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Abstract: - Stochastic regression problems especially applied to time series forecasting problems often encounter the challenge of volatility 

and unpredictable seasonality in datasets. One such application happens to forecasting the movement of stock markets globally. Stock data 

across the world exhibits an intrinsic baseline noise, which often can’t be correlated to previous temporal patterns. Rather, such divergences 

are an effect of multiple non-numeric variables which govern stock movement such as political scenarios, trade wars, imminent economic 

waxing and waning trends to name a few. However, it is essential to incorporate these factors while training a model so as to design a 

strongly sentient and anticipatory regression algorithm which is both pervasive and robust, encompassing as many numeric and non-

numeric factors as possible. While conventional machine learning and deep learning approaches tend to leverage tested model architectures, 

they often miss out on the optimization of both training data and training method to yield potentially high forecasting accuracy. The paper 

combines stochastic regression in terms of momentum based training and data optimization which is shown to exhibit considerable lower 

forecasting error compared to existing approaches. To encompass a wider feature space, sentiment analysis has been incorporated to 

correlate stock movements with public opinions. The proposed approach has been tested on a multitude of benchmark datasets, to validate 

the performance of the approach. The mean absolute percentage error (MAPE) and regression values have been selected as primary metrics 

for the performance evaluation.  The proposed approach attains a mean MAPE value of 3.22%. The analysis of the MAPE and forecasting 

accuracy w.r.t. existing benchmark approaches proves the improved forecasting performance of the proposed approach over a period of 

300 days. 
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I.  INTRODUCTION  

Forecasting the trends of stock markets happens to be one of the most critical applications of time series forecasting 

problems. The reliance of investment decisions on forecasting trends makes it imperative to design models which 

attain low forecasting error, while mitigating the noisy nature of stock data. The movement patterns of stock markets 

worldwide tend to be intrinsically noisy and volatile along with varying fluctuations that can be attributed to many 

factors that impact prices of stocks, indirectly or directly (Xi et al., 2014, [1]). The variable and fluctuating nature 

of stock market prices happens to be one of most complex challenges pertaining to stochastic regression applied to 

stock data. Also, the challenge remains in quantification of the influential factors that affect the stock prices 

variability. The training of the data driven model needs to be robust incorporating lack of seasonality and 

randomness in the data. The stock markets and trading scenarios keep undergoing volatile situations which are often 

non-numeric in nature making is extremely challenging to quantify them (Chatzis et al., 2018, [2]). There are major 

macro economical causes and factors that can have a huge influence on the stock market price volatility, as observed 

from existing literature in the field. (Pane et al, 2022, [3]) highlights the impact of Covid 19 pandemic on the 

forecasting performance of the machine learning backed methods. The advent of the pandemic had an immense 

effect on overall global economy along with the major economical upheavals. The market prices saw major 

fluctuations around this period along with the economic slowdown being a natural repercussion (Ghasemieh et al., 

2022, [4]).  Political instability and turmoil with war like events further escalated the economic disruption and it 

was found to influence the sentiments of the common people. This, in turn created a biased opinion towards trading 

in share markets thereby having a major impact in the overall stock market performance. (Chatziantoniou et al, 

2022, [5]). 

The varying nature of the stock markets coupled with the changing sentiments of the public poses a serious 

challenge in achieving high accuracy in prediction of stock prices based on sentiment evaluation  (Sarvanos et al., 

2023 [6]. There arises the necessity of substantial amount of research in training of the natural language processing 
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(NLP) based models for forecasting operational stock movement (Choi et al., 2023[7]). Another critical factor that 

greatly impacts the functioning and performance of the global share market is the state and performance of the 

markets opening and closing a day prior or opening early on the day due to different time zones in various parts of 

the world (Syed, 2021, [8]). An evaluation on the share market in China was done to assess the impact and the 

performance based behavior of the market prices relative to the prices of the previous day’s closing prices (Wang 

et al., 2020, [9]). The sentiment of the common public also varies in times of major events like pandemics and war 

like turmoil. The opinions vary from person to person and it also tends to very volatile regarding a lot of socio-

economical contexts. Without loss of generality, its can be stated that while incorporating non-quantifiable data can 

enhance the robustness of the system, it can be prone to strong biases among the sampled data (Mao et al., 2023, 

[10]). 

II. RELATED WORK 

This section presents an overview of the existing research in the domain citing the salient attributes of each 

approach. (Karmiani et al., 2019, [11]) used the Kalman filter along with regression algorithms such as back-

propagation (BP), long short term memory (LSTM) and support vector machine (SVM) for forecasting stock trends. 

It was shown that the Kalman filter, based on linear-quadratic fitting effectively filtered baseline noise from the 

data set prior training. (Jagwani et al., 2018 [12]) incorporated the use of ARIMA model technique to understand 

the functioning of trends of stock market. This method worked upon the safety of stock market investments. The 

research looked for the safe windows for doing investments that could considerably minimize losses. The accuracy 

obtained was fair. (Almaafi et al., 2023 [13]) implemented the xboost technology alongside Arima that 

outperformed it on individual capacity. It further increased the accuracy substantially. (Subakkar et al., 2023, 

[14]).(Jena et al., 2023 [15]) put forth the use of sentiment based analysis along with the use of LSTM model. This 

worked very well to drastically improve the overall accuracy. The twitter based analysis was done for stock price 

prediction and the results outperformed the other approaches used earlier. (Juairiah, et al., 2022 [16]) made use of 

multi time series methodology for share market and trading forecasting. It gave improved results in terms of 

accuracy and the error percentage was also low. While sentiment based evaluation an provide necessary insights 

and metrics of stock market price analysis but it can also lead to a biased decision making based on individual 

preferences and perceptions.  (Soun et al., 2022 [17]) This can lead to decline in accuracy. There can bias towards 

certain types of stocks and this can lead to an inaccurate way of assessment. So, proper methods can be used to 

filter out the biased data and extracting the intended information for stock prices evaluation. Other than 

incorporating sentiment analysis, another effective approach in correlating the feature vectors over specified 

intervals of time to test for causality. This approach is implemented by causality testing through effective transfer 

entropy (ETE), proposed by (Kim et al., 2020, [18]). As unbalanced datasets are often prevalent in regression 

problems, out of sample forecasts based on the generalized autoregressive conditional heteroscedasticity (GARCH) 

model was proposed which achieves an MAE value of 5.67% (Sen et al., 2021 [19]).  It is often found that 

optimizing the weight update, for regression models such as multi-layer perceptron (MLP) or neural networks attain 

higher accuracy (Ecer et al., 2020, [20]). This approach utilized the genetic algorithm (GA) and particle swarm 

optimization (PSO) techniques for optimizing weight updated and achieved MAPE values of 28.16%, and 29.09% 

respectively. Focus has also been on design of ensemble models combining two or more models to enhance 

forecasting accuracy. (Lu et al., 2020 [21]) combined convolution neural networks and long short term memory to 

create a CNN-LSTM ensemble which achieved an MAPE of 27.564%. Optimizing the training of deep neural 

networks such as the LSTM was proposed by (Rokhsatyazdi et al., 2020 [22]). This paper used the ant colony 

optimization for adjusting the LSTM weights and achieved an MAPE of 11.67%. As imbalanced datasets or lack 

of correlated feature data might be encountered, alleviating such issues poses a non-trivial challenge. Employing 

the Generative adversarial network (GAN) with LSTM was proposed by (Kumar et al., 2022, [23]), which achieved 

a best case accuracy of 64.58%. 

III. METHODOLOGY 

The methodology developed in this paper tried to address the existing research gap in the domain. While several 

approaches revolve around the application of existing benchmark models such as ARIMA, GARCH. SVM, MLP, 

LSTM, bi-LSTM, CNN-LSTM etc., the approaches miss out on the data preparation and optimization part (Sun et 

al., 2020, [24]). While leveraging existing benchmark models vanquishes the need for separate data-processing and 
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feature engineering, it misses out on the control over training features. Moreover, it leaves a leeway for the vanishing 

gradient and overfitting problems, commonly associated with benchmark models (Tan et al., 2019, [25]).  

A. Data Filtration 

Stock data, typically exhibits a baseline noise nature making accurate forecasting challenging (Idrees et al., 2019, 

[2019]). In addition to that, incorporating sentiment analysis as additional feature vectors may contain large biases, 

arising out of the sample size of the opinion mined data (Asyrofi et al., 2022, [27]). Thus, to ascertain accurate 

pattern recognition, it is critically important to pre-process the raw data prior to applying it the machine learning 

model. Several approaches have been explored for noise filtration such as averaging filters as well as filtration in 

the transform domain. We investigate each of them subsequently. The averaging based filtration tools are often 

based on the assumption that the data would be centred around the first/second moment of the random variable 

(Devore et al., 2021, [28]).  

 

Fig.1 A typical normal distribution 

Figure 1 depicts a typical normal distribution, in which the first moment or expectation mean has been chosen as 

𝝁 = 𝟔𝟎, where, 

𝝁 =
𝟏

𝑵
∑ 𝒙𝒊𝒇𝒊
𝑵
𝒊                                                        (1) 

Here, 

𝑥 = random variable (RV). 

𝑓= frequency distribution. 

𝜇 = first moment or expectation of the RV. 

𝑁 = number of samples in the distribution.  

  

While the mean can be considered to be the baseline value, it is significantly governed by the sample values, 

which tend to move the mean. A rather, more effective approach is using the median as the effective central 

value, and then filtering out the samples, based on a windowed median filter given by (Batson et al., 2019, [29]): 

𝒚𝑴𝑭(𝒚) = 𝒎𝒆𝒅𝒊𝒂𝒏(𝒚[𝒊: 𝒊 + 𝒍])                                        (2) 

Here, 
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𝑦𝑀𝐹(𝑖) = median filtering operation. 

𝑖 = index of the variable. 

𝑙 = median window. 

While the median filtering based approach is computationally efficient, it can be affected by strong bias in the 

sample space, leading to positive or negative skewness (Bono et al., 2019 [30]). 

 

Fig.2 Skewness in probability distribution. 

Figure 2 depicts the skewness (both positive and negative) for the distribution. Presence of strong biases in the data 

may often lead to high skewness in the distribution which if not corrected may lead to inaccuracies in pattern 

recognition. The skewness of a random variable is defined as: 

𝒔 = √
𝟏

𝑵
∑ (𝒇𝒊 − 𝝁)

𝟑𝑵
𝒊,𝒋

𝟑
                                                (3) 

Here, 

𝑠 = skewness. 

𝑓 = frequency distribution. 

𝜇 = first moment or expectation of the RV. 

𝑁 = number of samples in the distribution.  

As stochastic filtering of the data is heavily affected by biases, a more effective approach turns out to be the data 

filtration in the transform domain. The main ides of the approach is to transform the index of the variable to a 

separate variable, which can allow separation of the actual information and the noisy part (Xu et al., 2020 [31]). 

Any transform T is expressed as: 

𝑿𝒌(𝒛)
𝑻(𝒙)
⇒  𝒙𝒊(𝒕)                                                     (4) 

Here, 

𝑥 = RV in‘t-domain’. 

𝑋 = data in the ‘z-domain’. 

𝑇 = transform. 

𝑖 = number of variables in the‘t-domain’. 



J. Electrical Systems 20-2 (2024): 2641-2660 

 

2645 

𝑘 = number of variables in the ‘z-domain’. 

Typically, the filtration in the transform domain is done by transforming the data to the frequency domain for 

multi-resolution frequency analysis. The Fourier Transform is the fundamental transform which can present the 

frequency domain analysis of data given by (Hou et al., 2022 [32]): 

𝑿(𝒇) = ∫ 𝒙(𝒕)𝒆−𝒋𝟐𝝅𝒇𝒕𝒅𝒕
+∞

−∞
                                                        (5) 

Here, 

𝑋(𝑓) = RV in ‘f domain’. 

𝑥(𝑡) = data in‘t-domain’. 

𝑒−𝑗2𝜋𝑓𝑡  = exponential kernel. 

𝑗 = imaginary number√−1. 

Several variants of the Fourier Transform are typically used for the data filtration process, where the transform 

essentially separate the low frequency component (𝑓𝐿) and high frequency components (𝑓𝐻). It is observed that 

the (𝑓𝐿) components contain the most information in the data while the (𝑓𝐻) components contain the noisy part, 

which is to be removed. An important aspect of the filtration process is the choice of the kernel of the transform 

(Osipenko, 2021 [33]). The Fourier Transform and its derivatives such as the Laplace Transform (LT), the Discrete 

Fourier Transform (DFT), Fast Fourier Transform (FFT), Z-Transform, Discrete Cosine Transform (DCT) and 

Discrete Sine Transform (DST), rely on the complex exponential Kernel function, given by (Falsone at l., 2021, 

[34]): 

                                                           𝒆−(𝝈+𝒋𝒇) = 𝒆𝝈(𝒄𝒐𝒔𝒇 − 𝒋𝒔𝒊𝒏𝒇)                                  (6) 

Here, 

𝑒𝜎+𝑗𝑓 = complex exponential. 

𝑒𝜎 = constant amplitude. 

𝑓 = frequency. 

The limitation of the Fourier derivatives stem from the fact that all of the transforms have smooth kernel functions 

in the form of a sine or cosine function. Thus, they are well suited for the multi-resolution analysis of smooth RVs. 

In case of datasets, with abrupt fluctuations, these methods fail to render accurate multi-resolution analysis 

(Heurtier, 2019 [35]). A summary of the Fourier derivatives along with their kernels is presented in table 1. 

Table 1. Fourier Derivative Transforms  

S.No. Transform Kernel Function Analysis 

1. Fourier Transform  𝑒−𝑗2𝜋𝑓𝑡  Bounded 

2. Laplace Transform  𝑒−𝑠𝑡 Unbounded 

3. Discrete Fourier Transform (DFT)  𝑒−𝑗2𝜋𝑘𝑛  Bounded 

4. Fast Fourier Transform (FFT) 
𝑒−𝑗

2𝜋𝑘𝑛
𝑁  

Bounded 

5. Z-Transform (ZT) 𝑧−𝑛 Unbounded  

6. Discrete Cosine Transform (DCT) 
𝑐𝑜𝑠(

(2𝑥 + 1)𝑗𝑥

2𝑁
 

Bounded 

7. Discrete Sine Transform (DST) 
𝑠𝑖𝑛(

𝜋𝑛𝑘

𝑁 + 1
) 

Bounded 

The bounded/unbounded nature of the transform refers to the capability of the transform to handle asymptotically 

increasing (both positive and negative) functions. This is however, a generalization in practical cases, as stock 

data would invariably be bounded in nature. The limitation of the Fourier derivatives can be overcome employing 
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the Wavelet Transform whose Kernel is an abruptly changing function (Liu et al., 2019 [36]). The wavelet 

transform separates the low frequency and high frequency components as the approximate co-efficient(𝐶𝐴) and 

detailed co-efficient(𝐶𝐷) of the transform (Hau et al., 2022, [37]). Generally, detailed co-efficient(𝐶𝐷) and a low 

frequency resolution component termed as the detailed co-efficient(𝐶𝐴) (Hajiabotorabi et al., 2023 [38]).The DWT 

of any function 𝑧(𝑥) is computed as: 

𝒁(𝒙, Ɵ𝟎
𝒏, 𝒊Ɵ𝟎

𝒏) = 𝜹𝟎
𝒏
−𝟏

𝟐 ∑ 𝒛(𝒙)𝑲∗ [
𝒏−𝒊Ɵ𝟎

𝒏

Ɵ𝟎
𝒏 ]𝒊                (7) 

Here, 

𝑧(𝑥) = time series vector 

𝐾∗  = wavelet kernel 

𝑍   = data in the transform domain or DWT domain 

Ɵ0
𝑛  = scaling operation 

𝑖Ɵ0
𝑛 = shifting operations  

𝛿0
𝑛  = dilation constant of the transform 

Retaining the low frequency component(𝐶𝐴) while discarding the higher frequency component(𝐶𝐷) for a number 

of iterations helps in removal of the baseline noise of the system (Diker et al., 2018 [39]). 

B. Data Optimization 

Typically, stochastic regression with large datasets, can be prone to overfitting and sporadic vanishing gradients. 

This occurs due to a multitude of often repeated and redundant data samples in the training data. One of the most 

effective data optimization and dimensional reduction techniques happens to be the principal component analysis 

(PCA). The basic idea of the algorithms is the maximization of the variance (𝜎2) among data samples, while 

minimizing the correlation. The PCA employs a search for the principal components in an n-dimensional feature 

space given by (Sorzano et al., 2014 [40[): 

𝒙𝝐ℝ𝒏 ∀𝒏                                                         (8) 

Here, 

ℝ = feature space. 

𝑛 = order of the feature space. 

The idea of the approach is to map the values of ℝ along different, mutually orthogonal feature directions, satisfying 

the condition (Reddy et al. 2020, [41]). 

𝝈𝟐 = ∑ 𝒗𝒂𝒓(𝝌𝒊)
𝒏
𝒊=𝟏                                            (9) 

The variance can be maximized along orthogonal directions, χ after which the component with maximum variance 

is chosen to be the PCA-transformed representation of the data.  
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Fig.3 Illustration of PCA-decomposition 

Figure 3 illustrates the process of PCA-decomposition of the data samples along𝝌1 𝑎𝑛𝑑 𝝌2, considering only 2-

feature dimensions for the sake of simplicity. The idea can be extended to a 𝒏 dimensional feature space. It can be 

observed that the data can be mapped along𝝌1 𝑎𝑛𝑑 𝝌2. However, the data samples depict maximum variance 

along𝝌𝟏, which is adjudged the direction of the principal component.  

The PCA matrix M, for the 𝑙 𝑋𝑙 PCA base matrix and the data matrix 𝐷 is computed as (Yang et al., 2017 [42]): 

𝑴 = 𝑩𝒍𝒙𝒍𝑫                             (10) 

Here, 

𝑀= representation matrix 

𝐵 = PCA basis matrix 

𝐷= original data matrix 

𝑙= dimensions of the PCA basis matrix 

The PCA base matrix exhibits orthogonality in 𝑙 𝑑𝑖𝑛𝑒𝑛𝑠𝑖𝑛𝑎𝑙 vector space (Hu et al., 2016 [43]). The cost function 

to be maximized can be expressed as: 

    𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 (𝑽(𝒍𝑻𝒇))                                                      (11) 

Here,  

𝑉= variance 

In order to minimize the co-variance among the 𝑙𝑥𝑙 orthonormal values, the approach used is to diagonalize the co-

variance matrix of M, given by: 

𝑴𝑫 =
𝟏

𝒍−𝟏
(𝑩−𝟏𝑩)𝑫(𝑩−𝟏𝑩)         (12) 

Here, 

𝑀𝐷= diagonalized re-represented matrix 

𝐷  = diagonal matrix 

In case, 𝐵 exhibits orthogonality, the following condition holds true, 

               𝑩𝑻 = 𝑩−𝟏                                                                       (13) 

In case the above condition holds true, the diagonalization boils down to: 



J. Electrical Systems 20-2 (2024): 2641-2660 

 

2648 

𝑴𝑫 =
𝟏

𝒍−𝟏
(𝑫)                                        (14) 

One of the most effective ways to obtain the diagonalized version of 𝑀 is to compute the PCA using the singular 

value decomposition (SVD), constrained to the condition (Winursito et al., 2018 [44]): 

       𝒇 ≫ 𝒏 𝛁𝒏, 𝒇                                    (15) 

The cost function for the PCA decomposition is given by (Seghouane et al., 2019 [45]): 

𝑱 = ⟦𝒙 −𝑾𝑾𝑻𝒙⟧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                                (16) 

Here, 

𝑊 =  𝑛 orthogonal directions of the PCA decomposition. 

The dimensionally reduced data, is subsequently used to compute a moving window of recent samples which is to 

be later added to the feature training vector. The idea of the approach is to capture the recent trends in the data along 

with the entirety of pattern recognition. This is computed as: 

𝑿𝒔𝒑𝒍𝒊𝒕 = 𝑿𝑳𝑽: 𝒇(𝑿𝒕−𝟏,…… .𝑿𝒕−𝒍), 𝑿𝑯𝑽: 𝒇(𝑿𝒕−𝒍,𝑿𝒕−𝒉,……𝑿𝒕−𝒌𝒉)                (17) 

Here, 

𝑋𝐿𝑉=   low volatility (𝐿𝑉) component  

𝑋𝐻𝑉=   high volatility (𝐻𝑉) component 

𝑋𝑠𝑝𝑙𝑖𝑡= split training vector in terms of a two components LV and HV  

𝑓= function 

The filtered samples contain the 𝑳𝑽  components as well as the 𝑯𝑽  components corresponding to the actual 

information and high frequency noise components respectively. A moving window of (𝒏: 𝒏 + 𝒌)  samples is 

computed and expressed as: 

𝑿𝑳𝑽 = 𝒎𝒆𝒂𝒏(𝒈(∑𝑿𝒕−𝒌𝒉), 𝝐𝒕)                              (18) 

Here, 

𝑔 = non-linear function 

𝜖𝑡= high volatility error function  

It is assumed that the mean would capture the recent stochastic features of the wide sense stationary random process 

(Guo et al., 2016[46]). It is assumed that the addition of baseline random noise to the data would still keep the 

nature of the original data as wide sense stationary (Girault, 2015, [47]).  

3.3 Training 

While several benchmark models such as RNN, LSTM, bi-LSTM and CNN-LSTM ensemble employ the back 

propagation based training in the fully connected layer, deep nets are often susceptible to a non-optimal acceleration 

along the normal direction of convergence (Oymak et al., 2020 [48]). A more optimal approach would be increasing 

the acceleration along convergence, while simultaneously minimizing the normal acceleration component, thereby 

still keeping the overall acceleration magnitude constant (Chnaga et al., 2022 [49]). The momentum based training 

considers the acceleration normal to convergence to manifest itself in an overshoot/undershoot or swing in the cost 

function, which needs to be minimized for optimal training. The learning rate is adjusted as (Cutkosky et al., 2020 

[50]): 

𝝁𝒌+𝟏 = 𝝁𝒌 −  𝜸
𝝏𝒇(𝒘𝒌)

𝝏𝝁𝒌
                                             (19) 
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The aim of the approach is thus to minimize both the cost function and overshoot or swing (𝑀)(Zheng et al., 2018, 

[51]). Let us define the swing for the cost function as: 

 𝑺𝒄𝒐𝒔𝒕 =
𝜺𝒊𝒏𝒔𝒕−𝜺𝒐𝒑𝒕

𝜺𝒐𝒑𝒕
                 (20) 

Here, 

𝑆𝑐𝑜𝑠𝑡= swing of the cost function 

𝜀𝑖𝑛𝑠𝑡= instantaneous value of the cost function 

𝜀𝑜𝑝𝑡 = optimal values of the cost function at convergence 

The value of 𝜀𝑜𝑝𝑡 should be computed at convergence subsequent to cross validation. The swing parameter is to be 

used to truncate the training process based on the gradient descent with momentum (Liu et al., 2020 [52]). The 

weights of the neural network model are to be updated constrained to the condition: 

𝑾 ≜ 𝒂𝒓𝒈𝒎𝒊𝒏(
𝜺𝒊𝒏𝒔𝒕−𝜺𝒐𝒑𝒕

𝜺𝒐𝒑𝒕
)                                          (21) 

The least squares (LS) optimization for the cost function is given by: (Gan et al., 2018 [53]): 

   𝑪 =
𝟏

𝒏
∑ (𝒑𝒊 − 𝒕𝒊)

𝟐𝒏
𝒊=𝟏                                   (22) 

Here, 

𝐶 = function associated with least squares minimization (LSE) 

𝑛 = number of samples 

𝑝 = predicted value 

𝑡 = target 

The conventional gradient descent for a cost function 𝐶 can be implemented using the following relation (Vu et al., 

2022 [54]): 

𝒘𝒌+𝟏 = 𝒘𝒌 − 𝝁𝛁𝑪(𝒘𝒌)                (23) 

Here, 

𝑘 = iteration number 

𝑘 + 1 = subsequent iteration 

𝑘 = present iteration 

𝑤 = weight 

𝜇  = learning step size 

The conventional gradient descent tries to update the weight matrix 𝑾  so as to maximize the negative error 

gradient(𝒈 = −
𝝏𝒆

𝝏𝒘
). This allows to minimize the cost function 𝐶(𝑤𝑘) over a range of iterations (Baden et al., 2018 

[55]). The weight update for the gradient descent with momentum based approach is given by (Ilboudo et al., 2022 

[56]): 

          𝒘𝑲+𝟏 = 𝒘𝒌 − 𝝁𝜷(𝒌)               (24) 

Where, 

  𝜷(𝒌) = 𝜶𝜷(𝒌 − 𝟏) + 𝛁𝑪(𝒘𝒌)         (25) 
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Here, 

𝛽(𝑘) = momentum factor 

𝛼 = momentum attenuation factor 

𝐶(𝑤𝑘) = cost function 

𝜇 = learning step size 

For the purpose of convergence, the learning rate is constrained to (Franceschi et al., 2017, [57]):  

 −𝟏 < 𝜶 < 𝟏 𝒂𝒏𝒅 𝝁 > 𝟎                    (26) 

For non-negative 𝛼 values and small values of 𝜇, the swing 𝑆𝑐𝑜𝑠𝑡 needs to be minimized employing the friction 

parameter 
𝜀𝑖𝑛𝑠𝑡−𝜀𝑜𝑝𝑡

𝜀𝑜𝑝𝑡
 , which meeds to be minimized as: 

𝑨𝒓𝒈𝒎𝒊𝒏 (
𝜺𝒊𝒏𝒔𝒕−𝜺𝒐𝒑𝒕

𝜺𝒐𝒑𝒕
) ∀𝜶, 𝝁                                   (27) 

The acceleration along convergence, is thus analogous to minimization of the cost function𝐽, which is in turn 

accelerated through the momentum factor𝛽(𝑘) = 𝛼𝛽(𝑘 − 1) + ∇𝐶(𝑤𝑘). Adding a customary bias term at node 𝑖 

for the network defined as (Wang et al., 2019 [58]): 

   𝒃𝒌
𝒊 = 𝒊 − 𝜶𝑺𝒊       (28) 

Here, 

𝛼 = learning rate 

𝑆 = learning sensitivity 

The learning sensitivity is critically important as it governs the weight update for the proposed approach while 

estimating the changes in the learning rate for the model. This typically applicable for an approach with a search 

for optimal learning step size in each approach as compared to the conventional stochastic gradient descent (SGD) 

based approach (Haddadpour et al., 2019[59]). The adaptive nature of learning step size, already constrained to 

(𝛼 𝑎𝑛𝑑 𝜋) may result in higher computational complexity, bound by both convex a non-convex settings (Li et al., 

2020 [60]). 

3.4 Combining Opinion Mining 

The inclusion of public sentiments is typically challenging to the fact that they are non-numeric in nature. 

However, sentiment data as an additional parameter with tokenization inputs tries to correlate the non-numeric 

factors with the feature vector. The sentiment inclusion for the proposed study includes the sentiment vector 

expressed as: 

𝑻𝒔𝒆𝒏𝒕𝒊𝒎𝒆𝒏𝒕 = [𝑻𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆, 𝑻𝒏𝒆𝒖𝒕𝒂𝒍, 𝑻𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆]                                           (29) 

The sentiment training vector is extracted for posts (public sentiments) for the training period of the data (in the 

training time interval). To add 𝑻𝒔𝒆𝒏𝒕𝒊𝒎𝒆𝒏𝒕 to the roaster of the training vector𝑋, polarities (+1, 0, −1) are included 

as an extra feature. Non-existent values of the sentiment data are substituted with NaN (Not a Number) format, to 

keep training sample size constant across all features. The data is pre-processed by removing special characters 

such as (*, # etc.) and filtering out repeated words and symbols. A probabilistic approach is employed to classify 

sentiments into the three categories. The tokenization allows for a three way inclusion of public sentiments to the 

training vector. 

The training rule for the approach is based on the Bayes theorem of conditional probability which is effective for 

classifying overlapping feature vectors, based on a penalty𝝆 =
𝝁

𝒗
 . The weights are updated based on the modified 

regularized cost function (Wongkar et al., 2019, [61]): 
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𝑭(𝒘) = 𝝁𝒘𝑻𝒘+ 𝒗[
𝟏

𝒏
∑ (𝒑𝒊 − 𝒂𝒊)

𝟐𝒏
𝒊=𝟏 ]                                          (30) 

If (𝜋 ≪ 𝑣): Network error are generally low.  

else if (𝜋 ≥ 𝑣): Network errors tend to increase, in which case the weight magnitude should be reduced so as to 

limit errors (Penalty). 

This is done be maximizing the weight Posteriori Probability using the Bayes theorem of Conditional Probability 

as (Tand et al., 2022, [62]): 

𝑷(⟨𝒘|𝑿⟩,  𝝁,  𝒗)                                                                           (31) 

Aggregation of sentiment polarities in a monotonic price movement interval would aid the training process, subject 

to the condition that the sentiment polarity correlates with the movement patterns of the stock.  

Proposed Algorithm 

Step.1: Initialize weights 𝒘 and learning rate 𝝁 randomly, set maximum 

iterations as 𝑴𝒂𝒙𝒊𝒕𝒓 = 𝟏𝟎𝟎𝟎, 𝒆𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 = 𝟏𝟎
−𝟔 

Step.2: 𝒇𝒐𝒓 𝑖 = 1:𝑀𝑎𝑥𝑖𝑡𝑟, do 

Step.3: 𝒇𝒐𝒓 (𝒌 = 𝟏: 𝒏),  

Step.4: Retain (𝐶𝐴) while discarding (𝐶𝐷) 

Step.5: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐽 = ⟦𝑥 −𝑊𝑊𝑇𝑥⟧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) and compute 𝑀 = 𝐵𝑙𝑥𝑙𝐷         

Step.6: Compute 𝑋𝐿𝑉 = 𝑚𝑒𝑎𝑛(𝑔(∑𝑋𝑡−𝑘ℎ), 𝜖𝑡) 

Step.7: 𝒊𝒇 𝑖 ≤ 𝑀𝑎𝑥𝑖𝑡𝑟 && 𝑖𝑓 𝐽 ≤ 𝒆𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 

Step.8: 
Minimize: 𝐴𝑟𝑔𝑚𝑖𝑛 (

𝜀𝑖𝑛𝑠𝑡−𝜀𝑜𝑝𝑡

𝜀𝑜𝑝𝑡
) ∀𝛼, 𝜇                           

Step.9: Compute 𝑤𝐾+1 = 𝑤𝑘 − 𝜇𝛽(𝑘)            

Step.10: Compute 𝛽(𝑘) = 𝛼𝛽(𝑘 − 1) + ∇𝐶(𝑤𝑘) 

Step.11: 𝑒𝑙𝑠𝑒  

Step.12: Truncate training 

Step.13: 𝒆𝒏𝒅 𝒊𝒇 

Step.14: Compute MSE, MAPE, 𝑅2 

Step.15: 𝒆𝒏𝒅 𝒇𝒐𝒓  

Step.16: 𝒆𝒏𝒅 𝒇𝒐𝒓  

 

The performance of the proposed model is evaluated in terms of the following parameters: 

1) Regression(𝑅2): The values of 𝑅2 are considered for the training, testing, validation and overall conditions. 

  2)  The mean squared error (MSE): 

   𝑴𝑺𝑬 =
𝟏

𝒏
∑ (𝒑𝒊 − 𝒕𝒊)

𝟐𝒏
𝒊=𝟏             (32) 

  3) The mean absolute error (MAE): 

𝑴𝑨𝑬 =
𝟏

𝒏
∑ |𝒑𝒊 − 𝒕𝒊|
𝒏
𝒊=𝟏                                                 (33) 

  4) Mean Absolute Percentage Error (MAPE): 

𝑴𝑨𝑷𝑬 =
𝟏

𝒏
∑

|𝒑𝒊−𝒕𝒊|

𝒕𝒊
∗ 𝟏𝟎𝟎𝒏

𝒊=𝟏                                         (34) 

  Here, 

𝑛 = number of samples 

𝑝 = predicted value 
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𝑡= target 

IV. EXPERIMENTAL RESULTS 

This work presents an experiment on multiple benchmark (S&P-500) datasets. The day wise opening price, 

maximum price, minimum price, previous day closing price have been chosen as the independent variables, while 

the present day closing price has been chosen as the dependent variable. Each of the steps performed during the 

implementation of the proposed algorithm has been presented sequentially.  

 

Fig. 4 Raw Data: Google Stocks 

Figure 4 presents the variation in the stock for Google stocks, for over 3000 samples. The variation and noise 

content in the data can be observed.  

 

Fig. 5 Stochastic Parameters of raw data: Google 

Figure 5 presents the stochastic parameters for the data, such as minimum, maximum, mean and standard deviation. 

The summary of the stochastic parameters are presented in table 2. 

Table 2: Stochastic Parameters of Google Stocks 

S.No. Parameter Value 

1 Stock Google 

2 Minimum 11.8227 

3 Maximum 150.7090 

4 Mean 51.9638 

5 Standard Deviation 36.0943 
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Table 2 presents the stochastic parameters of the stocks over the entire day wise period. The minim, maximum, 

mean and standard deviation values are found to be 11.8227, 150.7090, 51.9638 and 36.0943 respectively. The next 

process is the data filtration employing the DWT. 

 

Fig.6 DWT decomposed target variable 

Figure 6 presents the DWT decomposed target variable at level 5. The decomposition yields the approximate co-

efficient at level 5 along with the detailed co-efficients at each of the 5 levels. It can be observed that the maximum 

noisy nature of the data is present at level 1 while the least noisy nature of the data is present in level 5. Moreover, 

decimation can be clearly observed on the data samples as the number of levels increase. It is assumed that the raw 

data is affected by unscaled white noise characterized by: 

𝑵(𝒇) = 𝒌, ∀𝒇                                                        (35) 

Here, 

𝑁(𝑓) = unscaled white noise. 

𝑘 = a constant. 

𝑓 = frequency distribution. 

 

Fig.7 Filtered data at level 5 of DWT 
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Figure 7 depicts the filtered data at level 7 of DWT. Smoothening of the data can be observed. The actual filtration 

removal of baseline noise can be clearly observed through the zoomed in data samples. 

 

Fig.8 Zoomed in Analysis of Data Filtration 

Figure 8 presents the actual and filtered data samples of 20 samples starting from 2784 to 2804. Clearly the filtered 

data can be seen to have lesser sharp fluctuations.  

 

Fig.9 Forecasting Results: Google Stocks  

Figure 9 depicts the actual and forecasted values for Google Stocks. It can be observed that the MAPE is 2.64% for 

the Google Stocks. The accuracy of forecasting is therefore, 100 − 𝑀𝐴𝑃𝐸 = 97.56%. The actual error variation 

for 320 samples has been shown here (long term case, approximately 1 year period). 
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Fig.10 Regression Value: for Google Stock Forecasting 

Figure 10 presents the regression (𝑅2) value for the Google stock forecasting. It can be observed that the proposed 

forecasting model attains an 𝑅2 value of 0.99883. The MSE of the proposed model in case cross-validation (MSE) 

is found to be 2.2144 at 1000 iterations with a clear monotonic decrease in the cost function. This illustrates the 

stability of the proposed approach, in terms of a steady convergence without sudden positive or negative swing in 

the cost function. The best case gradient at 1000 iterations is found to be 6.7383.  

The analysis and results presented for the Google stocks can be applied to other stocks as well, to check the 

robustness of the proposed approach. In this work, six diverse stocks have been analysed, and the results have been 

tabulated, for ready reference.  

Table 3. Summary of Forecasting Results  

S. No. Stock MAPE MSE 𝑹𝟐 

1. GOOGLE 2.64% 2.2144 0.99883 

2. AMAZON 2.15% 1.926 0.999 

3. TESLA 5.83% 4.77 0.9788 

4. Apple 2.37% 2.062 0.0892 

5. SBI 3.62% 2.844 0.9889 

6. TCS 2.97% 3.085 0.9882 

Table 3 presents the forecasting results have been presented for 6 stocks with the MAPE, MSE and 𝑅2 values. 

Multiple benchmark S & P stocks have been analysed to cross check the performance of the proposed approach.  

 

Fig.11 Comparative MAPE for all stocks 



J. Electrical Systems 20-2 (2024): 2641-2660 

 

2656 

Figure 11 presents the comparative MAPE analysis of the six stocks analysed. It can be observed that the best case 

MAPE of 2.15% is obtained for Amazon stocks and the highest case MAPE of 5.83% is obtained for Tesla stocks. 

The average MAPE for all the six stocks analysed in this case renders a value of 3.22%. Thus the average 

forecasting accuracy can be found to be: 

100 − 𝑀𝐴𝑃𝐸 = 96.78% 

The average MAPE and accuracy% renders an insight into the forecasting capability of the proposed approach 

across different datasets. To weigh the performance of the proposed approach against contemporary work, a 

comparison in made in table 4. 

Table 4. Comparison with Existing Work 

S.No. Authors Approach Performance Metric 

1. Subakkar et al., 

2023 

ARIMA  MAPE=14% 

(TESLA) 

2. Jena et al., 2023 Sentiment Analysis 

and LSTM 

Best Case 𝑅2 value of 0.57. 

3. Soun et al., 2022 LSTM with Sentiment 

Analysis 

MAPE of 55.86% 

4. Sen et al., 2021. GARCH model MAE of 5.67% 

5. Ecer et al., 2020. MLP+PSO 

GA+PSO 

MAPE=28.16% 

MAPE-=29.09% 

6. Lu et al., 2020. CNN-LSTM Ensemble  MAPE=27.562% 

7. Kim et al., 2020 ETE MAPE=47% 

8. Rokhsatyazdi et al., 

2020 

ACO-LSTM MAPE=11.67% 

9. Kumar et al., 2022. GAN-LSTM MAPE=35.42% (best case). 

10. Proposed Approach MAPE of 3.22%. 

Accuracy of 96.78% 

The primary metric for comparison used in table 4 are the MAPE and accuracy%. It can be clearly observed that 

the proposed approach renders improved forecasting performance over a wide range of stock data compared to 

existing benchmark approaches. The improvement in the results compared to existing work can be attributed to: 

1. While deep learning algorithms such as LSTM, bi-LSTM etc. do not need to invest in the separate feature 

extraction and preparation, it takes away the feature selection control. 

2. Exogenous input in the form of a moving average helps extract most recent patterns in the data. This is 

typically useful in case the moving window size is similar to the number of samples to be forecasted. 

3. Combining DWT and PCA provides both data filtration as wells as dimensional optimization making the 

training process more effective and accurate, while avoiding the possibilities of overfitting and vanishing gradient. 

4. Combining a three way opinion mining based approach to incorporate sentiment analysis along with the 

proposed approach. 

V. CONCLUSION 

Previous analysis of existing literature emphasizes the importance of accurate stock market forecasting models as 

the forecasting results are considered prior making large investments. Inaccuracies in forecasting estimates may 

lead of staggering financial loses, making the stakes high for erroneous forecasting models. The paper tries to 

combine stochastic regression with sentiment analysis with an aim to bolster pattern recognition based on both 

previous historical data as well as sentiment polarities of tweets about a particular stock under discussion. Data 

optimization based on principal component analysis and denoising the raw data using DWT act as the data pre-

processing tools removing noise effects and data redundancies respectively. Multiple S & P-500 datasets have 
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been analyzed using the proposed approach. A comparative analysis based on the MAPE% and 𝑅2 values clearly 

indicate superior results of the proposed approach compared state of the art algorithms. While successful noise 

filtration has been done using the DWT, increasing the number of levels results in increasing computational 

complexity as well as decimation. Hence, maximum overlap based DWT (MODWT) can be explored further. 

Additional, skewness correction can be employed to alleviate the strong bias in the opinion of the subjects, whose 

data is inferred as positive, negative and neural values. 
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