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Abstract: - Addressing the vibration issues caused by torsional angle changes in the belt transmission systems of industrial robots 

during practical applications, this paper introduces a control strategy that integrates a Model Predictive Control (MPC) 

compensation mechanism. By applying the Lagrangian method, a dynamic mathematical model correlating torsional angle and 

torque was established, and an algorithm design combining MPC with its compensatory controller was developed. This strategy was 

validated in a MATLAB simulation environment. Simulation results demonstrate that, compared to traditional sliding mode control, 

the newly proposed controller significantly improved response speed in tracking the torsional angle's position and angular velocity, 

achieving enhancements of approximately 2 seconds and 1 second, respectively. This led to higher tracking accuracy and faster 

convergence speed, effectively enhancing the vibration suppression performance of industrial robot joint belt transmission systems. 
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I. INTRODUCTION  

With the steady advancement of "Industry 4.0" and "Made in China 2025," industrial robots have begun to 

find applications in the engineering equipment sector (as depicted in Figure .1, a drill pipe stacking robot 

developed by China University of Geosciences). 

 
Figure 1: Drill Pipe Stacker 

Compared to traditional engineering equipment, the application of industrial robots in the construction 

machinery industry has attracted significant attention due to advantages such as short development cycles and 

strong adaptability. However, engineering equipment in this industry is often used in scenarios involving heavy 

loads and harsh environments, posing challenges to the performance of robots. During loading or unloading 

operations, the influence of the end effector often causes vibration phenomena, which not only reduces the 

control accuracy of the robot but also severely impacts its operational efficiency. In some cases, mechanical 

vibrations during the loading process can even cause irreversible damage to the robot's transmission system and 

the workpieces being manipulated. Therefore, investigating the causes of end-effector vibrations and developing 

effective vibration control algorithms have become key technical challenges for the application of industrial 

robots in construction machinery [1]. 

In recent years, with the continuous improvement of industrial automation levels, the application of 

industrial robots has become increasingly widespread, and optimizing and enhancing their performance has 

emerged as a hot topic of research. Particularly, the issue of vibration generated by industrial robots during 

precision operations has attracted considerable attention from scholars. Specifically, the fifth and sixth joints of 

industrial robots often employ a belt-drive structure (as shown in Figure 2), which, although offers certain 
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flexibility and adaptability, also introduces a key factor leading to vibrations at the end-effector due to the 

relatively lower stiffness of belt drives. 

 
Figure 2: Belt Drive Diagram of an Industrial Robot Transmission System 

The application of industrial robots in high-precision operation fields is increasing, making vibration control 

one of the key technical challenges to enhance their performance. Traditional vibration control methods, such as 

design improvements through mathematical modeling followed by finite element analysis or the addition of 

damping vibration reduction components, have been widely applied. Additionally, classical control techniques, 

such as PD/PID or sliding mode control, also play an important role in the vibration suppression of industrial 

robots. However, these methods still face certain limitations when dealing with vibrations caused by flexible 

loads. Hu Junyu proposed a vibration suppression algorithm for flexible loads, which is based on a preset 

transfer function and recursive least squares method for iterative optimization. By accurately calculating the 

vibration suppression parameters, the accuracy of vibration control has been significantly improved [2]. Liu He 

addressed the issue of residual vibration caused by the flexibility of industrial robot joints during high-speed 

movement by designing multiple notch filters in the controller to effectively filter out resonance signals [3]. 

Zhang Tie proposed a vibration suppression method based on input shaping to effectively mitigate residual 

vibrations of flexible loads induced by sudden changes in motion states and internal components' flexibility in a 

six-degree-of-freedom industrial robot [4]. Dongwon Shin and Wisnu Aribowo separately achieved vibration 

suppression through considerations of natural frequencies and cubic spline optimization [5,6], while Oh-Hara S 

designed a gain scheduling control strategy for achieving high-speed transfers and high-precision positioning 

[7]. Despite these advancements, research on addressing vibration issues in belt drive systems using Model 

Predictive Control (MPC) technology is relatively scarce. 

Model Predictive Control (MPC) represents a sophisticated control paradigm, predicated on the utilization 

of predictive models to refine the efficacy of current control measures. Central to this approach is the iterative 

computation of forthcoming control inputs at each decision juncture, predicated on forecasts of the system's 

imminent state, thereby aiming to minimize a cost function delineated over prospective behaviors. This 

necessitates a prognosticative analysis of the system's future dynamics, typically facilitated through the 

application of a rigorously defined mathematical model. MPC's distinct advantage lies in its adeptness at 

navigating the intricacies of systems characterized by multivariate dynamics, inherent constraints, and nonlinear 

behaviors. It is uniquely capable of accommodating both input and output constraints, seamlessly integrating 

these considerations during the design phase to ensure operations remain confined within the realms of safety 

and predefined technical parameters. Furthermore, MPC's strategy of optimizing forecasted performance across 

a temporal horizon, as opposed to a singular focus on the immediate future, culminates in more refined control 

actions and an augmentation of system stability. The versatility of MPC's application spectrum is remarkably 

extensive, spanning domains such as chemical processing, energy management, automotive systems, and 

robotics, to name a few. It plays an instrumental role in bolstering the safety, operational efficiency, and 

reliability of sophisticated industrial operations. When juxtaposed with traditional nonlinear control 

methodologies, MPC exhibits superior efficiency and adaptability in mitigating vibrational phenomena in belt 

transmission systems, thereby underscoring its pivotal role in contemporary control theory and application. 

This study designed a controller based on Model Predictive Control (MPC), forming a comprehensive belt 

vibration suppression strategy in comparison with sliding mode control. By considering the impact of different 

viscous damping coefficients and integrating the time-domain parameters application of MPC, an adaptive time-
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domain parameter switching scheme was proposed. Simulation analysis was conducted using Simulink, and the 

results were compared with the sliding mode control method. The effectiveness of the proposed method was 

demonstrated, validating the correctness of the control strategy and further confirming the superior performance 

of MPC in the vibration control of industrial robots. This optimization scheme not only clarified the research 

progress and practical application value of various vibration suppression technologies but also highlighted the 

broad application prospects and significant importance of MPC in the field of vibration control for industrial 

robots. It provides new ideas and methods for the precise control and application of future industrial robots. 

II. BELT DRIVE MODEL 

A. Schematic Diagram 

The system consists of two rigid pulleys connected by a belt made of a non-linear viscoelastic material. The 

structural schematic of the system is as illustrated in Figure 3. The radius of the drive pulley is r1, with a 

rotational inertia of J1; the radius of the driven pulley is r2, with a rotational inertia of J2; The moment of inertia 

of the harmonic torque applied to the driving pulley is shown in equation (1). 

𝐿
Sum 

= 𝐿1 + 𝐿2 + 𝐿3 = √𝑎
2 + (𝑟2 − 𝑟1)

2 + 𝜋(𝑟1 + 𝑟2),      (1) 

where represents the center distance between the pulleys in the belt drive theory, and the total length of the 

belt is θ1.and 𝜃2 denote the rotational angles of the driving and driven pulleys, respectively. 

 
Figure 3: Schematic Diagram of the Belt Drive System for an Industrial Robot Joint 

To establish the Lagrangian dynamics model of a belt drive system, we begin by identifying the system's 

kinetic energy (T) and potential energy (V). 𝜉  represents the belt's absolute elongation during operation, c 

denotes the coefficient of viscous damping, 𝑘′ is the quadratic non-linear stretch elasticity parameter of the belt, 

and k represents the cubic non-linear stretch elasticity parameter. 𝜏 stands for the generalized torque. The 

Lagrangian dynamics equation is as follows: 

𝐿 = 𝑇 − 𝑉           (2) 
𝑑

𝑑𝑡
(
∂𝐿

∂𝑞̇𝛼
) −

∂𝐿

∂𝑞𝛼
= 0          (3) 

𝑇 =
1

2
𝐽1𝜃̇1

2 +
1

2
𝐽2𝜃̇2

2          (4) 

𝑉 = (2𝐾1)(𝑟1𝜃1 − 𝑟2𝜃2)
2/2 + (2𝑘′𝐾1)(𝑟1𝜃1 − 𝑟2𝜃2)

3/3

+(2𝑘𝐾1)(𝑟1𝜃1 − 𝑟2𝜃2)
4/4

      (5) 

Let represent the elastic modulus of the belt, and denote the cross-sectional area of the belt. The linear 

stretching stiffness of the belt (K1) can be obtained as follows: 

𝐾1 =
𝐸𝐴

𝐿
Sum 

           (6) 

Based on the Lagrange equation, the torques of the driving and driven pulleys are as follows: 

𝜏1 =
𝑑

𝑑𝑡

∂𝑇

∂𝜃̇1
−

∂𝑇

∂𝜃1
+

∂𝑉

∂𝜃1
= 𝐽1𝜃̈1 + 2𝐾1𝑟1(𝑟𝜃 + 𝑘

′𝑟𝜃
2 + 𝑘1𝑟𝜃

3)  (7) 

𝑟𝜃 = 𝑟1𝜃1 − 𝑟2𝜃2          (8) 

𝜏2 =
𝑑

𝑑𝑡

∂𝑇

∂𝜃̇2
−

∂𝑇

∂𝜃2
+

∂𝑉

∂𝜃2
= 𝐽2𝜃̈2 − 2𝐾1𝑟2(𝑟𝜃 + 𝑘

′𝑟𝜃
2 + 𝑘1𝑟𝜃

3)     (9) 

(
𝜏1
𝜏2
) = (

𝐽1 0
0 𝐽2

) (
𝜃̈1
𝜃̈2
) + (

2𝐾1𝑟1[𝑟𝜃 + 𝑘
′𝑟𝜃
2 + 𝑘𝑟𝜃

3]

−2𝐾1𝑟2[𝑟𝜃 + 𝑘
′𝑟𝜃
2 + 𝑘𝑟𝜃

3]
)

= (
𝑀0 − 2𝑐𝑟1𝑟𝜃
2𝑐𝑟2𝑟𝜃

) = (
𝑀0

0
) + (

−2𝑐𝑟1𝑟𝜃
2𝑐𝑟2𝑟𝜃

)
      (10) 
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Let 𝛼 = 𝜃1 −
𝑟2

𝑟1
𝜃2 signify the establishment of a torsional angle. The objective is to transform the system of 

equations concerning torsional angles θ1.and 𝜃2 into a torsional vibration equation with respect to the torsional 

angle 𝛼. 

𝛼̈ − 2𝜇𝛼̇ + 𝑤0
2𝛼 + 𝑘2𝛼

2 + 𝑘3𝛼
3 = 𝐽2𝑢        (11) 

Wherein, 

{
 
 
 
 

 
 
 
 𝑤0 =

2𝐾1(𝑟1
2𝐽2+𝑟2

2𝐽1)

𝐽1𝐽2

2𝜇 =
2𝑐(𝑟1

2𝐽2+𝑟2
2𝐽1)

𝐽1𝐽2

𝑘1 > 0

𝑘2 =
2𝐾1𝑘𝑟1(𝑟1

2𝐽2−𝑟2
2𝐽1)

𝐽1𝐽2

𝑘3 =
2𝐾1𝑘𝑟1

2(𝑟1
2𝐽2+𝑟2

2𝐽1)

𝐽1𝐽2

         (12) 

The analysis above indicates that internal viscous damping is the primary cause of vibration within the 

system. This form of damping results from energy dissipation due to resistance proportional to the velocity and 

force magnitude as the vibrating system moves, leading to the loss of some vibrational energy under the effect 

of resistance, which is eventually converted into heat energy. Consequently, variations in the viscous damping 

coefficient have a direct impact on the system's torsional angle. In the process of controlling vibration, adjusting 

the damping coefficient becomes a key measure, as selecting an appropriate damping coefficient can effectively 

reduce the vibration intensity of the system. Therefore, in designing vibration control systems, precise control of 

the damping coefficient can effectively regulate the system's dynamic response, thereby reducing the amplitude 

and frequency of vibration. This requires not only a deep understanding of the system's dynamic characteristics 

but also consideration in the design of control strategies on how to optimize system performance by adjusting 

the damping coefficient to achieve effective vibration suppression. This approach has been proven theoretically 

and practically effective in reducing vibrations in belt drive systems, playing a significant role in enhancing the 

stability and operational efficiency of mechanical systems. 

The general form of the nonlinear dynamic model for a robotic arm can be derived as follows: 

{
𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ = 𝜏

𝛼̈ − 2𝜇𝛼̇ + 𝑤0
2𝛼 + 𝑘2𝛼

2 + 𝑘3𝛼
3 = 𝐽2𝑢

       (13) 

Wherein, 

{

𝑀 = 𝐼
𝐶 = −2𝜇

𝜏 = 𝐽2𝑢 − (𝑤0
2𝛼 + 𝑘2𝛼

2 + 𝑘3𝛼
3)

        (14) 

With a constant torque J2u ≫ (w0
2α + k2α

2 + k3α
3) , and aiming to suppress the belt's vibration by having 

the torsional angle α  approach zero (not considering external disturbances). The control vector is denoted 

as τ = J2u , and the output vector as y = q. The state equation can be formulated as follows: 

{

𝑥̇ = 𝑓(𝑥, 𝑢)

𝑓(𝑥, 𝑢) = [
𝑞̇
𝑞̈
] = [

𝑞̇

𝑀∥
−1(𝜏 − 𝐶𝑞̇)

] = [
𝑓1
𝑓2
]
       (15) 

III. Model Predictive Design for Suppression of Torsional Vibration in Belt Drives 

The core of the Model Predictive Control (MPC) algorithm lies in utilizing the system model to predict and 

determine a series of future optimal control inputs based on the current state and a set of given control inputs, 

aiming to achieve the optimal state at the next moment. This process involves setting a prediction horizon N, 

tracking a reference trajectory r k, and achieving system control by minimizing a cost function while satisfying 

constraints. At time k, the cost function considers the tracking error e k (the error between the system output and 

the reference trajectory r k) and the control input 𝑢𝑘 . By forecasting N steps ahead, MPC calculates the optimal 

sequence of control inputs. These control inputs are designed to minimize the cost function, thereby realizing 

optimal control of the system [8-12]. 

B. Linear Discretization of Continuous Nonlinear Systems 

In traditional Model Predictive Control (MPC), discrete-time linear models are employed. To address issues 

when dealing with nonlinear continuous systems, traditional MPC strategies are often based on discrete-time 

linear models. However, most real-world dynamic systems exhibit nonlinear and continuous characteristics, 
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which limit the direct application of conventional MPC methods. To overcome this challenge, successive 

linearization techniques have been introduced [13-15]. The main idea behind successive linearization is to 

perform a linearization operation on the nonlinear continuous system at each current state's time point. The 

linearized system is then transformed into a discrete form, allowing its application within the MPC framework 

by converting it into predictive equations, thereby enabling effective prediction and control of the system. 

C. Design of Vibration Suppression Controller 

The structure of the vibration suppression controller is illustrated in Figure 4: 

 
Figure 4: Structure of the Vibration Suppression Controller 

By performing a Taylor expansion at the reference point (x r, u r) and subtracting the reference trajectory, we 

can obtain: 

𝑥̃̇𝑘 = 𝑥̇𝑘 − 𝑥̇𝑟 = 𝑓𝑥 + 𝑓𝑢         (16) 

𝑓𝑥 =
∂𝑓(𝑥𝑘−1,𝑢𝑘)

∂𝑥𝑘−1
(𝑥𝑘−1 − 𝑥𝑟)

𝑓𝑢 =
∂𝑓(𝑥𝑘−1,𝑢𝑘)

∂𝑢𝑘
(𝑢𝑘 − 𝑢𝑟)

         (17) 

𝑥̃̇ = (𝑥̃𝑘 − 𝑥̃𝑟)/𝑇, To proceed with discretization: 

Please see last page of this document for AN EXAMPLE of a 2-COLUMN Figure. 

𝑥̃𝑘 = 𝐴1𝑥̃𝑘−1 + 𝐵1𝑢̃𝑘           (18) 

The Jacobian submatrix of the derivative functions of the state components is as follows: 

𝐴1 = [

∂𝑓1

∂𝑥1

∂𝑓1

∂𝑥2
∂𝑓2

∂𝑥1

∂𝑓2

∂𝑥2

]

= [
𝑞̈ 1

2𝜇𝑞̈ − (𝑤0
2 + 2𝑘2𝛼 + 3𝑘3𝛼

2) 2𝜇
]

𝐵1 = [

∂𝑓1

∂𝜏1
∂𝑓2

∂𝜏1

] = [
0
1
]

        (19) 

By construBy constructing a new state variable 𝑥̃̇ = (𝑥̃𝑘 − 𝑥̃𝑟)/𝑇 and control variable 𝛥𝑢𝑘, the state-space 

equation becomes: 

{
𝜉𝑘+1 = 𝐴𝜉𝑘 + 𝐵Δ𝑢𝑘
𝑦𝑘 = 𝐶𝜉𝑘

          (20) 

In the equation: 
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𝐴 = [
𝐴1 𝐵1

𝑂𝑁𝑢×𝑁𝑥 𝐼𝑁𝑢×𝑁𝑢
]

= [
𝑞̈ 1 0

2𝜇𝑞̈ − (𝑤0
2 + 2𝑘2𝛼 + 3𝑘3𝛼

2) 2𝜇 1
0 0 1

]

𝐵 = [
𝐵1

𝐼𝑁𝑢×𝑁𝑢
] = [

0
1
1
]

𝐶 = [𝐼𝑁𝑥×𝑁𝑥 𝑂𝑁𝑥×𝑁𝑥] = [
1 0 0 0
0 1 0 0

]

       (21) 

Where is the number of state variables, and is the number of control variables. At time instant k: 

𝜉𝑘 =

[
 
 
 
 
𝜉(𝑘 ∣ 𝑘)

𝜉(𝑘 + 1 ∣ 𝑘)

𝜉(𝑘 + 2 ∣ 𝑘)
⋮

𝜉(𝑘 + 𝑁/𝑘)]
 
 
 
 

Δ𝑢𝑘 =

[
 
 
 
 
Δ𝑢(𝑘 ∣ 𝑘)

Δ𝑢(𝑘 + 1 ∣ 𝑘)

Δ𝑢(𝑘 + 2 ∣ 𝑘)
⋮

Δ𝑢(𝑘 + 𝑁/𝑘)]
 
 
 
 

       (22) 

Let the output be 𝑦 = 𝜉, and the error 𝐸 = 𝑦 − 𝑅 = 𝜉 − 0 = 𝜉(with the reference point taken as (𝑥𝑟 , 𝑢𝑟) =

(0,0)). The cost function is as follows: 

𝐽 = ∑  𝑁−1
𝑖=0 (𝜉𝑇𝑄𝜉 + Δ𝑢𝑇𝑅Δ𝑢 + 𝜉𝑘𝑁

𝑇𝐹𝜉𝑘𝑁)

𝑘𝑁 = (𝑘 + 𝑁)
       (23) 

Wherein, 

{
𝜉 = 𝜉(𝑘 + 𝑖 ∣ 𝑘)
Δ𝑢 = Δ𝑢(𝑘 + 𝑖 ∣ 𝑘)

          (24) 

Optimal control is achieved by predicting the system's performance over a certain period using a model. 

Letting (𝑘 ∣ 𝑘) = 𝜉𝑘 , from expression 𝜉𝑘+1 = 𝐴𝜉𝑘 + 𝐵Δ𝑢𝑘 , we can derive its discrete state-space representation 

as: 

𝜉𝑘+1 = 𝐴𝜉(𝑘 ∣ 𝑘) + 𝐵Δ𝑢(𝑘 ∣ 𝑘) = 𝐴𝜉𝑘 + 𝐵Δ𝑢𝑘       (25) 

Similarly, we can obtain: 

𝜉(𝑘 + 2 ∣ 𝑘) = 𝐴𝜉(𝑘 + 1 ∣ 𝑘) + 𝐵Δ𝑢(𝑘 + 1 ∣ 𝑘)

= 𝐴[𝐴𝜉𝑘 + 𝐵Δ𝑢(𝑘 ∣ 𝑘)] + 𝐵Δ𝑢(𝑘 + 1 ∣ 𝑘) = 𝐴
2𝜉𝑘 + 𝐴𝐵Δ𝑢(𝑘 ∣ 𝑘) + 𝐵Δ𝑢(𝑘 + 1 ∣ 𝑘)

𝜉(𝑘 + 𝑁 ∣ 𝑘) = 𝐴𝑁𝜉𝑘 + 𝐴
𝑁−1𝐵Δ𝑢(𝑘 ∣ 𝑘) + 𝐴𝑁−2𝐵Δ𝑢(𝑘 + 1 ∣ 𝑘) +

⋯+ 𝐵Δ𝑢(𝑘 + 𝑁 − 1 ∣ 𝑘)

  (26) 

From the above equation, the state-space representation can be derived as: 

𝜁𝑘 =

[
 
 
 
 
𝐼
𝐴
𝐴2

⋮
𝐴𝑁]
 
 
 
 

𝜉𝑘 + [

0 0 ⋯ 0
𝐵 ⋱ 1 ⋮
⋮ ⋱ ⋱ ⋮

𝐴𝑁−1𝐵 ⋯ 𝐵 0

] [

Δ𝑢(𝑘 ∣ 𝑘)
Δ𝑢(𝑘 + 1 ∣ 𝑘)

⋮
Δ𝑢(𝑘 + 𝑁 ∣ 𝑘)

]      (27) 

Wherein 𝜁 = 𝑀𝜉𝑘 + 𝐶𝑢𝑘.Similarly, by simplification, we obtain: 

𝐽 = [

𝜉(𝑘 ∣ 𝑘)
𝜉(𝑘 + 1 ∣ 𝑘)

⋮
𝜉(𝑘 + 𝑁/𝑘)

] [

𝑄

⋱
𝑄

𝐹

] [

𝜉(𝑘 ∣ 𝑘)
𝜉(𝑘 + 1 ∣ 𝑘)

⋮
𝜉(𝑘 + 𝑁/𝑘)

]

+ [

Δ𝑢(𝑘 ∣ 𝑘)
Δ𝑢(𝑘 + 1 ∣ 𝑘)

⋮
Δ𝑢(𝑘 + 𝑁 ∣ 𝑘)

] [

𝑅
⋱

⋱
𝑅

] [

Δ𝑢(𝑘 ∣ 𝑘)
Δ𝑢(𝑘 + 1 ∣ 𝑘)

⋮
Δ𝑢(𝑘 + 𝑁 ∣ 𝑘)

]

     (28) 

The cost function of the controller is defined as: 

𝐽 = 𝜁𝑘
𝑇𝑄̅𝜁𝑘 + Δ𝑈𝑘

𝑇𝑅̅Δ𝑈𝑘          (29) 

Where 𝑄̅ is the control weight matrix, and 𝑅̅ is the input state weight matrix. 

Based on the above, the cost function can be obtained as: 

𝐽 = 𝜉𝑘
𝑇𝐺𝑥𝑘 + 2𝜉𝑘

𝑇𝐸Δ𝑢𝑘 + Δ𝑢𝑘
𝑇𝐻Δ𝑢𝑘        (30) 

Wherein： 

{

𝐺 = 𝑀𝑇𝑄̅𝑀

𝐸 = 𝑀𝑇𝑄̅𝐶

𝐻 = 𝐶𝑇𝑄̅𝐶 + 𝑅̅

          (31) 
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Considering the constraints of the belt drive system, define the constraint range to solve for the minimum 

value of the cost function: 

{
𝐽𝑚𝑖𝑛 = 𝜉𝑘

𝑇𝐺𝜉𝑘 + 2𝜉𝑘
𝑇𝐸Δ𝑢𝑘 + Δ𝑢𝑘

𝑇𝐻Δ𝑢𝑘
𝑋𝑚𝑖𝑛 ⩽ 𝑋𝑘 ⩽ 𝑋𝑚𝑎𝑥
Δ𝑈𝑚𝑖𝑛 ⩽ Δ𝑈𝑘 ⩽ Δ𝑈𝑚𝑎𝑥

       (32) 

Control strategies, based on the input-output relationship and dynamic behavior of the system model, are 

typically represented in state-space or transfer function form. In the control sequence, the first element serves as 

the actual control input at the current moment, which is then applied to the system and progressively carried out 

to the next moment [16-19]. Subsequently, based on the state information of the system, future control outputs 

are re-predicted, and a new sequence of control increments is obtained through optimization. This process 

iterates continuously until the control task requirements are satisfied. Utilizing this model, Model Predictive 

Control (MPC) can perform optimized control over the system in a dynamic environment and adjust the system 

based on real-time feedback, gradually converging to and maintaining the stability of the desired state [20-25]. 

IV. NUMERICAL SIMULATION AND VALIDATION 

To verify the feasibility and control effectiveness of this model control method, numerical simulations and 

validations were conducted using a belt drive system as the control object. The system parameters are shown in 

Table 1. 

Table 1: Parameters of the Belt Drive System 

Drive Wheel Radius  Driven Wheel Radius  

New Viscous Damping 

Coefficient  
Input Torque  

0.1m 0.2m 1 5N.m 

Assuming the prediction horizon is 𝑁 = 5, the state variable weight matrix is 𝑄 = 100𝐼1  , the terminal 

weight matrix for state variables is 𝐹 = 0.1𝐼2 , and the input weight matrix is 𝑅 = 0.1𝐼3 . The state constraints 

for the robotic arm are: 

[
−𝜋
−5

] ⩽ 𝜉 ⩽ [
𝜋
5
] , [−100] ⩽ Δ𝑢 ⩽ [100]      (33) 

Assuming its initial state is 𝜉 = [𝜋 ∕ 3 − 2]𝑇, and the desired final state is𝜉 = [0 0]𝑇 , the simulation results 

are shown in the figure 5: 

 
Figure 5: Torsional Angle Variation Curve 

As shown in Figure 5, the angle of the belt drive system is displayed. Under Sliding Mode Control (SMC), 

the torsional angle reaches a peak of 1.5 radians at 0.90 seconds, followed by a series of oscillations, and 

stabilizes at zero around 6.1 seconds later. In contrast, under Model Predictive Control (MPC), both the 

torsional angle and its angular velocity approach the desired values more quickly at 1.20 seconds and 

subsequently stabilize rapidly. 
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Figure 6: Torsional Angular Velocity Variation Curve 

As depicted in Figure 6, the changes in angular velocity of the belt drive system are shown. Under the 

Sliding Mode Control (SMC) strategy, the torsional angular velocity reaches its maximum value of 1.30 rad/s at 

1.80 seconds, followed by a series of oscillations before stabilizing at zero around 3.7 seconds later. In 

comparison, under the Model Predictive Control (MPC) strategy, both the torsional angle and its angular 

velocity more rapidly approach the desired values at 1.20 seconds and subsequently achieve stability quickly. 

 
Figure 7: Input Torque Variation Curve 

As illustrated in Figure 7, the chart displays the variation of input torque in the belt drive system. Under the 

influence of the Sliding Mode Control (SMC) strategy, the output torque reaches its peak value of 1.34 N·m at 

2.7 seconds, followed by a series of oscillations before finally stabilizing at zero around 5.0 seconds later. In 

contrast, when the Model Predictive Control (MPC) strategy is applied, the input control variable itself 

increases as the difference between the system state and the desired state becomes larger. As the system state 

approaches the desired state, the control variable gradually decreases and ultimately tends to zero. The system's 

torsional angle and its angular velocity are able to more rapidly approach the desired values in a shorter 

timeframe, specifically at 2.60 seconds, and subsequently quickly stabilize. 

In summation, as delineated in Figures 5-7, it becomes apparent that while Sliding Mode Control (SMC) can 

facilitate an immediate rapid response, the ensuing oscillatory phase inherent to its operation could potentially 

compromise system stability and protract the duration required for the system to attain a state of equilibrium. 

Conversely, Model Predictive Control (MPC), through its predictive analysis of future system behaviors 

coupled with the optimization of control inputs, exhibits markedly superior performance attributes. This is 
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particularly evident in its capacity to swiftly achieve and sustain the desired operational state, thereby affirming 

its pronounced advantage in the management of belt drive systems. By efficaciously diminishing oscillatory 

tendencies and accelerating system stabilization, MPC furnishes a methodology for precise control that is both 

more efficacious and reliable, aligning with the stringent demands characteristic of industrial application. 

 
Figure 8: Torsional Angle Variation Curves with Different Time Domain Parameters 

As depicted in Figure 8, the torsional angle of the belt drive system exhibits distinct dynamic behaviors 

under varying time-domain parameters. Specifically, with a time-domain parameter 𝜇 = 0.5, the torsional angle 

decreases from 1.04 radians to zero within the initial second, slightly rises to 0.01 radians in the second, and 

gradually returns to zero, achieving stability; for 𝜇 = 2.5, the torsional angle smoothly transitions from 1.04 

radians to zero within one second, demonstrating rapid stabilization; under the condition of 𝜇 = 6, the torsional 

angle initially decreases to zero, followed by a slight negative overshoot to -0.025 radians, and eventually 

stabilizes within three seconds. These observations highlight that the system exhibits the best dynamic 

performance at a time-domain parameter of = 2.5 , including the minimal overshoot, fastest response, and 

optimal stability, underscoring the importance of appropriately selecting time-domain parameters for optimizing 

the performance of belt drive systems. 

 
Figure 9: Torsional Angular Velocity Variation Curves with Different Time Domain Parameters 

Figure 9 elucidates the torsional angular velocity dynamics of the belt drive system across varying time-

domain parameters. Notably, at 𝜇 = 0.5, a progression from -2 rad/s to 0.01 rad/s within the initial second, 

tapering to stability by the third second, is observed. Conversely, at = 2.5 , a more direct transition from -2 

rad/s to a steady state within the same timeframe signifies rapid stabilization. At 𝜇 = 6, a swift adjustment to 0 

followed by a marginal increase to 0.025 rad/s, and subsequent stabilization, further underscores the differential 

response across parameters. The system's dynamics under 𝜇 = 2.5—characterized by minimal overshoot and 
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expedited return to equilibrium—underscore the significance of judicious time-domain parameter selection in 

optimizing system stability and response efficacy. 

 

 
Figure 10: Input Torque Variation Curves under Different Time-Domain Parameters 

Figure 10 illustrates the variation in input torque of the belt drive system under different time-domain 

parameters. With the time-domain parameter 𝜇 = 0.5, the torque decreases from 5 N·m to 0.5 N·m within the 0 

to 1-second interval and further reduces to zero within the 1 to 2-second interval, achieving stability. For the 

time-domain parameter 𝜇 = 2.5, the angular velocity decreases from 5 N·m to zero within the first second and 

quickly stabilizes. Meanwhile, for the time-domain parameter 𝜇 = 6, the angular velocity rapidly drops from 5 

N·m to 0.18 N·m within the 0 to 2-second interval and then decreases to zero in the 2 to 3-second interval. 

Analysis indicates that under the time-domain parameter 𝜇 = 2.5, the system exhibits the least overshoot, the 

fastest response speed, and optimal stability, emphasizing the critical role of precise time-domain parameter 

selection in enhancing system performance. 

As illustrated in Figures 8-10, the belt drive system's angle, angular velocity, and input torque exhibit 

distinct characteristic curves at time 𝜇 = 0.5，2.5，6, among which the vibration range is minimized, the 

overshoot is the smallest, the response is quicker, and the stability is the best at time 𝜇 = 2.5. In summary, 

elastic damping plays a significant role in influencing the vibrational characteristics of elastic systems. Rational 

control of damping can effectively adjust the vibration's amplitude, frequency, stability, and response time 

characteristics. 

V. CONCLUSION 

This study initially investigated the causes of vibration in belt drive systems, identifying that the main 

sources stem from the friction among internal components and various disturbances, which collectively trigger 

low-frequency vibrations within the system. Subsequently, a mathematical model of the belt drive mechanism 

was constructed using the Lagrangian method, and the Model Predictive Control (MPC) strategy was applied to 

conduct an in-depth study on the torsional vibration of belt drives. Simulation results demonstrate that the 

model predictive algorithm exhibits superior performance in suppressing vibrations of the belt drive system. 

Compared to traditional sliding mode control, the response speeds for tracking torsional position and angular 

velocity were improved by approximately 2 seconds and 1 second, respectively, effectively reducing system 

vibrations. Furthermore, as control parameters are adjusted, the system's vibration amplitude, frequency, 

stability, and response time characteristics will change accordingly. Therefore, the rational selection of control 

parameters is crucial for achieving vibration suppression in belt drive systems. 
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