Abstract: - This research work is to create a application as web service to make it available on web for web service discovery. The most significant yoga stance is well-known on a global scale and supports the health advantages advocated by the ancient sages. OpenPose estimates that computer vision technology can help yoga practitioners achieve the greatest form and alignment. The integration of the OpenCV, Python, and MediaPipe frameworks is the main emphasis of this research project in order to develop an OpenPose estimation system for yoga poses. A camera is used to capture the yoga practitioner’s motions, and a deep learning model is used to predict the important body parts. The algorithm then looks at these essential aspects to determine if the practitioner is doing the pose correctly or whether any adjustments are needed. The device gives the practitioner immediate feedback, allowing them to modify their alignment and posture as necessary. The OpenPose estimate system can help with the practice of yoga by offering detailed visualizations of the essential body parts throughout each posture in addition to providing real-time feedback Practitioners may more clearly understand the right form and alignment and make the required adjustments by utilizing this visualization. Additionally, the OpenPose estimation system enables the tracking of development over time. Practitioners who want to practice alone at home or may not have access to an instructor can also benefit from it. This paper offers a MediaPipe, OpenCV, and Python-based OpenPose estimation system for yoga positions. For optimal form and alignment, the tool may offer real-time feedback and visual representations of key body parts throughout each position. It is useful tool for yoga teachers and students, enhancing yoga's safety and efficacy while supporting the practice.

Keywords: Web Service Discovery, Web Service, yoga, posture, alignment, feedback, Deep learning, OpenCV, Python, and MediaPipe.

Abstract—The Internet of Things (IoT) has revolutionized our interaction with objects, from daily items to industrial systems, creating a demand for skilled IoT assemblers. To address this need, a training program titled "Training Program for an Internet-of-Things Assembler: A Curricular Innovation" was developed, aiming to enhance competencies in IoT assembly. The study delves into pivotal competencies for IoT professionals, offering insights for upskilling in the domain. The IoT Training Program equips trainees with interdisciplinary proficiencies for prototyping robust IoT solutions and orchestrating end-to-end systems. Curricular innovation's significance in tackling education challenges in the digital age is underscored. Employing Research & Development (R&D) design, the study followed the Analysis, Design, Development, Implementation, Evaluation (ADDIE) methodology. The "Research" phase identified fundamental competencies for IoT assemblers through Computational Topic Modeling and Latent Dirichlet Allocation (LDA). The "Development" phase encompassed Design, Development, Implementation, and Evaluation. A comprehensive training program was created and assessed. A validated survey questionnaire gauged participants’ perception of implementation, revealing the program's efficacy. Results highlighted the program's impact, enhancing IoT assemblers’ skills in assembling/disassembling IoT devices, applying competencies, and using cloud services over IP networks. Integration of Computational Topic Modeling with LDA effectively identified pivotal competencies, enabling significant skill enhancement and integration into the transformative IoT field. The study's insights facilitate continuous innovation in IoT assembly through ongoing refinement of the training program. The study underscores curricular innovation's importance in addressing education challenges in the digital era, paving the way for proficient IoT professionals.

Index Terms—Internet-of-Things, Curriculum Innovation, Emerging Technology, IoT Assembler.

I. INTRODUCTION

In an era characterized by rapid technological advancements, the relevance of our educational curriculum is under constant scrutiny. Curriculum innovation, in its essence, is the process of adapting and renewing the educational framework to cater to the evolving needs of the present and future. Such adaptability is predicated on the realization that the world is dynamic, and as educators, we risk preparing our students for a past era if our curriculums remain stagnant. As aptly noted by [1], "Curriculum holds an outstanding place when seeking to promote innovation in education." It dictates not just the what but also the how of imparting knowledge, skills, and values to students.

1,2 West Visayas State University La Paz, 1lea.gabawa@wvsu.edu.ph, 2genesis.camarista@wvsu.edu.ph

Copyright©JES2024on-line.journal.esrgroups.org
One of the most transformative technological advancements of the 21st century is the Internet of Things (IoT). It has redefined our interactions with everyday objects, ushering in an era where physical items are seamlessly integrated into the information network. Consequently, there emerges a significant demand for skilled IoT assemblers who can bridge the gap between hardware and software, device, and network.

In response to this need, this presents a meticulous study, titled "Training Program for an Internet-of-Things Assembler: A Curricular Innovation." Herein, we leverage curricular innovation to devise a comprehensive training program, anchored in the Research & Development (R&D) design and the ADDIE methodology. This program aims to equip IoT professionals with the necessary competencies, transcending mere theoretical knowledge to emphasize hands-on proficiency. While the importance of curriculum innovation can be universally acknowledged, it gains particular significance when preparing professionals for global challenges in the digital age. In the study of [2] argument encapsulates this sentiment, emphasizing the pivotal role of curricular evolution in molding global citizens. Moreover, the very process of curriculum innovation itself is multidimensional, encompassing structures, content, and processes, each bearing its weight in the overarching goal of holistic education.

Shifts in the global environment require a responsive and continuously updated educational curriculum. This paper examines curriculum innovation, its role amidst globalization, and the processes for effective deployment. The research emphasizes the need for updated educational strategies to equip students for a fluid global context, suggesting a close alignment between current global demands and curriculum development. The subsequent sections provide a detailed analysis of curriculum innovation, its relevance, techniques, and consequences. In this context, we also discuss the relationship between emerging technologies, such as IoT, and relevant educational adjustments, highlighting the necessity for ongoing adaptation and advancement.

II. CONCEPTUALIZING CURRICULUM INNOVATION

Submit your manuscript electronically for review. In the modern educational context, it is paramount to incorporate emerging technologies into curricular designs, a fact clearly illustrated by the widespread adoption of the Internet of Things (IoT). As technology and global demands evolve, there is an increasing need for the reinvention of traditional curricula. This article aims to explore the manifestation of curriculum innovation within the framework of an IoT assembler training program.

Acknowledging the transformative impact of IoT today, it is apparent that curricula must be in constant adaptation to mirror technological strides. The proposed training program emerges as a strategic response to the burgeoning demand for adept IoT assemblers. Central to curriculum innovation is its inherent adaptability and receptiveness. The proponent's training model adopts a research and development design synergized with the ADDIE methodology, spanning from Analysis to Evaluation. This methodological choice not only ensures adaptability but also maintains an unwavering alignment with desired outcomes.

To cultivate a curriculum that remains relevant and anticipates future needs, the proponent harnessed the capabilities of Computational Topic Modeling software, underpinned by Latent Dirichlet Allocation (LDA). Such advanced tools are invaluable in identifying and defining the essential skills needed by IoT assemblers, highlighting a progressive stance on curriculum design. Maintaining the curriculum's relevance and effectiveness is contingent upon systematic feedback mechanisms. To this end, detailed survey questionnaires were employed, gathering insights from both academic circles and industry professionals, facilitating a comprehensive evaluation and subsequent refinement.

Transitioning from a purely theoretical framework, the training program accentuates practical application, with a particular focus on the hands-on assembly and disassembly of IoT devices. This pragmatic approach ensures that participants acquire skills with genuine utility in real-world contexts. The credibility and pertinence of the curriculum were further bolstered by rigorous validation from renowned academic scholars and experienced IoT practitioners, attesting to the curriculum's merit in both academic and practical domains. Insights from a diverse array of evaluators, encompassing both academic-industry professionals and direct training recipients, offer a multifaceted perspective on the curriculum's effectiveness and delivery. At the heart of the proponent's curricular innovation is a commitment to tangible outcomes. The primary objective of the training program is to enhance competencies, ensuring that any novel inclusions are not just innovative but have proven efficacy.

III. THE IMPERATIVE FOR CURRICULUM INNOVATION

This age of rapid technological progress and global interconnectedness makes curriculum innovation an
unequivocal necessity. The advent of Industry 4.0 is not merely an industrial revolution but an educational challenge. The study illustrates the possibilities and the positive outcomes when curricula are designed not just to educate but to prepare students for a world vastly different from the one that existed when current educational paradigms were formulated. Thus, it accentuates the urgency and the imperative for curricular overhaul.

As the world rapidly advances into the era of Industry 4.0, characterized by a blend of cutting-edge technologies such as the Internet of Things (IoT), artificial intelligence, and machine learning, the existing educational frameworks appear increasingly misaligned with contemporary vocational and industrial demands. Such a discord presents an imperative for revolutionary changes within curricula to bridge the burgeoning skills gap in emergent industries like IoT, thereby setting the context for the study on the "Training Program for an Internet-of-Things Assembler: A Curricular Innovation."

The perpetually evolving global landscape is characterized by technological disruptions, geopolitical shifts, and economic interdependencies. This dynamism not only redefines the competencies required in the job market but also challenges the extant educational curricula that were primarily designed in a different epoch for vastly different needs. This lag in curriculum reform adversely impacts the quality of education, a critical factor that inextricably links to the overall quality of life and economic productivity of individuals. The education one receives serves as a precursor to career opportunities, lifetime earnings, and, by extension, contributions to national economies. Hence, curricula must be not only updated but fundamentally reinvented to meet the demands of this ceaselessly dynamic environment.

Furthermore, the current generation of learners, who are digital natives, have individualistic educational needs, preferences, and learning styles. In addition, the accelerating pace of globalization means that students are no longer competing within local or national job markets but in an interconnected global economy. The curriculum, therefore, has an additional mandate of fostering competitiveness and adaptability among students while respecting the unique learning needs of everyone.

Through rigorous research and development, aided by the ADDIE methodology, the study identified key competencies for IoT assemblers—such as data science, machine learning algorithms, and IoT security. By doing so, the study lays a blueprint for an adaptable, future-ready curriculum. The success of the program's beta testing further underscores the curriculum's alignment with current industry needs and its effectiveness in imparting practical skills to students.

IV. OPERATIONALIZING CURRICULUM INNOVATION

The metamorphosis of educational paradigms is not just a matter of shifting pedagogical techniques; it is a comprehensive process that demands integrated changes across structure, content, and processes. Within the ambit of the "Training Program for an Internet-of-Things Assembler: A Curricular Innovation" study, the realization of curriculum innovation can be analyzed by examining these three facets.

Structure. In the context of the study, the term "structure" extends beyond physical infrastructure. Given that the focus is on training IoT assemblers, the structural considerations also encompass the integration of cutting-edge technological infrastructure. This involves providing learners with access to modern labs equipped with IoT devices, microcontrollers, sensors, and cloud-based platforms. Such an infrastructure serves not only as a tool for instruction but also as a playground for experimentation. Effective structural design ensures that the learning environment is conducive to both theoretical instruction and hands-on practical experience. In the era of IoT and Industry 4.0, physical space optimization amalgamates seamlessly with digital interfaces, giving students an immersive, real-world experience of the IoT domain.

Content. The very essence of this study revolves around curricular innovation, squarely placing content at its core. With the identification of 25 IoT-related competencies, including top-ranked ones like data science and machine learning algorithms, the content is meticulously curated to resonate with industry demands. But content goes beyond mere subject matter. It encapsulates the depth and breadth of topics, ensuring that learners gain both foundational knowledge and specialized skills. The design of the IoT Training Program, divided into sections from IoT basics to applications, is illustrative of a structured content progression, allowing learners to navigate from rudimentary concepts to complex applications seamlessly.

Process. Methodologies and operational management stand as the backbone of any curriculum, dictating its delivery, adaptability, and effectiveness. The adoption of the R&D-ADDIE framework in the study exemplifies an iterative, feedback-driven process that emphasizes continual improvement. Beginning from the analysis phase, where data was collated from both tech firms and academic-industry practitioners to the evaluation phase that assessed the program's efficacy, the process remained rigorous and adaptive. Furthermore, processes also encapsulate pedagogical techniques, assessment mechanisms, and feedback loops. The study's beta testing phase, expert reviews, and feedback collection underscore a dynamic process structure that values stakeholder input and strives for refinement based on real-world testing.
In summation, operationalizing curriculum innovation is a multifaceted endeavor. The "Training Program for an Internet-of-Things Assembler" exemplifies how structure, content, and process, when harmonized with intent and precision, can culminate in a curriculum that is not only innovative but also impactful, aligning seamlessly with the imperatives of the modern technological era.

V. MODELS AND APPROACHES TO CURRICULUM INNOVATION

In the intricate web of curriculum development, particularly when the goal is curricular innovation for rapidly evolving sectors such as the Internet of Things (IoT), understanding the underlying approaches and models becomes vital. This ensures that curricula are robust, flexible, and most importantly, aligned with both pedagogical aims and industry requirements.

A. Top-Down Approach. Typically, a top-down approach is characterized by policies and directives formulated at higher administrative levels, which then cascade to the instructional level. This method, while ensuring uniformity and alignment with overarching policies, can sometimes lack the granularity required for nuanced and specific educational needs. In the context of the IoT Assembler training program, a top-down approach could mean setting broad-based curriculum guidelines based on industry standards and global IoT trends.

B. Bottom-Up Approach. On the other hand, the bottom-up approach grants more autonomy at the classroom level, allowing instructors, learners, and local stakeholders to have a say in curricular content and methodology. This grassroots-driven approach ensures that the curriculum is sensitive to local needs, resources, and constraints. It also allows quick iteration based on real-time feedback. When applied to the IoT Assembler training program, this could translate to incorporating direct insights from current IoT practitioners or addressing specific challenges faced by learners in real-world scenarios.

C. Havelock's Models for Curriculum Innovation

Research, Development, and Diffusion (RD & D) Model: In the study of [3] the RD & D model is a systematic and sequential approach to innovation, beginning with research, transitioning into development, and culminating in diffusion or dissemination. In the context of the IoT Assembler training program, the research phase involved identifying the competencies required for IoT assemblers, the development phase encapsulated the crafting of the IoT Training Program prototype, and the diffusion would involve disseminating this curriculum to various educational entities or even businesses for adoption.

Social Interaction (SI) Model: The SI model emphasizes the importance of interpersonal relationships and networks in driving change and innovation. The spread of innovative practices is, in this model, contingent on peer interactions, recommendations, and collaborations. Within the IoT Assembler training program, leveraging the SI model could mean creating collaborative platforms for IoT educators and practitioners to share best practices, pedagogical tools, and resources.

Problem-Solving (PS) Model: The PS model pivots around the identification and rectification of specific issues. This approach is iterative and dynamic, allowing for continuous improvements. Given the ever-evolving nature of the IoT landscape, the PS model aligns well with the study. Challenges identified during the beta testing phase of the IoT Training Program can be addressed using this model, iterating the curriculum to better serve both educators and learners.

To encapsulate, while the study "Training Program for An Internet-Of-Things Assembler: A Curricular Innovation" fundamentally leveraged the R&D research design coupled with the ADDIE methodology, the broader landscape of curriculum innovation models offers further avenues and strategies. Whether top-down or bottom-up, or rooted in Havelock’s paradigms, the essence remains - to craft a curriculum that stands the test of time, while being nimble enough to adapt to the relentless march of technology.

VI. STRATEGIES FOR CURRICULUM INNOVATION

As industries evolve, the teaching methodologies and strategies need to keep pace to effectively prepare students for future challenges. The ever-evolving landscape of the Internet of Things demands innovative strategies in curriculum design. In the context of this study, several strategies emerge as paramount for crafting a forward-looking, relevant curriculum. Through personalized learning, establishment of learning communities, collaborative efforts, and project-based undertakings, educational institutions can better prepare their students, equipping them with the necessary skills and knowledge to thrive in the dynamic world of IoT. These strategies, implemented effectively, can ensure that curriculum innovation is not just a theoretical concept but a practical reality, resonating with the ethos of the study on IoT assembler training.

Personalized Learning. The complexities of the Internet of Things (IoT) domain span a multitude of areas like programming, data analysis, and communication. Given this broad spectrum, a one-size-fits-all approach to
learning is inadequate. Instead, there is a growing need to harness technological solutions, such as Artificial Intelligence (AI), to tailor educational experiences. AI can analyze learners’ progress, strengths, and areas needing improvement, subsequently offering personalized study paths. Within the realm of IoT, this ensures that assemblers have a comprehensive understanding, aligned with their individual learning trajectories, to tackle real-world challenges.

Learning Communities. IoT is an interdisciplinary field that continually evolves with technological progress. To keep abreast of these changes, it’s essential to foster learning communities. These platforms can connect learners, educators, and industry practitioners, facilitating the exchange of up-to-date knowledge, best practices, and industry trends. For IoT assemblers, these communities act as a reservoir of shared experiences, ensuring that the curriculum remains in tandem with real-world applications and innovations.

Collaborative Learning. IoT systems often involve collaborative efforts, integrating various components and layers of technology. It’s vital, then, that the curriculum promotes collaborative learning, where students work in groups to understand and apply materials. This strategy does not just enhance knowledge assimilation but also fosters teamwork, communication, and problem-solving skills — attributes crucial for any IoT assembler working in interdisciplinary teams.

Project-Based Learning: One of the salient features of the study was its emphasis on real-world applications. This underscores the importance of project-based learning in the curriculum. Instead of traditional rote learning, students should engage with real-world challenges related to IoT. By designing, assembling, or troubleshooting IoT systems, students can practically apply their theoretical knowledge, developing skills essential for their future roles. Such hands-on experience ensures that they are not only well-versed in the theoretical constructs of IoT but can also translate this knowledge into tangible solutions.

VII. CURRICULUM INNOVATION DEVELOPMENT STAGES

In essence, Esther Fleming’s stages provided a structured and systematic approach to curriculum development. In the context of the “Training Program for an Internet-of-Things Assembler,” these stages ensured that the curriculum was not only rooted in real-world requirements but also pedagogically robust, leading to a comprehensive, effective, and industry-relevant training program.

Identify the problem. In the realm of Industry 4.0, there exists a glaring skills gap, especially in the IoT sector. Traditional educational curricula do not adequately equipping students with the competencies required to thrive in the IoT industry. The main problem identified was the lack of a specialized training program tailored for potential IoT assemblers, who form a crucial component of this burgeoning sector.

Assemble a development team. For the study, a multidisciplinary team was constituted, comprising experts from the realms of IoT, education, curriculum design, and industry practitioners. The collective knowledge of this team ensured that the training program was both technically sound and pedagogically effective.

Conduct an assessment. The study embarked on an extensive assessment phase, gathering data from 35 emerging technology companies and 30 academic and industry practitioners. This research was pivotal in understanding the current landscape, discerning the skills and competencies in demand, and identifying gaps in existing training provisions.

Define outcomes. With the data amassed, the study aimed to clearly define the desired outcomes of the training program. This entailed establishing the competencies that trainees should possess upon completion, such as proficiency in data science, artificial intelligence, machine learning algorithms, IoT foundations, and IoT security.

Choose content. Once the outcomes were set, the content that would facilitate these outcomes was curated. The program content was segmented into three main parts: IoT basics, electrical and electronic components of IoT, and IoT applications. This structure ensured a comprehensive and progressive learning experience.

Design experiential methodologies. Recognizing the importance of hands-on experience, especially in a field as practical as IoT assembling, experiential methodologies were incorporated. Trainees were exposed to real-world scenarios, allowing them to prototype an IoT solution, and assemble and disassemble various components. This ensured that the learning was not just theoretical but also applied, enhancing retention and practical proficiency.

Create curriculum products. Building on the chosen content and methodologies, a prototype of the IoT Training Program was developed. This document served as a tangible product, outlining the curriculum in detail, and providing a clear roadmap for its implementation.

Test and revise the curriculum. Before its final rollout, the training program underwent beta testing. Feedback was actively sought from participants, which was invaluable in refining and enhancing the curriculum. The positive reception of the program during this testing phase, especially concerning its instructional and technical quality, underscored its efficacy and relevance.
The implications of an innovative curriculum, as exemplified by the "Training Program for an Internet-of-Things Assembler," reverberate beyond the confines of educational institutions. In the digital era, the onus of education and skill development is shared. Organizations stand to gain immensely, both in terms of human capital and business outcomes, by integrating such curricular innovations into their training and development strategies. The role of foundational education in determining the caliber and expertise of professionals entering the workforce has always been significant. The study "Training Program for an Internet-of-Things Assembler: A Curricular Innovation" showcases the heightened importance and potential of curricular innovation, not just within traditional educational realms but also in organizational settings.

Human Capital and Competitive Advantage. Organizations operate in an increasingly competitive global landscape where human capital has emerged as a distinctive competitive advantage. Employees trained under innovative and forward-thinking curricula, such as the IoT assembler training program, are more likely to possess the interdisciplinary skills required for the digital age. These individuals bring a confluence of theoretical knowledge and practical expertise, giving organizations a tangible edge in product development, service delivery, and problem-solving.

Bridging the Skills Gap. Many industries, especially tech-driven sectors like the IoT, are witnessing a pronounced skills gap. Organizations often find it challenging to recruit candidates with the requisite skill set. By integrating innovative training modules, like the IoT assembler program, into their professional development initiatives, organizations can internally nurture the talents they require, thus reducing dependence on external hiring for specific competencies.

Employee Retention and Engagement. Modern professionals value continuous learning. Providing employees with access to cutting-edge training programs enhances job satisfaction, fosters a culture of continuous learning, and can significantly boost employee retention rates. An engaged employee, equipped with the latest skills and knowledge, is an asset that drives organizational growth.

Agility and Adaptability. The digital age is synonymous with change. Organizations that emphasize innovative training are better equipped to adapt to industry shifts. A curriculum that mirrors the IoT assembler program's adaptability ensures that employees remain agile, always prepared to harness new technologies, methodologies, or practices that emerge.

Stakeholder Value and Reputation. Organizations known for their commitment to training and development are perceived positively by stakeholders, be they investors, clients, or potential employees. Such organizations are viewed as forward-thinking, responsible, and invested in their workforce's future, which can enhance brand reputation and foster trust in the market.

Collaboration with Academic Institutions. The success of the IoT assembler training program underscores the potential benefits of collaborative efforts between academia and industry. Organizations can engage with educational institutions to co-create specialized curricula, ensuring a seamless blend of academic rigor and industry relevance.

CONCLUSION

The profound insights from the study "Training Program for an Internet-of-Things Assembler: A Curricular Innovation" underscore the paramount importance of curricular innovation in shaping not just the future professionals but also the trajectory of industries and organizations. The role of foundational education and its direct influence on the quality of professionals entering diverse fields reinforces the need for proactive, adaptive, and responsive educational strategies. Moreover, in an era dominated by technological disruptions, it is evident that organizations not only benefit from but require employees trained under curriculums that prioritize real-world skills, adaptability, and forward-thinking.

As the global landscape becomes increasingly dynamic and interconnected, the challenges posed are multifaceted. The quality of education, intricately linked to an individual's life quality and economic contributions, necessitates a curriculum that simultaneously fosters competitiveness and caters to unique learning needs. Organizations, in their quest for excellence, need to recognize and embrace the benefits of collaborating with educational institutions, fostering a culture of continuous learning, and ensuring their workforce remains agile in the face of rapid technological advancements.

The future hinges on adaptive and forward-thinking educational practices. Curriculum innovation stands at the forefront, ensuring students are equipped with relevant skills and knowledge. As the lines between traditional educational settings and organizational training blur, it becomes a collective imperative to ensure the curriculum remains reflective of the evolving global needs. This not only secures a prosperous future for the coming generations but also propels industries and organizations to new heights in an ever-evolving digital era.
REFERENCES

