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Abstract: - Objective: By reviewing various previous works, this paper collects the multiple of approaches, strategies used to identify 

vulnerabilities in smart contracts. Blockchain is a decentralized technology that securely and immutably, records transactions across numerous 

computers in a visible manner. On a blockchain, smart contracts are self-executing agreements that independently execute and verify contract 

conditions. This reduces the need for middlemen and increases transparency. Smart contract vulnerabilities are problems in the code that 

could allow other parties to gain access to, alter, or steal assets as a result of mistakes, faults or imperfections made during development, 

thereby causing financial and operational harm. In this paper we have algorithms, techniques to detect vulnerabilities in smart contract using 

deep learning found in literature surveys. Methods: We have found some techniques using opcode, bytecode, Skip-Gram-Word2Vec to 

convert the smart contract file. Findings: We have found that LSTM, Vanilla-RNN, GRU have very less accuracy 49.64,53.68,54.54. Novelty 

& Applications: We will come with some different algorithms that will understand different vulnerability with more accuracy. We have come 

with CNN, Xception, EfficientNet-B2 which has accuracy high then LSTM, Vanilla-RNN, GRU i.e.71,69,75 percent.    

Keywords: Smart Contracts, Vulnerability Detection, Deep Learning, Reentrancy Vulnerability. 

1.Introduction 

Ethereum is the second rising technology in blockchain. It is a platform where decentralized apps can be created 

as well as smart contracts can be created. In decentralized blockchain networks, there are multiple nodes, and each 

node has a copy of the entire blockchain ledger. If a block is added in one node, its copy is made in all other nodes. 

The blocks record are verified after some interval for all the nodes. If one change in block 1 is seen in node A, as 

the blocks of all nodes are verified after some interval, the change in block 1 of node A is found out, and an update 

is carried in block 1 with respect to the record compared with other blocks of other nodes, since they all have 

copies of it. All other nodes in the network check the record of the block and, if they are valid, add the same block 

to their own copy of the blockchain. This ensures that all nodes have an identical and up-to-date copy of the 

blockchain ledger.The blockchain is a chain of blocks, and each block in the chain contains a reference to the 

previous block through its hash value[1]. Blockchain technology is used in various fields such as: 1) Supply Chain 

Management 2) Smart Contracts 3) Healthcare 4) Voting Systems 5) Financial Services 6) Real estate Supply 

Chain Finance 7) Charity and Donations 8) Insurance 9) Internet of Things (IoT), etc.Smart contracts are a basic 

concept in blockchain technology that was presented by a computer scientist named Nick Szabo. The idea of smart 

contracts included self-executing agreements with contract conditions clearly encoded into code. Here, the 

Ethereum platform has a language to create the smart contract that is solidity language. There are more such 

languages to create the smart contract on the Ethereum platform, but the most preferred language is solidity 

language[2]. Smart contracts in the Ethereum network are deployed and executed on the Ethereum Virtual 

Machine (EVM). Once the smart contract is deployed on the Ethereum platform, it is immutable. Smart contracts 

are used by various industries, including Supply Chain Management, Digital Identity, Real Estate, Voting 

Governance, Healthcare, Insurance, and more. If any vulnerability is found in them, harmful actions  can take 

place by an attacker. Existing tools detect vulnerabilities in smart contracts but do not focus on all the 

vulnerabilities. Several types of vulnerabilities detected in smart contracts, including Reentrancy Attacks,  Block 
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Gas Limit Vulnerability, Transaction Order Dependence Attacks, Time Stamp Dependence, Denial of Service, 

Integer Overflows And Underflows, Front-Running, Simple Logic Error, etc. These are occurrence of 

vulnerabilities in smart contract:1)Reentrancy 2) Integer Overflow/Underflow 3) Unchecked External Call 4) 

Timestamp Dependence 5) Uninitialized Storage Pointer 6) Denial of Service (DoS) 7) Unprotected Ether 

Withdrawal 8) Front-Running 9) Logic Errors:  10) Access Control Issues , etc. We studied various methods 

aiming at improving the detection of vulnerabilities through a survey of literatures. Our study includes research 

articles that show many strategies used with machine learning and deep learning in the field of smart contract 

security[3]. 

1.1 Types of Extensions in Ethereum Development and Usage 

There are various kinds of extensions in Ethereum. Extensions for Solidity Contracts: On Ethereum, Solidity is 

the most widely used language for creating smart contracts. The.sol extension is usually used for Solidity contract 

files. Bytecode Extensions: Bytecode is generated from compiled Solidity code and is published to the Ethereum 

network. The.bin extension is frequently found in bytecode files.Extensions for the Application Binary Interface 

(ABI): An ABI is a JSON file that provides instructions on how to communicate with a deployed smart contract. 

The.abi extension is commonly used with ABI files. Wallet Extensions: Different file extensions are used by 

wallets, like MetaMask, for their wallet backups[4]. For instance, MetaMask stores its wallet backups in.json 

format. Keystore Extensions: Encrypted private keys are kept in Keystore files. These files frequently end in.json 

or.keystore.  

1.2 Occurrence of Vulnerabilities 

a. A smart contract has a reentrancy vulnerability if an external call is placed to another contract before the 

current call has finished executing. Users can withdraw their balance in this example by using the 

withdrawBalance function. Nevertheless, it sets the balance to zero after sending the caller the balance 

first. A reentrancy attack can occur when a malicious contract calls withdrawBalance and then returns to 

the function before the balance is updated[5]. 

b. Smart contracts are vulnerable to timestamp dependence issues if they depend on block timestamps for 

essential functionality or decision-making. Because miners have some control over the timestamp of a 

block they mine, several vulnerabilities may result from the nature of timestamps in blockchain systems. 

c. When smart contracts depend on the current block number to make important choices or perform 

necessary actions, they have a block number dependency vulnerability. The vulnerability stems from the 

inherent characteristics of Ethereum's blockchain, which allow miners to alter the block number to some 

degree, particularly in the event of a "block reorganization. "Block reorganization can result in the 

original block being replaced in the blockchain when a miner produces a new block at the same block 

height as an existing block. This may result in a modification to the block number for a specific contract 

call or transaction[6]. 

d. The use of the delegatecall opcode, which enables a contract to execute code from another contract while 

preserving the context of the calling contract, is the reason behind the delegatecall vulnerability in smart 

contracts. If not utilized appropriately, this could be harmful since it could result in unexpected behavior 

and security flaws. In Ethereum, a low-level action called the delegatecall opcode enables a contract to 

call another contract and run its code inside the calling contract's context. This implies that the called 

contract has access to the caller's message data and value, as well as the calling contract's storage, 

balance, and address. 

e. A particular kind of vulnerability that can arise in smart contracts because of the way Ethereum performs 

type conversions and arithmetic operations is known as the "Ether Strict Equality Vulnerability". This 

weakness may result in unforeseen actions and even financial loss. 

1.3 Prevention of vulnerabilities  

a. It's critical to adhere to best practices, such as the "Checks-Effects-Interactions" pattern, which requires 

state changes to be made prior to any external calls, and making sure that external calls are made to 

trustworthy contracts, in order to prevent reentrancy vulnerabilities. 

b.  It's crucial to refrain from depending entirely on block timestamps for crucial choices or actions in order 

to reduce timestamp dependency issues[7]. 
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c. Developers should refrain from depending on the current block number when making important 

decisions in order to reduce block number dependency vulnerabilities. For time-sensitive tasks, they can 

instead make use of alternative mechanisms like external time oracles or block timestamps. 

d. The delegatecall vulnerability emphasizes how crucial it is to comprehend how delegatecall functions 

and use it sparingly in order to prevent unexpected outcomes and security issues in smart contracts. 

e. To stop the "Ether Strict Equality Vulnerability" in smart contracts, which can happen when unsigned 

and signed integers are compared and cause unexpected behavior. Employ the SafeMath Library:Use the 

SafeMath library when doing arithmetic operations, especially with unsigned integers, to avoid overflow 

and underflow issues. SafeMath offers functions that safely handle certain situations, such as add, sub, 

mul, and div[8][9]. 

2. Methodology 

The technique SmartPol, a machine learning-based technique for smart contract vulnerability detection, in this 

study.  The data is cleaned up using a data pre-processor before features are extracted and categorized. Secondly, 

provide a technique based on TSVM for semi-supervised learning classification models to automatically detect 

smart contract vulnerabilities, as well as an approach based on PSOGSA for data optimization and function 

extraction.49512 real-world smart contracts were tested on EtherScan using SmartPol.  Suggest a combinatorial 

approach to static analysis.  A word embedding data pre-processor was employed for the dataset's feature 

extraction and classification. Ethereum provides the Ethereum Virtual Machine (EVM) for the execution and 

invocation of smart contracts. Word2Vec and FastText are the most commonly employed word embeddings in the 

NLP group. The dataset contains textual parts, thus after the raw data has been processed, the real sense needs to 

be represented in a vector format. The continuous skip-gram model, which is thought to be related to its ability to 

pick up knowledge from a dense, low-dimensional term vector that can accurately anticipate the phrases that 

surround a core word. The Skip-Gram-Word2Vec model architecture, which predicts the terms that surround a 

word in a text or phrase by first generating word representations. Provide a method based on TSVM for the 

automatic labeling of smart contract files.  In order to enhance the effectiveness of automatic smart contract 

vulnerability detection, are motivated to incorporate a text labeling algorithm that leverages TSVM as an 

underlying semi-supervised labeling process. This algorithm can then be used to support more sophisticated 

supervised text classification techniques. Transactions for 49512 smart contracts that were verified before 

September 2020 were retrieved from Etherscan and used in this work.  PSOGSA approach for optimizing and 

feature extraction. The TSVM was used to classify vulnerabilities. The algorithms xgboost, adaboost, knn, svm, 

etc. are compared with PSOGSATSVM[10]. 

Introduce a smart contract vulnerability detection mechanism. Also describe expert knowledge to identify 

vulnerabilities like code injection, reentrancy, and calls with hardcoded gas amounts. The entire work is the 

combination of GNN and expert knowledge. How to express the contract code as a graph, how to extract the 

graph's features using what method or algorithm, and selecting the appropriate model for label classification (i.e., 

vulnerability detection) are the three key elements of graph-based vulnerability detection. The edges of the graph 

denote changes in activity, while the nodes of the graph denote significant function calls or crucial variables. 

Provide a set of rules for eliminating nodes that are unnecessary to normalize the resulting contract graph to a 

standard graph. The normalized graph is analyzed using the temporal message propagation network model (TMP), 

which computes the global label of the graph and verifies the existence of vulnerabilities based on the label. Their 

main method for extracting graph features and performing label categorization is the TMP network, which has 

two phases: message propagation and readout. Before and after the deployment of a smart contract are the two 

phases of their strategy. Before deployment, a component with the GNN model is used to check a contract for 

flaws. The deployment of the contract is stopped and a bug report is produced if it is discovered to be unqualified. 

During the runtime phase, the user must define a value for the contract. Expert rules are used to examine the 

delicate opcodes involved in dangerous operations for high-value smart contracts. This contract transaction is 

stopped, and an error report is generated for submission once indications of a violation (i.e., a violation of the 

specified constraint rules) are discovered. Even after the smart contract has been deployed, their rules can stop 

contract transactions at the EVM level if there are contract problems. The checking mechanism can also create 

error reports and block contract transactions containing hazardous actions at the Ethereum Virtual Machine (EVM) 

level. In order to identify and stop the execution of dangerous transactions at the EVM level, they take into account 
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the use of graph neural networks (GNNs) in deep learning in addition to the traditional expert models provided 

for vulnerabilities. Comparison done between algorithms like Vanilla-RNN, LSTM, GRU, GCN, GNN+expert 

knowledge. The accuracy of GNN+expert knowledge for reentrancy is 89.74, timestamp dependency is 88.52, 

code injection is 88.62, and call with hardcoded gas amount is 90.62, respectively. GNN+expert knowledge has 

high performance[11]. 

Method's general architecture is divided into three phases: 

1. A graph generation phase that models the fallback mechanism directly and extracts the control flow and 

data flow semantics from the source code. 

2. A graph normalization step that draws inspiration from the k-partite graph. 

3. New message propagation networks for modeling and identifying vulnerabilities.  

Three types of nodes—major, secondary, and fallback—are extracted by them. In order to represent the complex 

semantic relationships among nodes, they create four different kinds of edges: data flow, forward, fallback, and 

control.Each subsidiary node Si is eliminated, but its feature is transferred to the major node that is closest to it.To 

handle the normalized graphs, they extend GCN to a degree-free GCN (DR-GCN).  To automatically identify 

smart contract vulnerabilities, they present a unique temporal message propagation network (TMP) and a degree-

free GCN (DR-GCN). When function A calls function B with the wrong parameters, this contract's fallback 

function will automatically start running. There are three components to the feature of Vi: i) Self-feature, namely 

major node Mi's feature ii) in-features, that is, characteristics of the merged secondary nodes {Pj} |P | j=1 with a 

path pointing from Pj to Mi  iii) Out-feature, or features of the merged secondary nodes {Qk} |Q| k=1 with a path 

directing from Mi to Qk. After that, they remove matrix Dˆ from the equation, keeping in mind that the graph is 

already well-normalized in our setting. When compared to our DR-GCN and TMP networks, Vanilla-RNN, 

LSTM, GRU, and GCN exhibit the lowest accuracy[12].  

Upon first observation, they realize that various program components inside a function are not equally crucial for 

identifying vulnerabilities. Consequently, they take out three different kinds of nodes: backup, normal, and core. 

Control flow, data flow, and backup edges are the three types of edges they create in order to capture rich semantic 

dependencies between the nodes. To be more precise, the feature of an edge is retrieved as a tuple (Vstart, Vend, 

Order, Type), where Vstart and Vend stand for the edge's start and end nodes, Order signifies its temporal order, 

and Type indicates the edge type. To integrate the pattern feature Pr and the graph feature Gr and produce the 

detection results, they employ a fusion network. Following the extraction of the security pattern feature Pr, they 

employ our suggested temporal-message-propagation network—which consists of a message propagation phase 

and a readout phase—to further retrieve the semantic feature of the contract graph. Vanilla-RNN: A two-layer 

recurrent neural network that gathers input in the form of the code sequence and uses recurrent evolution of its 

hidden states to extract the sequential pattern contained inside. LSTM: The recurrent neural network that processes 

sequential data the most frequently utilized. Long short term memory, or LSTM for short, reads the code sequence 

a series of times and then periodically updates the cell state. GRU: The gated recurrent unit, which manages the 

code sequence through gating methods. 

GCN: Graph Convolutional Network: This network uses the contract graph as input and applies graph Laplacian 

to perform layer-wise convolution on the graph. TMP: The temporal message propagation network, which gathers 

information by progressively moving along the edges in the sequence in which they occur to understand the 

contract graph feature. The last feature of the graph is utilized to predict vulnerabilities. Here CGE has highest 

accuracy by 89.15 in retrancy vulnerability[13][14]. 

 

3. Results and Discussion 

The results are gathered based on reentrancy vulnerability only. 
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Table 1: Accuracy for reentrancy vulnerability [8,13,4]                                                                    

Algo/Paramet

er 

Accuracy Recall Precision F1 

Vanilla_RNN 49.6

4 

49.6

4 

49.6

4 

58.7

8 

58.7

8 

58.7

8 

49.8

2 

49.8

2 

49.8

2 

50.7

1 

50.7

1 

50.7

1 

LSTM 53.6

8 

53.6

8 

53.6

8 

67.8

2 

67.8

2 

67.8

2 

51.6

5 

51.6

5 

51.6

5 

58.6

4 

58.6

4 

58.6

4 

GRU 54.5

4 

54.5

4 

54.5

4 

71.3

0 

71.3

0 

71.3

0 

53.1

0 

53.1

0 

53.1

0 

60.8

7 

60.8

7 

60.8

7 

TMP     - 84.4

8 

84.4

8 

   - 82.6

3 

82.6

3 

    - 74.0

6 

74.0

6 

   - 78.1

1 

78.1

1 

Table 2: Accuracy for reentrancy vulnerability ratings 

Model Accuracy Recall Precision F1-score 

CNN 0.71 0.756 0.733 0.745 

XCEPTION 0.69 0.729 0.840 0.781 

EfficientNet B2 0.75 0.740 0.750 0.740 

 

Table 1 is considering their ratings where table 2 considers our ratings. The three distinct Deep Learning models 

whose performance is summed up in the comparison table. CNN obtains a reasonable accuracy of 0.71, while 

XCEPTION has a slightly lower accuracy of 0.69 but a better precision of 0.840. Notably, EfficientNet B2 

performs better than both models, with balanced precision, recall, and F1-score values of approximately 0.74 and 

the maximum accuracy of 0.75. According to these findings, EfficientNet B2 might perform better in classification 

tasks than the other models, highlighting the significance of choosing the right model architecture for a given set 

of application needs. Here the accuracy of Vanilla-RNN, LSTM, GRU is low where TMP method is high i.e 84.48 

percent. Methodology used for our model is first take .sol file and convert it into bytecode using compile_standard 

library. Then create a image from that bytecode by converting the bytecode into array and by padding it, as using 

Python Imaging Library final converts the bytecode into image. Finally use our deeplearning models on it. 

4. Conclusion 

As a result of our examination, we have found some algorithms and approaches for efficiently identifying 

vulnerabilities in smart contracts. We are prepared to create our model by utilizing this valuable information set, 

giving it a different identity. The major goal of this research study is to undertake an analysis of the literature in 

order to guide for beginners who are looking to identify the techniques in this field. We come with new deep 

learning algorithms like CNN, Xception, EfficientNet-B2 model that have higher accuracy then LSTM, Vanilla-

RNN,GRU.. 
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