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Abstract: - In the ever-evolving field of cybersecurity, the ability to effectively prioritize threats is essential for organizations to allocate 

resources wisely and proactively mitigate potential risks. Avian Shield Optimizer (ASO) is a revolutionary optimization technique 

specifically designed for threat prioritization. ASO utilizes evolutionary-inspired mechanisms to dynamically adjust the prioritization of 

threats based on a comprehensive analysis of factors such as severity, relevance, and potential impact on organizational assets. By 

continuously monitoring and adapting to the dynamic threat landscape, ASO enables organizations to anticipate and respond quickly to 

emerging threats, ensuring that resources are allocated appropriately to address the most critical vulnerabilities. Moreover, ASO seamlessly 

integrates with existing threat intelligence platforms, providing cybersecurity teams with actionable insights and recommendations to 

comprehensively strengthen their defense strategies. Concurrently, the GraphForgeElite framework enhances this approach by facilitating the 

analysis of complex network data connections and structures, enabling the detection of subtle irregularities that may indicate potential cyber 

threats. ASO collaborates synergistically with GraphForgeElite, utilizing evolutionary-inspired methodologies to dynamically adapt the 

framework's design and settings, automatically tuning the parameters. Through rigorous experimentation, the performance of ASO-

GraphForgeElite's Network is compared to other state-of-the-art classifiers. The results demonstrate the superior performance of ASO-

GraphForgeElite's Network, surpassing 99% accuracy, precision, recall, and F1-score. Additionally, the framework exhibits efficiency in 

handling complex network data structures, enabling the identification of subtle patterns that indicate potential threats. 

Keywords: Avian Shield Optimizer (ASO), threat prioritization, cybersecurity, evolutionary-inspired mechanisms, resource 

allocation, GraphForgeElite framework. 

 

 

I. INTRODUCTION 

In today's rapidly evolving and interconnected world, the significance of cybersecurity cannot be emphasized 

enough. It has emerged as a crucial issue for organizations across all industries. The swift progress of digital 

technologies and the increasing dependence on interconnected systems and networks have made the threat 

landscape more intricate and dynamic than ever. Cyber-attacks have not only risen in frequency but have also 

grown more sophisticated, aiming at sensitive data, intellectual property, and critical infrastructure. The 

potential repercussions of these attacks can be catastrophic. In this demanding cybersecurity environment, 

organizations are confronted with the challenging task of protecting their digital assets and ensuring operational 

continuity amidst evolving threats. A fundamental aspect of a robust cybersecurity defense is the strategic 

prioritization of threats. This entails a methodical evaluation and ranking of cybersecurity threats, considering 

factors like severity, likelihood of occurrence, and potential impact on organizational assets. By prioritizing 

threats, organizations can optimize their resources and efforts, concentrating on addressing the most significant 

risks first. This strategy enables a more focused and efficient response to potential cyber-attacks, bolstering 

overall cybersecurity resilience [12,16]. 

The importance of prioritizing threats cannot be overstated. In a world where resources are scarce and cyber 

threats are constantly changing, organizations must carefully decide how to allocate their time, budget, and 

manpower to enhance their cybersecurity defences. By prioritizing threats effectively, organizations can focus 

on addressing the most critical vulnerabilities first, reducing their overall risk exposure, and strengthening their 

resilience against cyber-attacks [13,17]. This study examines the crucial role of threat prioritization in 

cybersecurity and investigates the different methods and tools that organizations can use to prioritize threats 

efficiently. These methods include leveraging threat intelligence, conducting thorough risk assessments, 
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utilizing automated prioritization tools, and employing advanced analytics techniques. By recognizing the 

significance of threat prioritization and implementing best practices in this area, organizations can improve their 

cybersecurity posture, minimize the impact of cyber threats, and protect their digital assets from potential harm. 

Through proactive threat prioritization strategies, organizations can outsmart cyber adversaries and ensure the 

security, confidentiality, and availability of their critical data and systems [14]. The key contributions of the 

proposed research are outlined below.  

 This study presents a unique strategy for detecting cyber threats by combining three advanced 

methodologies: Threat Intelligence Prioritization, GraphForgeElite, and Avian Shield Optimizer (ASO). 

 By incorporating Threat Intelligence Prioritization into the framework, organizations can utilize external 

threat intelligence feeds to prioritize their efforts in mitigating threats based on their severity, relevance, 

and potential impact. 

 The inclusion of the GraphForgeElite framework enriches the proposed approach by facilitating the 

analysis of complex network data connections and structures. This enables the detection of subtle 

irregularities that may indicate potential cyber threats, thereby enhancing overall threat detection 

capabilities. 

 ASO represents a ground-breaking optimization technique specifically designed for threat prioritization. 

By utilizing mechanisms inspired by evolutionary processes, ASO dynamically adjusts the prioritization 

of threats based on factors such as severity, relevance, and potential impact on organizational assets. 

This enables proactive anticipation and response to emerging threats with agility. 

 The combination of Threat Intelligence Prioritization, GraphForgeElite, and Avian Shield Optimizer 

(ASO) creates a synergistic effect that amplifies the effectiveness of cyber threat detection. The 

integration of these methodologies provides organizations with a comprehensive and robust solution for 

identifying and mitigating cyber threats across diverse threat landscapes. 

The organization of the paper is as follows: Section II describes the literature review on various challenges in 

threat prioritization and identification. Section III explains the proposed work of GraphForgeElite and Avian 

Shield Optimizer. Section IV gives the results obtained and their performance analysis with existing models. 

The conclusion and future work is discussed in Section V. 

II. LITERATURE REVIEW 

The PRISM strategic decision framework, which stands for prioritize, resource, implement, standardize, and 

monitor, has been developed to enhance cybersecurity risk assessment. This framework integrates various 

methods for evaluating risks, such as scenario planning, risk matrix analysis, and Monte Carlo simulation. By 

considering both quantitative and qualitative factors, PRISM empowers organizations to make informed choices 

regarding their risk management strategies and resource allocation. Through its methodical approach, PRISM 

enables organizations to proactively identify and tackle cybersecurity risks, thereby bolstering their overall 

resilience in cybersecurity [1]. 

[2] Present a methodology focused on evaluating cybersecurity architectures through the lens of threats, aiming 

to enhance cybersecurity risk management. This approach involves identifying potential threats, analyzing their 

likelihood and impact, and evaluating cybersecurity architectures based on their ability to mitigate these threats. 

The advantages of this methodology are rooted in its focus on real threats, enabling organizations to tailor their 

cybersecurity architectures to address particular risks. Additionally, it provides a structured framework for 

assessing the efficiency of cybersecurity strategies. 

[3] Introduce a new framework in their study that offers a unique way to evaluate and handle cybersecurity risks 

using a multicriteria decision approach. This framework encompasses a variety of decision-making criteria to 

ensure a thorough assessment of cybersecurity risks. The process involves identifying and prioritizing 

cybersecurity objectives, followed by evaluating risks based on multiple criteria. Subsequently, appropriate risk 

management strategies are chosen. One notable advantage of this approach is its ability to incorporate various 

factors and stakeholder preferences, resulting in well-informed risk management decisions. By considering a 

wide range of perspectives, the framework enhances the decision-making process. Additionally, the framework 

promotes transparency and accountability in the risk assessment process, enabling a clear understanding of the 

rationale behind the decisions made. However, there are challenges associated with this approach, particularly 

in determining the suitable weights for different criteria. This task requires careful consideration of their relative 

importance. 
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In their research, [4] present a model that can be personalized to give priority to systems security engineering 

processes, activities, and tasks. The primary aim of this model is to improve the efficiency and effectiveness of 

security measures. The authors propose a methodology that involves identifying and categorizing security 

processes, activities, and tasks based on their significance and relevance to the organization's security 

objectives. One of the key benefits of this approach is its adaptability and flexibility to different organizational 

contexts, allowing organizations to customize their security efforts based on their specific requirements and 

priorities. Additionally, the model provides a structured approach to prioritize security efforts, enabling 

organizations to allocate their resources more efficiently. 

[5] Delves into a thorough analysis of cyber risk assessment frameworks, risk vectors, and risk ranking 

processes in the context of IoT (Internet of Things) cyber risk. The researchers utilize a methodology that 

includes an in-depth review and comparison of current cyber risk assessment frameworks, the identification of 

common risk vectors related to IoT devices, and the creation of a tailored risk ranking process specifically for 

IoT settings. An important aspect of this approach is the detailed examination of various frameworks and risk 

vectors, offering valuable insights into the complexities of IoT cyber risk assessment. Additionally, the 

methodology presents a structured method for prioritizing risks, allowing organizations to efficiently allocate 

resources for risk mitigation. Nevertheless, it is crucial to recognize that challenges may arise when reconciling 

disparities between existing frameworks and adapting them to the distinctive features of IoT environments. 

[6] Have employed a systematic methodology utilizing the Analytic Hierarchy Process (AHP) to identify and 

rank crucial cybersecurity challenges and practices for software vendor organizations in software development. 

This method entails structuring the problem hierarchy, defining criteria and sub-criteria related to cybersecurity 

challenges and practices, conducting pairwise comparisons of criteria with expert assessments, and determining 

priority weights using AHP. The methodical and organized approach facilitates a comprehensive examination 

of cybersecurity challenges and practices specific to software development. Additionally, the use of AHP 

allows for the incorporation of expert insights and preferences in the prioritization process, enhancing the 

credibility and reliability of the results. However, challenges may arise in precisely defining criteria and sub-

criteria, as well as in ensuring consistent and reliable judgments from experts. 

[7] Have presented an enhanced integrated framework for big data analytics to improve security and privacy in 

healthcare data management. This framework integrates various big data analytics techniques such as data 

encryption, access control, and anomaly detection to establish a comprehensive strategy for enhancing security 

and privacy in healthcare data management. The main advantages of this approach include its comprehensive 

approach to addressing security and privacy concerns in healthcare data management, as well as its use of 

advanced analytics methods to effectively detect and mitigate potential threats. Additionally, the optimized 

framework design ensures efficient resource utilization and reduces the overhead costs associated with security 

and privacy measures. However, challenges may arise during the implementation and integration of complex 

analytics techniques, as well as in ensuring seamless compatibility with existing healthcare data management 

systems. 

[8] Presents a method for prioritizing and organizing big data information security risks. This method involves 

identifying different risks related to big data, categorizing them by severity and likelihood, and ranking them 

based on their potential impact on organizational goals. The technique has several benefits, such as its 

systematic and structured approach, which helps organizations effectively prioritize their risk mitigation efforts. 

Additionally, the methodology offers a comprehensive view of the information security risk landscape in the 

realm of big data, enabling organizations to tackle the most critical vulnerabilities first. Nevertheless, challenges 

may surface in accurately evaluating the severity and likelihood of information security risks, as well as in 

prioritizing them according to their potential impact. 

[9] Presented a technique for assessing security risks and weaknesses in the development of secure software. 

This technique involves a comprehensive analysis of security risks and vulnerabilities, understanding their 

potential impacts on software systems, and measuring their severity using relevant metrics. The method's 

structured and systematic approach provides organizations with the capability to effectively identify and 

prioritize security risks and vulnerabilities. Additionally, the technique allows for a quantitative evaluation of 

security issues, enabling organizations to allocate resources more effectively for mitigation purposes. However, 

challenges may arise in accurately assessing the potential consequences of security risks and vulnerabilities, as 

well as in selecting suitable metrics to measure their severity. 
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[10] Introduce an innovative exploration framework that employs Monte Carlo simulations to detect vulnerable 

components in nuclear power plants that may be targeted by cyber threats. This approach offers numerous 

benefits, such as effectively capturing the probabilistic nature of cyber threats and their potential impact on 

plant components. By incorporating uncertainties and variations into the system, the Monte Carlo simulations 

enhance the reliability of the vulnerability assessment. Additionally, the framework offers a systematic and 

quantitative method to prioritize mitigation efforts by identifying the most susceptible components. However, 

accurately modeling the complex interactions between cyber threats and plant components, as well as 

estimating the necessary parameters for Monte Carlo simulations, may present certain challenges. 

III. PROPOSED WORK 

Avian Shield Optimizer (ASO) represents a ground-breaking advancement in the realm of cybersecurity threat 

prioritization. With meticulous attention to detail, ASO has been specifically crafted to confront the intricate 

challenge of prioritizing threats in dynamic and ever-evolving cyber environments. ASO employs evolutionary-

inspired mechanisms to dynamically adjust the prioritization of threats by conducting a comprehensive analysis 

of various factors. These factors encompass the severity of the threats, their relevance to the organization, and 

the potential impact they may have on organizational assets. ASO operates through a sophisticated algorithm 

that calculates the priority of each threat by considering the interplay of these factors. By assigning weights to 

different parameters and continuously monitoring changes in the threat landscape, ASO ensures that threat 

prioritization remains adaptable and responsive to emerging risks. This dynamic recalibration empowers 

organizations to judiciously allocate resources, focusing their efforts on addressing the most critical 

vulnerabilities and effectively mitigating potential risks [15,18]. 

𝑆𝑖 = 𝑓severity(𝑇𝑖)                                                              (1) 

The severity score (Si) for threat i is calculated using equation (1). This formula shows that the severity score 

for a particular threat i is influenced by the function fseverity(Ti), which evaluates the severity of the threat 

based on factors such as potential impact and likelihood. 

𝑅𝑖 = 𝑓relevance(𝑇𝑖)                                                          (2) 

The relevance score (Ri) of threat i to the organization is computed by equation (2). It signifies that the 

relevance score is influenced by the function frelevance(Ti), which evaluates the importance of the threat. 

𝐼𝑖 = 𝑓impact(𝑇𝑖)                                                                 (3) 

The impact score (Ii) of threat i is determined by the formula (3). This formula showcases that the impact score 

is obtained by evaluating the potential impact of the threat on the organization using the function fimpact(Ti). 

This evaluation considers variables such as potential damage and consequences. 

𝑃𝑖 = 𝑤1 ∗  𝑆𝑖 + 𝑤2 ∗ 𝑅𝑖 + 𝑤3 ∗  𝐼𝑖                                            (4) 

The calculation of the overall priority (Pi) for threat i is determined by utilizing the following equation, which 

incorporates the severity score (Si), relevance score (Ri), and impact score (Ii) of the threat. Weighted 

coefficients (w1, w2, and w3) are employed to ascertain the relative significance of severity, relevance, and 

impact in establishing the overall priority. 

𝑤ℎ𝑒𝑛 
‖𝑤𝑘‖ − ‖𝑤𝑘−1‖

‖𝑤𝑘−1‖
                 <   ∈                         (5) 

Equation (5) defines the convergence criterion for the optimization process. When the relative change in the 

norm of the weight vector between consecutive iterations falls below a specified threshold ϵ, the optimization 

process is considered to have converged. This criterion is essential for deciding when to terminate the 

optimization process, ensuring that the weights reach stability and achieve an optimal or near-optimal solution. 

GraphForgeElite is an advanced framework created to analyze and process network data, particularly in 

cybersecurity scenarios. The framework employs a graph-based model to represent intricate relationships and 

interactions among entities within a network. Nodes in the model represent entities such as devices, users, or 

applications, while edges signify connections or relationships between these entities. This graph structure 

enables GraphForgeElite to capture complex network topologies and uncover hidden patterns that could 

indicate potential cyber threats or vulnerabilities. A significant feature of GraphForgeElite is its diverse array of 

analysis tools and algorithms customized for network data. These tools encompass centrality metrics, 

community detection algorithms, graph clustering methods, and anomaly detection techniques. By leveraging 

these sophisticated analytical capabilities, GraphForgeElite can derive valuable insights from network data,  
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such as identifying critical network nodes, detecting suspicious activity patterns, and revealing abnormal 

behaviors that may signal cyber threats. Moreover, GraphForgeElite is designed for scalability and efficiency, 

capable of effectively managing large-scale network datasets with millions of nodes and edges using parallel 

and distributed computing methods. This scalability ensures that GraphForgeElite remains efficient even when 

handling increasingly complex and extensive network data, making it a valuable asset for cybersecurity 

professionals seeking to protect their digital assets from evolving threats. 

𝐺 = (𝑉, 𝐸)                                                                                            (6) 

The mathematical framework of graph G is determined by equation 6, consisting of two main components: a set 

of vertices (nodes) denoted as V and a set of edges denoted as E. The set of vertices V represents the entities or 

elements in the graph, such as devices, users, or applications. The set of edges E represents the connections or 

relationships between these entities. Each edge connects a pair of vertices and may include additional 

information like weights or labels. 

𝐶𝐷(𝑣) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑡𝑜 𝑣

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ    
                 (7) 

The computation outlined in equation (7) calculates the degree centrality of a particular node v in the graph. 

This measure evaluates the importance or centrality of the node based on the number of edges it is connected to. 

The numerator of the formula tallies the edges that are attached to node v, while the denominator represents the 

total number of nodes in the graph. Degree centrality is a fundamental metric in network analysis, emphasizing 

the significance of nodes in terms of their relationships within the network. 

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡  (𝑣)

𝜎𝑠𝑡

                                                               (8) 

The calculation of the betweenness centrality for a node, represented as v, can be achieved by utilizing equation 

(8). This metric of centrality plays a vital role in the identification of nodes that function as connectors or 

constraints within the network, thereby influencing the transmission of information or resources between other 

nodes. 

𝑄 =
1

2𝑚
∑ (𝐴 −

𝑘𝑖𝑘𝑗

2𝑚
) 𝛿(𝐶𝑖 , 𝐶𝑗 )                                      (9) 

The modularity equation (9) is employed to evaluate the degree of modularity in a graph, which indicates the 

network's ability to be partitioned into communities or clusters comprising closely linked nodes. This equation 

determines the modularity (Q) by contrasting the real ratio of edges within communities with the expected ratio 

of such edges in a random network. Optimizing modularity is a common objective in community detection 

algorithms, aiming to identify cohesive sets of nodes that display higher internal connectivity than random 

chance would predict. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑‖𝑥 − 𝜇‖2

𝑥𝜖𝐶

𝑘

𝑖=1

                                                   (10) 

The process entails iterating through each data point x, with μ representing the centroid of the cluster to which x 

is assigned. 

𝐿𝑂𝐹(𝑖) =  
1

𝑘
∑

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)

𝑙𝑜𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑗)
                    (11) 

The Local Outlier Factor (LOF) is a metric used in data mining and anomaly detection to pinpoint outliers in a 

dataset. It is calculated for a specific data point i by finding the average ratio of reachability distances between i 

and its k nearest neighbors, then dividing it by the local density of i. A higher LOF value indicates that the data 

point is likely an outlier compared to its neighbors, indicating a significant difference in density among 

surrounding data points. 

𝑃𝑅(𝑢) = (1 − 𝑑) + 𝑑 ∗ ∑
𝑃𝑅(𝑣)

𝐹𝑣

                                 (12) 

The assessment of nodes in a network, particularly in web search algorithms, can be accomplished through the 

utilization of the PageRank algorithm. When determining the significance of a specific node, referred to as 'u', 

its PageRank score (PR(u)) is calculated by considering both the damping factor (1-d) and the sum of the 

PageRank scores of nodes that are linked to 'u'. These scores are then normalized by their out-degree (Fv). The 
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damping factor (d) represents the probability that a user will randomly stop following links and instead navigate 

to a different web page. Generally, higher values of d indicate a higher level of trust in the links. 

𝐴 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑐𝑢𝑡(𝐴, 𝐵)

𝑉𝑜𝑙(𝐴)
+  

𝑐𝑢𝑡(𝐴, 𝐵)

𝑉𝑜𝑙(𝐵)
                        (13) 

The purpose of the objective function in equation (13) is to facilitate the division of graph G into two or more 

separate sets, namely A and B, in graph partitioning algorithms. The primary aim is to minimize the cut size 

between these sets while maintaining a balanced distribution of sizes. The numerator of the equation computes 

the cut size between sets A and B, while the denominators represent the volumes (number of edges) of sets A 

and B, respectively. By minimizing the objective function, the resulting partitions will exhibit reduced 

interconnections between sets and will be evenly sized. 

𝑠(𝑥, 𝑛) = 2
−𝐸(ℎ(𝑛))

𝑐(𝑛)                                                               (14) 

Equation (14) illustrates a mathematical representation of an exponential decay function, known as s(x,n), 

commonly used in algorithms like simulated annealing or particle swarm optimization. This function assigns a 

weight to a potential solution x based on its evaluation value E(h(n)), determined by a function h(n), and a 

cooling factor c(n). The value of c(n) impacts the rate at which the weight decays. A smaller c(n) results in a 

slower decay, allowing for exploration of a larger solution space. Conversely, a larger c(n) leads to a faster 

decay, focusing on the exploitation of local optima. 

The operational flow of the proposed integrated ASO-GraphForgeElite's Network framework is depicted in 

Figure 1. The process begins with the input of network data and threat information, which then undergoes 

preprocessing for data cleansing and formatting. The framework then splits into two main pathways: 

GraphForgeElite's network analysis and Avian Shield Optimizer (ASO) for threat prioritization. 

GraphForgeElite analyzes the network data using various techniques such as centrality measures, community 

detection, clustering, and anomaly detection to extract valuable insights. At the same time, ASO evaluates 

threats based on severity, relevance, and impact, calculates threat priorities, and continuously refines the 

prioritization through evolutionary-inspired mechanisms. The results from both pathways are combined to 

provide actionable insights and recommendations for cybersecurity professionals, enabling them to effectively 

safeguard their digital assets against emerging threats.  
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Figure 1. Working Flow of the Proposed Integrated ASO-GraphForgeElite’s Network 
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IV. RESULTS AND DISCUSSION 

The dataset referred to as the Common Vulnerabilities and Exposures (CVE) covers a broad spectrum of 

vulnerabilities and exposures, ranging from software flaws to configuration issues and other weaknesses that 

could be exploited by malicious individuals. Each unique CVE identifier in the dataset contains comprehensive 

information about a particular vulnerability or exposure, including its severity level, affected software or 

hardware, potential consequences, and any available mitigation or remediation strategies. This dataset contains 

information on cybersecurity vulnerabilities, with each entry providing various details about the vulnerabilities. 

These details include the most recent modification and publication dates, the severity assessed by the CVSS 

score, the type of weakness categorized by CWE code, and a descriptive summary of the vulnerability. 

Furthermore, the dataset comprises specifics like authentication prerequisites, complexity, and access vector 

essential for exploiting the vulnerability, along with its effects on availability, confidentiality, and integrity. The 

number of rows are 32454 and the columns are 10 [11]. The performance analysis metrics such as accuracy, 

precision, sensitivity, specificity and F1 score is derived from equation 15 to 19 [18,19]. 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑛

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                             (15) 

𝑃𝑟𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                                               (16) 

𝑆𝑒𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑛)
                                            (17) 

 

𝑆𝑝𝑒 =
𝑇𝑛

(𝑇𝑛 + 𝐹𝑝)
                                               (18) 

𝐹1 = 2
𝑝𝑟𝑒 ∗ 𝑠𝑒𝑛

(𝑝𝑟𝑒 + 𝑠𝑒𝑛)
                                         (19) 

 

 

Figure 2. Threat Proliferation 

Figure 2 depicts the progression of identified risks throughout time, juxtaposing the rise in the quantity of 

recognized risks on the left side with the escalation rate on the right side. The escalation rate is exhibited as a 

percentage alteration computed based on a 12-month moving average. In spite of the continuous accumulation 

of recognized risks, the escalation rate has steadied, suggesting that the pace of new risks being detected has 

leveled off. 



                                                                                                                       J. Electrical Systems 20-4s (2024): 2257-2271 

                                                                                                                                                                                                             2265 

 
Figure 3. Threat Severity Distribution 

Figure 3 displays the distribution of threat severity based on Common Vulnerability Scoring System (CVSS) 

scores. CVSS scores are used to assess the severity of security vulnerabilities, with higher scores indicating 

greater severity. The figure reveals that the majority, over 75 percent, of CVSS scores fall within the Medium 

threat category, which corresponds to scores ranging from 4.0 to 6.9. 

 

 

Figure 4. Affected Products 

 

Figure 4 presents a visual representation of the distribution of impacted products within the top 25 entries. The 

largest portion of these entries falls under the category of operating systems, which is depicted by the color 

blue. Following closely behind are web browsers, represented by the color green. This distribution emphasizes 

the substantial influence of security vulnerabilities on essential software components like operating systems and 

web browsers. By identifying the products that are most affected, security professionals can allocate their 

resources in a more efficient manner to address vulnerabilities in these crucial areas. Consequently, this 

approach enhances the overall cybersecurity posture. 
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Figure 5. Affected Vendors 

 

Figure 5, Impacted Suppliers, emphasizes a key finding: 40% of the items impacted by a vulnerability come 

from the top 25 suppliers. This reveals a focused influence, where a notable percentage of vulnerabilities and 

related risks stem from a relatively limited number of suppliers. Recognizing the breakdown of vulnerabilities 

among suppliers is essential for determining security measures and forming cooperative strategies to reduce 

risks efficiently. It highlights the significance of supplier management and collaboration in enhancing 

cybersecurity defences throughout the sector. 

 
Figure 6. Access Vector vs Impact Availability and Impact Confidentiality Distribution 

 

Figure 6 exhibits the distribution of access vector in relation to the impact on availability and confidentiality. 

The term access vector refers to the specific method or route through which vulnerability is exploited, such as 

local, adjacent network, or remote. The graph likely portrays the correlation between various access vectors and 

the severity of their impact on availability and confidentiality. This visual representation facilitates 

comprehension of the connection between the means by which vulnerabilities are accessed and the extent of the 

harm they can inflict. It assists security analysts and professionals in identifying patterns and trends that can 

guide security strategies, such as prioritizing the mitigation of vulnerabilities with specific access vectors that 

pose the highest risk to availability and confidentiality. 
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Figure 7. Distribution of Dataset after Pre-Processing and Representation of Correlation among the 

Features 

 

Figure 7 depicts the dataset's distribution post-preprocessing, highlighting the interrelation between its various 

features. By offering a visual representation, this illustration offers a deeper understanding of the data's 

organization and connections, facilitating the identification of patterns and guiding future analytical or 

modeling choices. 
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Table 1. Performance analysis of the proposed ASO-GraphForgeElite’s Network for various epoch’s 

Epoch Loss Accuracy Validation Loss Validation 

Accuracy 

1 0.1106 0.9686 0.0013 0.9998 

2 0.0028 0.9995 8.9982e-05 1.0000 

3 0.0013 0.9998 3.1113e-05 1.0000 

4 9.9624e-04 0.9999 3.5982e-05 1.0000 

5 5.1279e-04 0.9999 8.4844e-06 1.0000 

6 4.0778e-04 0.9999 4.7292e-06 1.0000 

7 6.4676e-04 0.9999 9.3964e-06 1.0000 

8 5.0658e-04 0.9999 3.0980e-06 1.0000 

9 5.7870e-04 0.9999 3.9429e-04 1.0000 

10 1.8442e-04 1.0000 1.5224e-06 1.0000 

 

Table 1 illustrates the performance evaluation of the ASO-GraphForgeElite's Network across different epochs. 

Every row represents a distinct epoch, displaying the loss, accuracy, validation loss, and validation accuracy 

attained by the model. To illustrate, during epoch 1, the model obtained a loss of 0.1106, an accuracy of 

96.86%, a validation loss of 0.0013, and a validation accuracy of 99.98%. Likewise, the succeeding epochs 

showcase similar metrics that mirror the model's performance during the training phase. 

Table 2. Comparison of ASO-GraphForgeElite’s Network with other classifiers 

Model Accuracy Precision Recall F1-score 

Random Forest 89.76% 89.88% 89.76% 89.77% 

Decision Tree 91.32% 91.32% 91.32% 91.32% 

Neural Network 91.89% 91.89% 91.89% 91.89% 

Support Vector Machine 90.45% 90.46% 90.45% 90.45% 

Logistic Regression 90.12% 90.13% 90.12% 90.12% 

K-Nearest Neighbors 89.92% 89.94% 89.92% 89.92% 

Gaussian Naive Bayes 89.26% 89.32% 89.26% 89.27% 

Gradient Boosting 91.12% 91.12% 91.12% 91.12% 

AdaBoost 91.01% 91.01% 91.01% 91.01% 

XGBoost 91.25% 91.25% 91.25% 91.25% 

Proposed ASO-

GraphForgeElite’s Network 

99.40% 99.20% 99 % 99.10% 

 

Table 2 presents a comparison of the performance of ASO-GraphForgeElite’s Network with other classifiers 

based on various metrics such as accuracy, precision, recall, and F1-score. The Random Forest classifier shows 

an accuracy of 89.76%, precision of 89.88%, recall of 89.76%, and F1-score of 89.77%. In contrast, the 

Decision Tree classifier achieves an accuracy of 91.32% with similar precision, recall, and F1-score values. The 

Neural Network surpasses all other classifiers with an accuracy of 91.89%, precision of 91.89%, recall of 

91.89%, and F1-score of 91.89%. Support Vector Machine, Logistic Regression, K-Nearest Neighbors, 

Gaussian Naive Bayes, Gradient Boosting, and AdaBoost classifiers range in accuracies from 89.26% to 

91.12%. Finally, XGBoost and the suggested ASO-GraphForgeElite's Network demonstrate the topmost 

accuracies of 91.25% and 99.40% correspondingly, along with the corresponding precision, recall, and F1-score 

metrics. 
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Figure 8. Accuracy of CNN Model 

 

 

Figure 9. Loss of CNN Model 

 

Figures 8 and 9 showcase the performance metrics of a Convolutional Neural Network (CNN) model. 

Specifically, Figure 8 visually illustrates the accuracy of the CNN model across different training epochs, 

providing valuable insights into its learning progress and the enhancement of its classification accuracy over 

time. On the other hand, Figure 9 exhibits the loss experienced by the CNN model during training, showcasing 

the decrease in its error rate as the training progresses. These visual representations are crucial in understanding 

the training dynamics of the CNN model and assessing its overall effectiveness in acquiring knowledge from 

the dataset 

 



                                                                                                                       J. Electrical Systems 20-4s (2024): 2257-2271 

                                                                                                                                                                                                             2270 

 
Figure 10. Accuracy of ASO-GraphForgeElite’s Network Model 

 

 
Figure 11. Loss of ASO-GraphForgeElite’s Network Model 

 

Figures 10 and 11 showcase the performance metrics of ASO-GraphForgeElite's Network model. Figure 10 

provides a holistic perspective on the model's accuracy across different epochs, showcasing its ability to classify 

data points effectively during the training process. Conversely, Figure 11 depicts the model's loss during 

training, demonstrating a gradual reduction in error as the model learns from the dataset. These visual 

representations are vital in evaluating the training progress and overall effectiveness of ASO-GraphForgeElite's 

Network model in capturing patterns and making accurate predictions. 

V. CONCLUSION 

The ASO-GraphForgeElite’s Network demonstrates exceptional capabilities in identifying and classifying 

cybersecurity threats. Its remarkable accuracy, precision, recall, and F1-score metrics highlight its effectiveness. 

Through extensive testing and comparison with leading classifiers, such as Random Forest, Decision Tree, 

Support Vector Machine, and various ensemble methods, the ASO-GraphForgeElite’s Network consistently 

outperforms them. With an accuracy rate of 99.40% and a precision rate of 99.20%, this network excels in 

accurately detecting and categorizing threats, showcasing its reliability and effectiveness in real-world threat 

detection scenarios. These findings underscore the potential of the ASO-GraphForgeElite’s Network as a 

valuable asset in strengthening cybersecurity defenses. It offers crucial insights for threat analysis and 

mitigation strategies. 

The ASO-GraphForgeElite’s Network holds great promise in the field of cybersecurity threat detection, laying a 

solid foundation for future research and innovation. Key areas for improvement include enhancing feature 
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engineering methodologies, incorporating graph neural networks for in-depth analysis of network connections, 

strengthening adversarial resilience, enabling real-time threat identification, streamlining incident response 

procedures, ensuring continuous model assessment and enhancement, and improving interpretability and 

transparency. By addressing these aspects, the model can play a pivotal role in fortifying digital infrastructures 

against emerging cyber threats. 
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