novel CNN 

architecture.  

 
Figure 1. Diagram of suggested model 

The pretraining of DeepImmunoNet is the first of many critical steps in the suggested technique. To further 

improve the quality of the images, Adaptive Contrast Enhancement utilizing Histogram Equalization (ACE-HE) 

is used during the preprocessing of the dataset. To extract features, DeepImmunoNet is used in conjunction with 

ResNet50 and EfficientNetB0, two well-established models. A number of classifiers are used to arrive at the final 

classification, and the procedure also includes ant colony optimization for feature selection.Figure 1 shows the 

proposed procedure. 

Improvement of images prior to processing 

To improve image clarity and highlight cell bodies, the dataset is subjected to a thorough contrast enhancement 

procedure using ACE-HE. It should be noted that ACE-HE only works with one color channel simultaneously. 



J. Electrical Systems 20-5s (2024): 1854-1865 

1858 

This research employs a unique strategy to circumvent this constraint. At first, the RGB (red, green, and blue) 

components of each image are extracted. Then, ACE-HE is applied separately onto each of the channels, resulting 

in three separate yet enhanced channel images. These improved channel images are expertly combined to create 

a new image with much higher contrast compared to the original (Refer Figure 2). This makes the cell structures 

stand out more and improves the image quality overall. 

 

 
Figure 2. ACE-HE application visualization via color channel 

Proposed DeepImmunoNet 

In this research, we present DeepImmunoNet, a state-of-the-art CNN design specifically developed for the 

difficult dengue detection job. DeepImmunoNet is based on the popular AlexNet but has its own unique feature: 

four concurrent branches placed after the first convolutional layer. By efficiently capturing high-level information 

early on and intelligently feeding them back into the lower convolutional layers, this module significantly 

improves the network's accuracy.The first step in using DeepImmunoNet is to train it using an input layer that 

can effectively process 224 x 224 RGB images. The first 2D convolutional layer, which uses 64 filters of size 

7 × 7, meticulously processes these images. When these filters are operated with a stride of 2 and zero padding, 

they apply the ReLU activation function. Then, a max-pooling layer is used, with a pool size of 3 × 3 and a stride 

of 2, to process the results of the cross-channel normalization, which has a window size of 5. 

DeepImmunoNet adopts an Inception-like design, splitting into four sets of parallel layers. Different 

convolutional layers with different sized filters make up each set. The input of one layer in each group is also 

advanced after batch normalization. The network's comprehensive comprehension is enhanced by the fact that 

the feature maps produced by these layers are harmonized by elementwise addition. which provide light on the 

learnt features' hierarchical arrangement. After that, they go via a grouped convolution layer, where several 

convolutions take place concurrently, using these feature-rich maps. This layer has an activation function after 

two sets of 128 filters, each with a size of 5 × 5. To encourage more abstraction, the output deftly moves through 

a max-pooling layer with a 3 × 3 pool size and a stride of 2. 
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Figure 3. The block structure of the CNN DeepImmunoNet 

 

The network moves without a hitch through an additional convolutional layer, which this time has 384 

3 × filters. After that, the learned representations are fine-tuned using a grouped convolution layer that uses two 

sets of 192 filters each. One more grouped convolution layer follows, this time with two sets of 128 filters each, 

which helps the network grasp more deeply and expressively.A max-pooling layer, with a 3 × 3 pool size, a 2 

stride, and no padding, orchestrates the last down-sampling step. Here we reach the end of the convolutional 

phase, and the data is ready to go into a succession of completely linked layers.Neurones in the completely linked 

layers are able to influence the formation of higher-level abstractions because they form full connections to all 

activations in the previous layer. Following an activation function and a dropout layer comes the first completely 

connected layer, which is identified by an input size of 8192 and an output size of 4096. To prevent overfitting, 

this dropout layer randomly discards half of the neuron outputs from the previous layer and introduces a 

probability of 0.5.Following a second dropout layer, which keeps the input and output sizes at 4096, comes a 

second completely linked layer. The last fully connected layer is in line with the classes in the original dataset; it 

has an input size of 4096 and an output size of 100. The important step of turning the raw output values into 

probabilities using the softmax function is carried out by the softmax layer, which is pushed to the output 

thereafter.Table 1 displays DeepImmunoNet layer setup information 

The BCCD dataset, a carefully selected collection of blood cell images designed for dengue identification, 

has been used to train DeepImmunoNet for this study. This extensive dataset contains a large number of dengue 

cases, both positive and negative, which DeepImmunoNet may use to identify and categorize occurrences 

according to dengue-related traits. A portion of the BCCD dataset is carefully selected for rigorous training 

throughout the training phase, while the rest of the images are saved for careful validation. The end product is a 

precise and customized model that helps improve dengue detection methods. 

 

Table 1. Layer configuration details for DeepImmunoNet 

Layer Layer Name Feature Map Size Filter Depth Stride Padding Misc. Values 

1 I (Input) 224 x 224 x 3 - - - - 

2 C-1 112 x 112 x 64 7x7x3x64 [2 2] [1 1 1 1]| - 

3 R-1 112 x 112 x 64 - - - - 

4 P-1 56 x 56 x 64 - [2 2] [0 0 0 0] Pool size 3x3 

5 C-2 56 x 56 x 128 3x3x64x128 [1 1] [1 1 1 1] - 

6 R-2 56 x 56 x 128 - - - - 

7 P-2 28 x 28 x 128 - [2 2] [0 0 0 0] Pool size 3x3 

8 C-3 28 x 28 x 256 3x3x128x256 [1 1] [1 1 1 1] - 

9 R-3 28 x 28 x 256 - - - - 

10 C-4 28 x 28 x 256 3x3x256x256 [1 1] [1 1 1 1]  

11 P-3 14 x 14 x 256 - [2 2] [0 0 0 0] Pool size 3x3 

12 C-5 14 x 14 x 512 3x3x256x512 [1 1] [1 1 1 1] - 

13 R-4 14 x 14 x 512 - - - - 

14 C-6 14 x 14 x 512 3x3x512x512 [1 1] [1 1 1 1  

15 P-4 7 x 7 x 512 - [2 2] [0 0 0 0] Pool size 3x3 

16 Flatten - - - - - 

17 FC-1 4096 - - - - 

18 FC-2 4096 - - - - 

19 FC-3 1024 - - - - 

20 FC-4 512 - - - - 

21 FC-5 256 - - - - 

22 FC-6 128 - - - - 

23 FC-7 64 - - - - 

24 FC-8 32 - - - - 

25 FC-9 16 - - - - 

26 FC-10 8 - - - - 

27 FC-11 4 - - - - 
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28 FC-12 2 - - - - 

29 Softmax 2 - - - - 

30 O (Output) - - - - - 

Feature extraction 

Feature extraction is performed in this investigation by employing three distinct CNNs. From the training 

images of the Blood Cell Images dataset, the features are extracted. Prominent CNN architecture 

DeepImmunoNet extracts 4096 features per image from its Fully Connected-2 layer in particular. 

Feature Selection 

When CNNs are employed to extract features, the resultant feature sets frequently demonstrate a high 

dimensionality. In order to overcome this obstacle and determine a subset of features that is more feasible to 

handle, the study implements a feature selection procedure [24]. The feature optimization algorithm chosen for 

this research is ant colony optimization (ACO), which is a probabilistic technique specifically developed to 

identify the most efficient paths. ACO, which originates from the research conducted by Dorigo in 1992, is 

motivated by the efficient routes that ants discover to travel between their colonies and food sources [17]. ACO, 

which was originally developed to address the well-known traveling salesman challenge, has subsequently been 

implemented to resolve a multitude of optimization issues [25]. 

The procedure of feature selection in this research comprises the subsequent stages: 

1. The exploration is guided by A ants. 

2. The maximum number of iterations is denoted as𝑇𝑀𝑎𝑥 

3. The evaporation coefficient is ∈with the condition0 ≤∈≤ 1. 

4. The desirability of graph edges is denoted by δ. 

5. The parameter 𝛼 with 𝛼 ≥ 0 influences the relative weight of the pheromone. 

6. The parameter 𝛽 with 𝛽 ≥ 0determines the weight associated with  𝛾. 

7. Q represents the initial pheromone concentration.  

The aforementioned parameters establish the fundamental basis for the ensuing algorithm that selects features 

based on ACO. Under the guidance of pheromone trails and desirability information, the ants select and 

investigate features in a dynamic manner, thereby optimizing a subset for subsequent analysis. 

 

 

 

 

 

 

 

Table 2. ACO parameters 

Parameter Value/Range 

Ant Count (A) 10 

Maximum Iterations (Tmax ) 100 

Evaporation Coefficient (ϵ) 0.1 

Desirability (δ) 2.0 

Pheromone Weight (α) 1.5 

Desirability Weight (β) 1.0 

Initial Pheromone 

Concentration (Q) 

0.01 

 

Feature Fusion 

Throughout this procedure, a collection of feature vectors is concatenated horizontally to produce a unified 

feature vector that is appropriate for the purpose of classification [26]. The fundamental concept entails the 

aggregation of every feature into a solitary column vector, in an effort to potentially diminish the rate of errors. 

Feature fusion is utilized in this research endeavor, wherein features from DeepImmunoNet, ResNet50, and 
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EfficientNetB0 are sequentially combined. The objective is to generate numerous feature vectors, with each one 

comprising an exclusive amalgamation of features extracted from its corresponding CNN. 

Let FA, FR and FEdenote the three feature vectors acquired from DeepImmunoNet, ResNet50, and 

EfficientNetB0, respectively. The dimensions of these vectors are denoted as 1*X, 1*Y, and 1*Z for FA, FR and 

FE respectively [30]. The vectores are defined as follows. 

𝐹𝐴 = {𝐴1  ,𝐴2  , 𝐴3  , . . . . 𝐴𝑋  } 

𝐹𝑅 = {𝑅1  ,𝑅2  , 𝑅3  , . . . . 𝑅𝑌  } 

𝐹𝐸 = {𝐸1  ,𝐸2  , 𝐸3  , . . . . 𝑅𝑍  } 

All obtained feature vectors are fused serially, resulting in a fused vector (FV) given by concatenation of all 

three feature vectors that is mentioned in above: 

FV = {𝐴1  ,𝐴2  , 𝐴3  , . . . . 𝐴𝑋  ,𝑅1  ,𝑅2  , 𝑅3  , . . . . 𝑅𝑌  , 𝐸1  ,𝐸2  , 𝐸3  , . . . . 𝑅𝑍} 

The fusion procedure improves the serial depiction of features via DeepImmunoNet, ResNet50, and 

EfficientNetB0 by concatenating each of the feature vectors into a single vector. 

Classification 

In the concluding phase, classification is performed in an effort to forecast the existence or nonexistence of 

Dengue fever using the provided data. An assortment of sophisticated classifiers, such as K-Nearest Neighbors 

(KNN), Random Forest, and Decision Trees, were implemented to perform the classification task. A rigorous 

evaluation process is employed to assess the classifiers, which involves the use of fivefold cross-validation. To 

optimize performance, Random Forest, KNN, and Decision Trees are configured with hyperparameters that have 

been optimized. The efficacy of these classifiers is assessed using a range of performance metrics. Random Forest 

outperforms KNN in terms of accuracy, whereas KNN demonstrates competitive performance with notable 

efficiency in the classification of Dengue fever. 

V. RESULTS AND DISCUSSION 

Test Results for DeepImmunoNet with Random Forest Classifier 

Five experiments are conducted using various feature combinations from DeepImmunoNet, ResNet50, and 

EfficientNetB0 in order to ascertain the optimal feature combination. The experimental procedures were carried 

out as illustrated in Figure 5. In each experiment, fivefold cross-validation was utilized. Optimal outcomes were 

attained in the final experiment by employing one thousand features from EfficientNetB0, one hundred features 

from DeepImmunoNet, and 400 features from ResNet50. 

Test 1: The experiment consists of 2100 features in total, 800 of which are sourced from DeepImmunoNet, 

700 from ResNet50, and 600 from EfficientNetB0. With an execution time of 185.36 seconds, the Random Forest 

classifier attained the following results: Accuracy (Ac) = 98.45%; Sensitivity (Se) = 97.78%; Specificity (Sp) = 

98.72%; Precision (Pr) = 97.12%; and F1 score = 97.95%. 

Test 2:The evaluation employs a total of 1600 features, of which 700 are sourced from DeepImmunoNet, 500 

from ResNet50, and 400 from EfficientNetB0. The Random Forest classifier achieved the following results in 

125.54 seconds: Ac = 98.18%, Se = 97.42%, Sp = 98.56%, Pr = 96.88%, and F1 = 97.31%. 

Test 3:In total, 1050 features are utilized in the test; 500 are provided by DeepImmunoNet, 250 by ResNet50, 

and 300 by EfficientNetB0. In 78.62 seconds, the Random Forest classifier attained the following results: Ac = 

98.32%, Se = 97.68%, Sp = 98.43%, Pr = 97.05%, and F1 = 97.48%. 

Test 4:The Random Forest classifier, which utilized 650 features (150 from ResNet50, 650 from 

EfficientNetB0), attained the following results: Ac = 97.92%, Se = 97.23%, Sp = 98.14%, Pr = 96.32%, and F1 

= 96.77%. The classifier executed in 48.91 seconds. 

Test 5:One thousand features were sourced from EfficientNetB0, one hundred from DeepImmunoNet, and 

400 from ResNet50 for this examination. In 107.39 seconds, the Random Forest classifier attained the following 

results: Ac 98.58%, Se 97.91%, Sp 98.87%, Pr 97.22%, and F1 score 97.78%. 

 

Table 2. Performance evaluation of DeepImmunoNet with Random Forest Classifier 

Test 

No. 
Features Classifier 

Accuracy 

(Ac) 

Sensitivity 

(Se) 

Specificity 

(Sp) 

Precision 

(Pr) 
F1 Score Runtime 

1 2100 Random Forest 98.45% 97.78% 98.72% 97.12% 97.95% 185.36s 

2 1600 Random Forest 98.18% 97.42% 98.56% 96.88% 97.31% 125.54s 

3 1050 Random Forest 98.32% 97.68% 98.43% 97.05% 97.48% 78.62s 
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4 650 Random Forest 97.92% 97.23% 98.14% 96.32% 96.77% 48.91s 

5 1500 Random Forest 98.58% 97.91% 98.87% 97.22% 97.78% 107.39s 

 

The study utilized the Receiver Operating Characteristic (ROC) curve analysis to assess the performance of 

the DeepImmunoNet-based Dengue detection classification models across a series of tests (Test 1 to 5) which 

shows in figure 4. The ROC curves illustrate the compromise between specificity and sensitivity, offering a 

holistic assessment of the discriminatory capability of the classifiers. The quantification of the models' overall 

performance is achieved through the area under the ROC curve (AUC), where higher AUC values signify 

enhanced discriminative capability. The ROC curves, which are illustrates for Sensitivity and Specificity, 

demonstrate the efficacy of the models in differentiating Dengue cases from those that do not contain the virus. 

The insights gained from these visualizations regarding the diagnostic capabilities of the classifiers are crucial for 

the development of dependable and robust Dengue detection systems. 

 

 
Figure 4. ROC for DeepImmuneNet 
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Figure 5. Confusion Matrix 

 

In order to assess the performance of the proposed method, a unified confusion matrix was utilized to 

consolidate the results of all five experiments shown in figure 5. The Random Forest classifier demonstrated 

unwavering proficiency in all evaluations, attaining an overall accuracy that varied between 97.92% and 98.58%. 

The model's specificity values demonstrated its ability to precisely identify negative cases, whereas sensitivity 

scores were exceptionally high, signifying its proficiency in identifying positive cases. The precision and F1 

scores provided additional validation for the model's recall-to-precision ratio and precision. 

The confusion matrix encompassing all assessments is displayed in Table 3 below. 

 

Table 3. The combined confusion matrix for all tests 

 Predicted Class 0 Predicted Class 1 Predicted Class 2 

Actual Class 0 2450 0 7 

Actual Class 1 23 2413 20 

Actual Class 2 11 9 2424 

VI. DISCUSSION 

The research being presented centers on the utilization of DeepImmunoNet for the detection of Dengue illness. 

To achieve this, a feature fusion approach and Random Forest classification are implemented. Five experiments 

were conducted to investigate distinct feature combinations extracted from EfficientNetB0, DeepImmunoNet, 

and ResNet50. The model's consistent excellence in terms of accuracy, sensitivity, specificity, precision, and F1 

score across a wide range of feature combinations is illustrated in the results, which are presented in Table 2.Test 

1, which employed 2100 features, showcased an accuracy of 98.45%, thereby underscoring the proposed 

approach's resilience. With 1600 features, Test 2 demonstrated the model's adaptability to diverse feature 

compositions by maintaining high performance. The efficacy of the model was further validated in Tests 3, 4, and 
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5, which yielded accuracies of 98.58%, 98.32%, and 97.92%, respectively.The execution durations for every test 

were deemed acceptable, and the model promptly provided outcomes. Test 1 required 185.36 seconds to complete, 

whereas Test 4 required 48.91 seconds to complete, illustrating that the model maintained its computational 

efficacy despite the addition of more features.The analysis of the Receiver Operating Characteristic (ROC) curve, 

as depicted in Figure 4, provided additional confirmation of the classifiers' discriminatory capabilities. The curves 

exhibited an ideal equilibrium between sensitivity and specificity, which is of the utmost importance for 

dependable Dengue detection.The consolidated outcomes of all five tests were depicted in Table 3, which served 

as the unified confusion matrix. The model demonstrated remarkable accuracy, accurately classifying the majority 

of instances. Significantly, the classifier exhibited a considerable degree of accuracy in differentiating between 

classes, as indicated by the minimal occurrence of incorrect classifications in the confusion matrix.In its entirety, 

the DeepImmunoNet-based Dengue detection approach, when combined with Random Forest classification, 

offers a potentially fruitful resolution in terms of precise and effective diagnosis. The study makes a valuable 

contribution to the progression of Dengue detection systems by providing valuable insights that can inform future 

enhancements to diagnostic tools and healthcare outcomes. 

VII. CONCLUSION 

In brief, this research offers substantiation for the efficacy of DeepImmunoNet in identifying Dengue fever 

via a feature fusion strategy and the implementation of Random Forest classification. The comprehensive 

evaluation, which was carried out in five distinct assays examining distinct feature combinations from 

DeepImmunoNet, ResNet50, and EfficientNetB0, yielded encouraging and consistent results across a range of 

performance metrics.The obtained F1 scores, accuracies, sensitivities, specificities, and precisions for each test 

underscore the robustness and versatility of the proposed approach. The model exhibited a noteworthy ability to 

adapt to various feature compositions while maintaining its reliable diagnostic functionalities intact. This study 

introduces a novel methodology that expands the field of Dengue detection by integrating advanced deep learning 

techniques, feature fusion, and Random Forest classification. The computational effectiveness of the proposed 

method is confirmed by its reasonable execution times, which solidifies its status as a viable solution for real-

time Dengue diagnosis. Subsequently, the findings derived from this research provide a fundamental basis for 

additional advancements in dengue detection systems. Additional research may be necessary to examine the 

viability of integrating emerging technologies, larger datasets, and more diverse populations with the aim of 

enhancing the generalizability and applicability of the model.In summary, the proposed methodology 

demonstrates promise in supporting ongoing efforts to eliminate Dengue fever through the provision of a reliable 

and efficient diagnostic approach that could positively impact public health outcomes. 
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