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Abstract: - The most widely used sensing technique for detecting energy is due to its ease of use and lack of need for signal information 

beforehand. Traditional methods often employ a two-threshold strategy in low signal-to-noise ratio scenarios, which can lead to 

temporary detection outcomes when the signal's energy is between the low and high threshold values. This subsequently results in 

inadequate detection accuracy, characterized by a reduced probability of detection, which ultimately results in an extended duration 

of the spectrum sensing. The paper suggests enhancing the efficiency of spectrum sensing through the utilization of a modified version 

of the Anderson-Darling test statistic, as opposed to other test statistics.To detect the presence of licensed users in each subchannel 

from the base station, the cognitive user implements the Anderson Darling test statistics as a sensing technique. The proposed work 

involves the mathematical derivation of the Anderson-Darling test statistics under a bandwidth of 6MHz.The simulation outcomes 

show that the sensing technique presented in this research study achieved a detection probability of 0.963 at a false alarm probability 

of 1%, using a small sample size of 20 at a signal-to-noise ratio of  -20dB. This performance outperformed the other three detection 

algorithms. 

Keywords: Spectrum sensing techniques, Cognitive microcell, Student’s t- distribution, Anderson darling, Probability 

of detection, and False alarm. 

 

 

I. INTRODUCTION 

In the field of 5G cellular networks, cognitive radio technology integrated into microcell environments and utilizing 

subchannels is a rapidly developing area of interest. These advancements aim to optimize spectrum usage, enhance 

network efficiency, and meet the growing demands for high-speed data transmission [1]. The Institute of Electrical 

and Electronics Engineers (IEEE) plays a vital role in guiding the implementation of subchannel allocation 

strategies within cognitive microcells to support the evolution of 5G networks. The use of cognitive microcells in 

cellular networks with subchannel transmission aims to address spectrum scarcity and increasing data traffic 

demands. By employing cognitive radio technology, microcell base stations can dynamically [2] allocate 

subchannels to users, thereby improving spectrum utilization efficiency and overall network performance. 

However, a critical challenge in this context is seamlessly integrating cognitive microcells and subchannel 

transmission within 5G networks. To evaluate the effectiveness of subchannel transmission in cognitive microcells 

for 5G cellular networks, statistical tools such as the Anderson-Darling test statistics [3] can be used. This statistical 

method helps assess the goodness of fit of data distribution and provides insights [4] into the performance of 

subchannel allocation strategies within cognitive microcells. By leveraging the Anderson-Darling test statistics [9], 

network operators and researchers can analyze the efficiency and reliability of subchannel transmission in cognitive 

microcells, ultimately contributing to the development of 5G cellular networks. In this paper, we have implemented 

our proposed work by considering the entire spectrum divided into sub-channels. We employ a non-parametric 

GoF method, specifically the AD test, to quickly and reliably perform spectrum sensing. 

II. RELATED WORKS 

Due to the significance of spectrum sensing in the detection of wide-band signals in Cognitive radio (CR), it has 

been the subject of numerous research investigations. To enhance CR performance, suitable detection techniques 

for spectrum sensing have been proposed to improve the overall utility of CR systems. During the sensing process, 

the decision threshold plays a vital role in various spectrum sensing algorithms [10]. It establishes the 

differentiation point that determines when one should accept or discard the null hypothesis in favor of the 

alternative hypothesis. In recent literature, authors have introduced a spectrum sensing model that incorporates 

various threshold strategies, such as high and low thresholds [7], single and double thresholds [8], and consideration 

of data size. Each of these approaches offers a unique perspective and significance in the realm of CR systems. 

Nevertheless, techniques based on energy detection (ED) have gained considerable importance in diverse 

applications due to their simplicity and compatibility with different signals. 
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Moreover, the ED technique has shown improved efficiency in noisy environments by using a double-threshold 

approach [11]. Their work involves comparing the energy level to two predefined thresholds. If the energy received 

by the signal is lower than the lower threshold, the spectrum is considered unoccupied. On the other hand, if the 

received energy signal surpasses the higher threshold, the presence of the PU signal is assumed. However, if the 

energy level falls between the higher and lower thresholds, a decision cannot be made at that time. This method 

has been expanded to include triple detection thresholds [12] and has been proposed for use in Vehicular Ad Hoc 

Networks (VANET) and small-scale primary user (PU) such as Wifi. To enhance the capabilities of ED technique, 

researchers have recommended the use of eigenvalue-based spectrum sensing methods to better detect signals in 

the presence of varying levels of noise [13].  

Eigenvalue-based blind detection has been suggested as a potential solution to overcome the drawback of 

elevated detection error rates by analyzing the covariance matrix. This method capitalizes on corresponding 

eigenvalues to boost robustness against noise uncertainties. However, it necessitates an extensive number of 

samples to attain optimal performance and exhibits a relatively high level of complexity. Therefore, Zhao et.al [14] 

designed a combined energy detector as the initial stage and a mini-max eigen detector as the subsequent stage, 

achieving a detection probability of 0.6 at 0.9 false alarm. However, the high computational expenses associated 

with these methods limit their applicability to broader dimensional contexts. It is often impractical to require a 

large number of samples in certain spectrum sensing techniques, as it can lead to increased power consumption 

and processing time in real-world scenarios.  

In [15], the authors explored the potential use of radial basis function SVM for spectrum sensing in scenarios 

with multiple-antenna secondary users (SUs). This approach involved incorporating the eigenvalue ratios from 

each sensor node into the decision vector. However, it is not practical to use supervised machine learning techniques 

in CR situations because the SU network lacks knowledge about the actual status of the PU. Researchers have 

suggested that analyzing the GoF may be a promising new approach to detecting issues, especially given the 

limitations of even the most advanced detection methods currently available. The authors have suggested numerous 

GoF tests in mathematical statistics literature, such as the Kolmogorov-Smirnov(KS), Cramer-Von Mises(CM), 

Shapiro-Wilk, and Anderson Darling(AD) tests [16][17], which are used to quantify the dissimilarity between two 

distribution functions during the presence and absence of a signal. In the study described in [18], the KS test, a 

non-parametric method for GoF analysis, was employed to rapidly and reliably sense spectral data. This approach 

is also resistant to non-Gaussian noise and channel variability. Furthermore, research conducted by Haiquan and 

colleagues [19] has suggested that the AD statistic is easier and more suitable than the KS test for reliable detection 

with fewer samples. To balance the trade-off between detection performance and sample size, the Student's t-

distribution was used in the proposed work. Recent studies indicate that the cumulative function of the distribution  

of the Student's t-distribution [20] yields better results than non-central t-distributions. 

To overcome the challenges outlined above, we propose a novel approach to spectrum sensing that is capable 

of providing a robust method to effectively operate with a reduced sample size. Our proposed method aims to 

enhance spectrum sensing performance under such constraints by reformulating the test statistics involving 

Student's t distribution, which is particularly effective when dealing with small sample sizes. This suggests that our 

proposed method is likely to perform better than existing methods, such as the ED and other goodness-of-fit (GoF)-

based methods, in terms of detecting signals with greater sensitivity. To tackle the limitations of Gaussian 

approximation in AD, the AD test statistics has been reformulated using Student’s t distribution test, well-suited 

for situations with small sample sizes. Based on simulations, the proposed work demonstrates enhanced sensitivity 

in detecting signals compared to other GoF-based and ED methods. Moreover, it incorporates the DySTA 

algorithm, which enables multiple SUs to access the channel.  

The paper is structured into various sections, each of which covers a specific aspect of the proposed research. 

In Section 3, we explain the sensing model, and in Section 4, we present a comprehensive analysis of the statistical 

model. In Section 5, we discuss theoretical findings related to false alarms and detection probabilities, which are 

relevant to the context. These findings are used to evaluate various GoF sensing methods in Section 6. In section 

7, a flowchart is included to illustrate the algorithm’s process of dynamically allocating licensed band to SUs based 

on AD test statistics and other parameters. Finally, from Section 8, we present the findings of the proposed work, 

and in Section 9, we summarize our conclusions. 
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Figure.1 Spectrum sensing model of cognitive microcell 

 

Table 1: Notations and descriptions for parameters 

 

Notations Definition 

     𝑃𝑑 Detection probability 

     𝑃𝑓𝑎 False alarm probability 

   𝑃𝑚 Missed detection probability 

  K Number of subchannels 

       𝐵𝑡   Total bandwidth 

       𝐵𝑐  Channel bandwidth 

       𝑛  Total number of samples 

 s Samples size in each sub-channel 

 𝑇𝑠 Sampling period 

𝑓𝑠   Sampling frequency 

      γ  Signal to noise ratio (SNR) 

      𝜆0  Decision threshold 

 𝐻0 Absence of primary signal 

      𝐻1  Presence of primary signal 

     𝐹0(𝑥) Noise distribution of cumulative distribution 

function 

     𝐹𝑋(𝑥) Empirical cumulative distribution function 

 

III. PRINCIPLE OF SENSING MODEL 

The paper focuses on the concept that wide-band signal detection is crucial. Let ′𝑛′ be the total number of samples 

through K sub-channels, where ‘s′ is the number of samples in each sub-channel. The Figure.1, illustrates the 

network model of cognitive microcell which covers a total bandwidth  𝐵𝑡 = 𝐾𝐵𝑐 of GHz spectrum, where the 

power spectral densities (PSDs) vary across different subchannels, resulting in a spectrum with heterogeneous 

power distribution characteristics. In each subchannel, a few of  n-real-valued samples are taken at a sampling 

period 𝑇𝑠  to ensure rapid detection. The Nyquist rate in each subchannel is 2𝐵𝑐, and the sampling period  𝑇𝑠 =
1

2Q𝐵𝑐
⁄  , is set by the oversampling factor as Q. The GoF test proposed in this paper can be performed using the 

AD test statistics at CBS to detect the presence of PU using a small number of samples in Rayleigh channel. 

Initially, the hypothesis test is used to determine the status of the PU and is assumed to remain unchanged during 
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the spectrum sensing process. Let 𝑦𝑘  be the signal received by the CBS through 𝑘𝑡ℎ subchannel. The spectrum 

sensing function accepts or rejects the hypothesis test as given as, 

                                  𝐻0 : 𝑦𝑘= 𝑤𝑘  

                                  𝐻1  ∶ 𝑦𝑘 = ℎ𝑘𝑛𝑘  + 𝑤𝑘                                                     

(1) 

where 𝐻1 & 𝐻0  represents the hypothesis of the existence and non-existence of PU in the 𝑘𝑡ℎ subchannel.The 

presence of signal component  in the  subchannel is denoted as 𝑛𝑘   having Rayleigh channel gain of ℎ𝑘assumed to 

be unity with the subchannel index k= 1,2, . ..m.The Additive white Gaussian noise(AWGN), characterized as 

independent and identically distributed (i.i.d) random process with variance  𝜎𝑘
2  and a zero mean  represented as 

𝑤𝑘. 

IV. STATISTICAL MODEL OF PROPOSED WORK 

Let X={𝑋𝑖}𝑖=1
𝑛  represent the n- number of samples received by CBS through the sub-channel which are identically 

and independent and K-subchannels divided into  each subchannels as ‘𝑘′   and therefore s-samples in each 

subchannel which is indicated as, s=
𝑛

𝑘
 . 

We take into account that each of  𝑋𝑖, i=1,2,3….𝑛 has real-valued sequence. When  primary signal transmission is 

absent in a subchannel, then 𝑋1,𝑋2,…..𝑋𝑛 samples are typically regarded as noise and treated as an independently 

and identically distributed (i.i.d) sequence drawn with common cumulative distribution function (CDF) 

𝐹0(𝑥).Conversely, if primary signal transmission happens within the subchannel, then  i.i.d sequence cannot be 

interpreted as 𝐹0(𝑥). 

As mentioned in the above, when there is no presence of primary signal in the subchannel, then 𝑋𝑖  has Student's t-

distribution with degree 𝑠 − 1 . Thus, the Student’s t distribution equation can be formulated from the equation (2) 

and (3), which can be used to calculate the average as well as the variance of the samples that were collected in the  

𝑘𝑡ℎ- subchannel. 

                                        𝐸�̃�𝑘 ≜ ∑ (
𝑥𝑠𝑘−𝑗

𝑠
)𝑠−1

𝑗=0                                                            

(2) 

  

                 𝜎𝑘
2 ≜ ∑ [

(𝑥𝑠𝑘−𝑗−𝐸�̃�𝑘)
2

𝑠−1
]𝑠−1

𝑗=0  for    𝑘 =1,2, 3……,m                                                          

(3) 

where  𝐸�̃�𝑘represents mean of the sample and 𝜎𝑘
2 indicates the sample variance in the 𝑘𝑡ℎ subchannel. 

Therefore, the Student’s t distribution equation can be formulated from the equation (2) and (3), 

                          𝑌𝑘 ≜ (
𝐸�̃�𝑘

𝜎𝑘
2

√𝑠
⁄

)                                                                                                                       (4) 

Thus, in the above equation (4), the noise variance is unknown, obtained by dividing the equation (2) and (3) and 

follows 𝐻0 hypothesis. 

Consider the term T(𝑠 − 1, t) used to define probability density function of  𝑌𝑘 under 𝐻0 hypothesis [21] with  

𝑠 − 1 degree of freedom which can denoted as, 

                               T(𝑠 − 1, t) =
𝛤(

s

2
)

√π(s−1)𝛤(
s−1

2
)

(1 +
t2

s−1
)

−S

2
                                                       

(5) 

where 𝛤 denotes the Gamma function. Then the CDF of 𝑌𝑘 under 𝐻0 using equation (5) as follow, 

                               𝐹0,𝑠(𝑦) = ∫ T(𝑠 − 1, t)dt
𝑦

−∞
                                                    

(6) 

Let the CDF sample collected at the subchannel as Y = {Y𝑘}𝑘=1
𝑛  and it is denoted as empirical distribution of Y as  

𝐹𝑌(𝑥)and the sequence Ysorted as 𝑌1 ≤ 𝑌2 ≤……..≤ 𝑌𝑘. Then  𝐹𝑌(𝑥) mathematically can be represented as  

                     𝐹𝑌(𝑥) = |{𝑘: 𝑌𝑘 ≤ 𝑥, 1 ≤ 𝑘 ≤ 𝑠}|/s                                                                                       (7) 

where for any set A,|A| denoted as cardinality of A. 
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The suggested GoF test is a non-parametric hypothesis examination that assesses whether received samples are 

derived from a distribution by identifying signals in noise.As in the absence of the PU, the received samples are 

likely to be noise and can be represented by an independently and identically distributed sequence with a known 

noise distribution as 𝐹0(𝑥) .The hypothesis that aims to determine if a signal exists can be stated as follows. 

                                𝐻0 :𝐹𝑌(𝑥) = 𝐹0(𝑥) 

                          𝐻1: 𝐹𝑌(𝑥) ≠ 𝐹0(𝑥)                                                                                         

(8) 

where 𝐹0(𝑥) denotes the hypothesized noise distribution of CDF and 𝐹𝑌(𝑥) represent as empirical CDF of the 

received samples at the CBS. Taking into account as that there is no presence of primary signal, noise samples in 

terms of Gaussian distribution of  𝑌𝑖  can be mathematically expressed as,  

                       𝐹0(𝑥) =
1

√2π
∫ 𝑒−

−𝑥2

2 𝑑𝑥
0

−∞
                                                                                                      (9) 

                 

Under the condition of 𝐻0  hypothesis,the empirical distribution function 𝐹𝑌(𝑥)  converges with cumulative 

distribution function 𝐹0(𝑥) under the condition i.e 𝐹𝑌(𝑥) ≥ 𝐹0(𝑥) ,CDF approaches to one as 𝑠 → ∞ for each 

𝑥.On the other hand during presence of primary signal ,the function  𝐹𝑌(𝑥) & 𝐹0(𝑥) deviates each other  during 

large value of ‘𝑠′.  

To measure the distance between 𝐹𝑌(𝑥) & 𝐹0(𝑥),AD  test statistics [22] mathematically expressed as, 

                 𝐴𝑘
2 = 𝑛 ∫ [𝐹𝑌(𝑥) − 𝐹0(𝑥)]2Ǿ (𝐹0(𝑥))

+∞

−∞
𝑑𝐹0(𝑥)                                                        (10)    

where Ǿ(y)=(y(1-y))-1                   

                                                                                                                

let 𝑧𝑠 = 𝐹0(𝑥),therefore the above equation (12) can be simplified by solving the integral [22] and expressed as 

                              𝐴𝑘
2 = −𝑛 −

∑ [(2s−1)(𝑙𝑛 zs+𝑙𝑛(1−zn+1−s))]n
s=1

𝑛
                                                              (11)   

                                                     

From the equation (11), the above AD test statistics can be modified and rewritten as follows,consider the second  

part from AD test statistics, defined as  

                                                
∑ [(2𝑠−1)𝑙𝑜𝑔(1−𝑧𝑛+1−𝑠)]𝑛

𝑠=1

𝑛
                                                                         (12)  

We have assumed 𝑘 sub-channel and s-number of samples in the AD test statistics, therefore by using the concept 

of change of variables in the above equation (12), then the expression can be derived as follows, 

 

           At  𝑛 + 1 − 𝑠 = 𝑘  as   if {
  𝑠 =  1 , then  𝑘 = 𝑛  

 𝑠 =  𝑛 , then 𝑘 = 1
}                                                                                     (13) 

                                           

                                             ∑
{2(𝑛+1−𝑘)−1}

𝑛

𝑛
𝑘=1  𝑙𝑛 (1 − 𝑧𝑘)                                                                           (14) 

 

                                              ∑ {2 +
(1−2𝑘)

𝑛
}𝑛

𝑘=1 𝑙𝑛(1 − 𝑧𝑘)                                                                           (15)                    

 

Replacing the ‘𝑘′back with ‘s ‘in (15), then the expression modified as 

 

                                              ∑ {2 +
(1−2𝑠)

𝑛
} 𝑙𝑛(1 − 𝑧𝑠)𝑛

𝑠=1                                                                             (16)   

 

substituting the equation (16) in (11), the expression can be written as, 

 

             A𝑘
2̃ = −𝑛 − ∑ [(

2𝑠−1

𝑛
) log (

zs

1−zs
) + 2log(1 − z𝑠)]𝑛

𝑠=1                                                          (17) 

 

We proposed a new mathematical expression for the spectrum sensing method as derived in the equation (17) 

based on  GoF test , under the assumption 𝐻0 , where the received energy  tested with two degrees of 

freedom.Consequently, the revised spectrum sensing is represented using above equation as, 
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                                                            𝐻0 :A𝑘
2̃  ≤ 𝜆0 

                                                  𝐻1:  A𝑘
2̃ > 𝜆0                                                                                         (18) 

 

where  A𝑘
2̃  is modified GoF test statistics of AD, and 𝜆0 is a threshold can calculate using [23] or by Monte 

Carlo simulation. The equation above implies that if the value of A𝑘
2̃ > 𝜆0 , represents the presence of a primary 

signal in the subchannel is indicated by the rejection of the null hypothesis. 

 

V. PERFORMANCE ANALYSIS OF MODIFIED AD SENSING METHOD 

In the following section, we present the analytical findings for the proposed blind spectrum sensing's false alarm 

probability and detection probability. 

The false alarm probability under 𝐻0 for the proposed sensing by accepting the hypothesis which can be defined 

as  

                               𝑃𝑓𝑎 = 𝑃𝑟{A𝑘
2̃ ≥ 𝜆0/ 𝐻0}                                                                                (19)     

where 𝑃𝑟{. } denoted as probability operator.  

According to the fundamental equation model [23], it can be inferred that when the null hypothesis is valid, the  

distribution of A𝑘
2̃ converges towards a particular limiting distribution. 

 

lim
𝑠→∞

𝑃𝑟{A𝑘
2̃ ≤ 𝜆0/ 𝐻0} =

√2𝜋

𝜆0
∑ 𝑏𝑘(4𝑘 + 1)exp (−

(4𝑘+1)2π2

8𝜆0
) ∫ exp ((

𝜆0

8(n2+1)
−

(4𝑘+1)2π2n2

8𝜆0
)) d

∞

0
𝑛  ∞

𝑘=0                                          

                                                            (20) 

 where 𝑏𝑘=(−1)𝑘𝛤
(𝑘+0.5)

(𝛤(0.5)𝑘!)
  with 𝛤 as Gamma function. 

Then the probability of detection derived under the condition of 𝐻1 can be expressed as, 

                     𝑃𝑑 = 𝑃𝑟{A𝑘
2̃ > 𝜆0/ 𝐻1}  = 1 − F

A𝑘
2̃ ,H1

(𝜆0)                                                                                 (21) 

where  F𝐴𝑘
∗2,H1

(𝜆0) represents the CDF of the corresponding A𝑘
2̃  under the condition of 𝐻1.  

To obtain the generalized mathematical expression for the upper bound on the detection probability based on  

the cumulative distribution of  A𝑘
2̃ , we can employ equation (10) as follows, 

√A𝑘
2̃  = √𝑛 ∫ [𝐹𝑌(𝑥) − 𝐹0(𝑥)]2Ǿ (𝐹0(𝑥))

+∞

−∞

𝑑𝐹0(𝑥)    

                                        ≥ √𝑛 ∫ [𝐹𝑌(𝑥) − 𝐹0(𝑥)]2Ǿ (𝐹0(𝑥))
+∞

−∞
𝑑𝐹0(𝑥)    

                            - √𝑛 ∫ [𝐹𝑌(𝑥) − 𝐹1(𝑥)]2Ǿ (𝐹0(𝑥))
+∞

−∞
𝑑𝐹0(𝑥)                                                                    (22) 

 

Thus, the above equation can be approximated as, 

                                √A𝑘
2̃   ≥ C √𝑛 − 𝐵𝑛                                                                                                           (23) 

where  

 

                      C= √∫ [𝐹𝑌(𝑥) − 𝐹𝑜(𝑥)]2Ǿ
+∞

−∞
 (𝐹0(𝑥))𝑑𝐹𝑜(𝑥)                                

and 

                     𝐵𝑛 = √𝑛 ∫ [𝐹𝑌(𝑥) − 𝐹𝑜(𝑥)]2Ǿ 
+∞

−∞
(𝐹0(𝑥))𝑑𝐹𝑜(𝑥)                                                                     (24) 

 

The equation (24) mentioned above can be expressed as the probability that a random variable 𝑌𝑘under𝐻1 exceeds 

a specified threshold is limited by the upper bound on the probability of detection. This can be simplified as shown 

in reference [24]. 

 



J. Electrical Systems 20-5s (2024): 1777-1789 

 

1783 

                        F
A𝑘

2̃ ,H1
(𝜆) =  Pr {√A𝑘

2̃   ≤  √𝜆0 /𝐻1}     

                                           =  Pr {𝑒
−𝜆√A𝑘

2̃

≥ 𝑒−𝜆√𝜆0/𝐻1}            

                                          ≤  

E[𝑒
−𝜆√A𝑘

2̃
]

𝑒−𝜆√𝜆0
 

                                          ≤ 
𝑒−𝜆 𝐶√𝑛 E[𝑒−𝜆𝐵𝑛]

𝑒−𝜆√𝜆0
                                                                                                       (25)   

To enhance the upper limit for specific values of 𝜆0 and 𝑛 , the expression on the right side of equation (25) can be 

minimized with regard to 𝜆. As per Markov's inequality, the value of 𝜆 > 0, which is positive and can be chosen 

as 1. Consequently, the aforementioned equation can be simplified as: 

                                    F
A𝑘

2̃ ,H1
(𝜆0) ≤ 

𝑒− 𝐶√𝑛 E[𝑒−𝐵𝑛]

𝑒−√𝜆0
                                                                                     (26) 

Therefore, using the equation (26) in equation (21), the probability of detection can be written as, 

 

                                           𝑃𝑑 ≥ 1- 
𝑒− 𝐶√𝑛 E[𝑒−𝐵𝑛]

𝑒−√𝜆0
                                                                                         (27) 

As the value of n increases, the distribution 𝐵𝑛 converges to a limiting distribution with the assumed constant 

value of C i.e., C >0. Similarly, as the value of  F
A𝑘

2̃ ,H1
(𝜆0) approaches 0, the probability of detection becomes 1 

when the expected value of 𝐵𝑛 is bounded for any given 𝜆0. Finally, the probability of missed detection (𝑃𝑚) can 

expressed from the probability of detection given as, 

                                                           𝑃𝑚 = 1 − 𝑃𝑑                                                                                                  (28)                               

 

VI. OTHER GOF SENSING METHODS 

A. Kolmogorov-Smirnov (KS ) sensing 

The Kolmogorov-Smirnov [25] statistic measures the distance between the empirical distribution functions of two 

samples or between a sample's empirical distribution function and the cumulative distribution function of the 

reference distribution. Under the assumption that the null hypothesis holds, which is that the sample is drawn from 

the reference distribution, the null distribution of this statistic is obtained. Therefore, this test statistic is expressed 

as, 

                                         𝐷𝑌
2 = {𝑠𝑢𝑝|𝐹𝑌(𝑥) − 𝐹0(𝑥)|}2                                                                                 (29)           

where 𝑠𝑢𝑝{∙}denote as supremum function represents the maximum value, therefore the equation (29) can be 

formulated as, 

                                             𝐷𝑌
2 = (𝑚𝑎𝑥(𝐷𝑌

+, 𝐷𝑌
−))

2 
                                                                                       (30)         

The equation (30) further simplified as follows, 

                                           𝐷𝑌
+ = max

1≤𝑠≤𝑛
{

𝑠

𝑛
− 𝐹0(𝑥)}                                                                                         (31) 

 

                                         𝐷𝑌
− = max

1≤𝑠≤𝑛
{𝐹0(𝑥) −

𝑠−1

𝑛
}                                                                                        (32) 

  

B. Cramer-Von Mises(CM)  sensing methods 

A useful method that is comparable to the chi-square test is the Cramer-Von Mises [26] an omnibus test. The CM 

test's test statistics represented  as, 

                               𝑊𝑛
2 = 𝑛 ∫ (𝐹𝑌(𝑥) − 𝐹0(𝑥))2𝑑𝐹0(𝑥)

+∞

−∞
                                                                             (33) 

The integral function in the above equation can be simplified and be divided into m-parts. 𝑊𝑛
2  can be 

approximated as, 

                                 𝑊𝑛
2=

1

12𝑠
+ ∑ (𝐹0(𝑥) −

(𝑛−0.5)

𝑠
)

2
𝑛
𝑠=1                                                                                    (34) 
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VII. PROPOSED ALGORITHM 

This paper introduces an algorithm to enhance the subchannel utilization of the primary user by the multiple SUs 

within the allocated time slot. The algorithm factors in the interference level of the PU and determines the 

permissible number of secondary users allowed to occupy the subchannel. In contrast, the traditional method allows 

one or two SUs to utilize the time slot based on the energy levels of the licensed user during the sensing duration. 

An alternative approach involves employing a statistical method based on the number of samples. The primary 

objective is to minimize false alarms and increase the probability of the secondary user accessing available 

frequency bands. Figure 3, illustrates a flowchart diagram that outlines the dynamic spectrum sensing and time slot 

adjustment for multiple SUs, considering the signal's energy is expected to remain relatively stable over a time 

frame. 

Table 2. Simulation parameters 

Parameters Values 

Transmit power 30dBm/1 Watt 

Modulation QAM 

Total bandwidth 100MHz 

Bandwidth of each subchannel( 𝐵𝑐) 6MHz 

Number of subchannel(𝑘) 10 

Over sampling factor (𝑄) 100 

Time slot length of primary users 100ms 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of Dynamic Spectrum Sensing and Time Slot Adjustment (DySTA) Algorithm 
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VIII. RESUTLS AND DISCUSSION 

The simulation outcomes obtained using the MATLAB tool (2023a version) under specific assumptions as per the 

Table 2. along with other specific assumptions are sampling frequency of 12MHz, and a received signal to noise 

ratio(SNR) ranging from -20 dB to 10 dB in Rayleigh channel with an AWGN noise. The network model covers a 

500m radius and has ten SUs spaced equally apart.The threshold value measured for the proposed sensing algorithm 

was determined to be 2.96, utilizing the Monte-carol simulation at a given false alarm probability ,𝑃𝑓𝑎=0.01 and  

missed detection probability of 𝑃𝑚= 0.25.According to equation (17), the value of  k ranged from 1 to 10 was 

utilized. Furthermore, equations (27) and (28) were useful in generation the simulation plot  

To evaluate the effectiveness of the proposed spectrum sensing approach, we compared its outcomes with those of 

other detection algorithms, such as the three consecutive time double-threshold energy detection method (TCTDT-

ED) [8], the history-based adaptive double-threshold energy detection algorithm (HBADT-ED) [7], and the 

conventional energy detection (ED) method [5]. We utilized a sample set of 20 for this comparison.  

 
 

Figure.3 Detection probability versus the probability of false alarm for different GoF test-based spectrum sensing 

methods at SNR = -10 dB using 20 samples & 10 -SUs 

 

The Figure 3 demonstrates the detection probability obtained using 20 samples and 10 subchannels for the proposed 

methods. The results show that the AD method, one of the proposed approaches, exhibits a significant improvement 

in detection, amounting to approximately 0.1dB, compared to other tests. Additionally, the proposed approach 

outperforms other sensing strategies when there are fewer than 20 samples. Conversely, the KS test displays inferior 

performance compared to the other two methods, while the CM test performs only 1% less than the proposed 

model. The results are both consistent and reliable, suggesting that the proposed approach is superior in terms of 

detection probability. 

 

 

  

 

. 
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Figure.4 .False alarm probability versus detection probability for proposed Anderson darling at SNR=-10dB using 

20 samples & 10 subchannel. 

 

The Figures 4 and 5 depict the variations in detection with false alarm rates for different sensing algorithms at SNR 

levels of -10dB and -14dB, respectively.  

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.5 Probability of false alarm versus Probability of detection for proposed Anderson darling for SNR=-14dB 

using 20 samples &10 subchannels 

 

The proposed method demonstrates superior performance with detection probabilities of 0.9 at low SNR and 0.7 

at high SNR. Compared to other algorithms, the proposed method also exhibits a higher detection probability with 

a lower false alarm rate. Furthermore, when the false alarm rate is extremely low, the detection probability can 

approach the value 1.Subsequently, at -14dB of SNR, the detection probability increases as the false alarm 

probability rises. Moreover, in comparison to the other three methods, the proposed algorithm demonstrated 

superior performance at the same false alarm probability.  
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The algorithm ensures a higher detection probability, even when the false alarm probability is low. In fact, the 

detection probability reaches the value of 1, even at extremely low false alarm probabilities when using the 

HBADT-ED algorithm. The probability of detection continuously increases as the probability of missed detection 

decreases to 25%, regardless of the SNR value. In figure 6, the comparison of probability of detection and at 

different SNR with 0.5dB noise uncertainty. Further,it investigate the influence of different SNR received signal 

conditions on  the detection probability (𝑃𝑑). 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 

Figure.6. The relationship between detection probability and SNR when common false alarm probabilities  

𝑃𝑓𝑎=0.05 and 𝑃𝑚=0.25 using 10 subchannels 

 

The proposed algorithm in Figure 6, has a significant advantage over other methods, as its detection probability 

approaches 1 when the SNR is at -9 dB. In contrast, TCTDT-ED methods require SNR values of -10 dB to achieve 

a similar level of detection probability. The conventional method using ED such as adaptive double threshold-ED 

(ADT-ED) [27] requires an SNR of more than -2dB before their detection probability approaches 1.The HBAT-

ED also performs same as proposed algorithm and diminishes as the SNR value rises.  

 

 

 

Figure.7. Successfully secondary usage versus Time slots (ms) (a) Interference threshold PU exceeds the AD 

statistics and (b) Interference threshold to PU below the AD statistics. 

 

In Figure 7, the depiction illustrates available time slots for SUs to occupy the PU. The simulation plot indicates 

that if the interference threshold for the PU exceeds AD statistics, a limited number of time slots are adjusted, 

enabling secondary users to access the channel. Conversely, when the interference threshold to the PU is below 

AD statistics, multiple secondary users can utilize the time slots under the underlay model. 
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IX. CONCLUSION 

In the proposed work, we provide a signal detection technique for cognitive microcell that needs a minimal amount 

of data. This technique is an improvement over traditional methods, as it makes more efficient use of the available 

samples through the use of Student's t-test, which is better suited for small sample sizes. The outcomes of the 

simulation show that the approach proposed can attain a higher detection probability of 0.963 than other methods, 

even when using a less sample size. The use of this method not only overcomes current limitations in sensing, such 

as time and energy consumption, but also lays the groundwork for compressed spectrum sensing applications. As 

a result, it has the potential to play a crucial role in the development of intelligent and environmentally conscious 

systems, solidifying its position as a foundational technology in this rapidly changing field. 
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