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Abstract: - This research explores the application of advanced time-series forecasting models to predict vehicle trajectories based on 

driving styles. The study utilizes vehicle trajectory pairs obtained from the I-80 and US-101 freeways, extracted from the NGSIM dataset. 

Principal Component Analysis (PCA) is employed to simplify characteristic indexes, leading to the identification of three distinct driving 

styles: aggressive, moderate, and traditional. To facilitate predictive analysis, three datasets are created, each representing a unique driving 

style cluster. The research employs Long Short-Term Memory (LSTM) and Auto Regressive Integrated Moving Average (ARIMA) 

models to forecast future trends within each driving style. Evaluation metrics, including Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and R2 value, assess the accuracy and reliability of the forecasting models. The LSTM model, 

with its capacity to model complex temporal dependencies, delivers impressive results with low error metrics and high R2 value. This 

research demonstrates the efficacy of LSTM models in accurately predicting trajectories based on various driving styles. This highlights 

the effectiveness of employing LSTM algorithms within our study, showcasing their capability to capture complex temporal dependencies 

inherent in diverse driving behaviors. This underscores not only the strength of the LSTM model itself but also the successful application 

of our research methodology in leveraging this algorithm to achieve precise trajectory predictions. 

Keywords: Trajectory Prediction, Driving Styles, LSTM, ARIMA, NGSIM Dataset, Time-Series Forecasting, ADAS, 

Traffic Data Analysis, Vehicle Dynamics, Pattern Recognition, Autonomous vehicle. 

 

I.  INTRODUCTION 

In recent years, the rapid advancements in intelligent transportation systems (ITS) and the increasing demand for 

safer and more efficient mobility have fueled the development of advanced driver assistance systems (ADAS) and 

autonomous vehicles (AVs) [1]. One of the critical challenges in realizing these technologies is the accurate 

prediction of surrounding vehicles' trajectories, which is essential for proactive decision-making and collision 

avoidance [2]. Trajectory prediction involves estimating the future positions of nearby vehicles based on their 

historical motion data and contextual information. However, the complex and dynamic nature of traffic 

environments, coupled with the diverse driving behaviors of individual drivers, makes trajectory prediction a 

highly challenging task. 

Driving style refers to the characteristic ways in which drivers operate their vehicle [3]. Studies have shown that 

drivers exhibit a wide range of driving styles, from aggressive to conservative, depending on their personality, 

risk perception, and situational factors. Aggressive drivers tend to exhibit risky behaviors such as speeding, abrupt 

lane changes, and tailgating, while conservative drivers typically follow traffic rules, maintain safe distances, and 

have a more relaxed driving manner. These differences in driving styles can significantly impact the trajectory 

patterns of vehicles and the overall traffic flow dynamics [4]. 

Integrating intelligent driving capabilities with vehicle connectivity offers a multifaceted approach to enhancing 

transportation systems. This amalgamation empowers vehicles to seamlessly gather real-time data about their own 

status as well as that of their surroundings. The advent of intelligent and connected vehicles holds immense 

promise in bolstering overall traffic safety. A pivotal aspect in ensuring safe driving lies in the accurate prediction 

of vehicle trajectories, encompassing both the primary vehicle and its neighboring counterparts. Such predictions 

are indispensable for effective motion planning and preemptive collision avoidance strategies. However, the 

dynamic nature of driving environments coupled with intricate vehicle dynamics renders precise trajectory 

prediction a persistent challenge. Addressing this challenge has emerged as a focal point within the realm of 

research dedicated to intelligent and connected vehicles. 
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Traditional trajectory prediction approaches often rely on kinematic models, such as the constant velocity (CV) or 

constant acceleration (CA) models, which assume that vehicles maintain their current speed or acceleration over a 

short prediction horizon. However, these models fail to capture the complex interactions and dependencies among 

vehicles, as well as the heterogeneity in driving behaviors. More advanced techniques, such as machine learning 

and deep learning, have been explored to model the intricate patterns and relationships in vehicle trajectories [5]. 

Among these techniques, Long Short-Term Memory (LSTM) networks, a specialized type of recurrent neural 

networks (RNNs), have garnered considerable interest owing to their adeptness in grasping prolonged 

dependencies and learn complex sequential patterns. 

Recent advances in machine learning, particularly in the areas of sequence modeling with recurrent neural 

networks, have opened up new possibilities for data-driven trajectory prediction. By learning directly from real-

world driving data, these methods can implicitly capture the diverse driving styles across a population of drivers. 

LSTM networks have shown significant results by encoding the sequential patterns in past vehicle trajectories to 

forecast future positions. However, most existing LSTM-based approaches focus solely on the trajectory history 

of the target vehicle, ignoring the rich behavioral signals contained in the motion patterns of surrounding traffic 

participants. LSTM-based models have shown promising results in trajectory prediction tasks, outperforming 

traditional methods in various scenarios. 

Another promising approach for trajectory prediction is the Autoregressive Integrated Moving Average (ARIMA) 

model, this technique is a widely used for time series forecasting problems. ARIMA models have been 

successfully applied in various domains, including traffic flow prediction, weather forecasting, and stock market 

analysis. The ARIMA model captures the temporal dependencies and trends in the data, making it suitable for 

short-term trajectory prediction. Various researches [6] employed ARIMA models to predict vehicle speeds and 

demonstrated their effectiveness in capturing the temporal patterns in traffic data. Combining ARIMA with 

LSTM models can potentially leverage the strengths of both techniques, capturing both the short-term and long-

term dependencies in vehicle trajectories [7]. 

Despite the advancements in trajectory prediction methods, limited research has been conducted on incorporating 

driving style information into the prediction process. Most existing approaches assume a homogeneous driving 

behavior among vehicles, neglecting the impact of individual driving styles on trajectory patterns [8].  

This research paper aims to bridge the gap between driving style analysis and trajectory prediction. NGSIM 

dataset is used for the trajectory prediction which is further divided into three distinct datasets based on the 

driving styles of the vehicles obtained by applying K-means algorithm.  Three distinct driving style categories 

emerge: aggressive, moderate, and traditional, forming the basis of three distinct datasets. Subsequently, advanced 

time-series forecasting models (LSTM and ARIMA) are applied to each dataset to predict future trends within 

each driving style cluster. Evaluation metrics such as MAE, MSE, RMSE, and R2 are utilized to gauge the 

accuracy and reliability of the forecasting models, providing a comprehensive analysis of their predictive 

capabilities. 

II. LITERATURE SURVEY 

In the field of trajectory prediction and positioning, researchers have explored various techniques, including 

machine learning and deep learning approaches, to accurately model and forecast the motion patterns of different 

vehicles on the road. This literature review discusses several recent studies that address these challenges using 

advanced methods. 

Li and Fong (2022) proposes a novel approach for trajectory prediction of moving objects by combining data 

stream learning with a Kalman filter and an evolving correlated horizons feature selection technique (KF-ECH-

FS). Traditionally, the Kalman filter has been used as a control-feedback loop mechanism to correct errors from 

previous predictions and estimate the next position in trajectory prediction. In this fusion model, the Kalman filter 

and its windowed version are utilized as predictor variables in a multivariate time series forecasting process [9]. 

The predictor variables act as additional features, aiding in improving trajectory prediction accuracy. However, 

only relevant features are selected through an incremental learning process using multivariate data stream 

analytics. It addresses the issue of model overfitting that can occur when evaluating and selecting a large number 
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of features expanded by time-series windowing during the learning process. The authors employ a simple and 

efficient feature selection heuristic, an auto-encoder, in conjunction with data stream learning using a Gate 

Recurrent Unit (GRU) model. The proposed KF-ECH-FS approach is evaluated through experiments on a sample 

case of camera surveillance for accident prevention. The results demonstrate that the proposed KF-ECH-FS 

method outperforms either the Kalman filter or windowing alone in terms of one-step horizon trajectory 

prediction accuracy. 

Alsanwy et al. (2022) paper focuses on the application of Long Short-Term Memory (LSTM) networks for 

predicting vehicle motion signals for driving simulators [10]. The primary objective of using driving simulators is 

to provide a realistic driving experience. However, simulator platforms have physical limitations, and Motion 

Cueing Algorithms (MCAs) are employed to generate driving sensations for the simulator user while considering 

these physical and dynamical constraints. Traditional methods for predicting vehicle motion signals struggle with 

predicting long sequences of time-series data due to the lack of a feedback loop or limited memory size. To 

address this issue, the authors propose the development of an LSTM model to predict motion signals using 

Python. The performance of the LSTM model is compared with different traditional methods using several 

evaluation criteria, including root mean squared error (RMSE), mean absolute error (MAE), and Pearson's 

correlation coefficient (r). The results indicate that the LSTM model outperforms traditional methods, such as 

Recurrent Neural Networks (RNNs), by producing more accurate motion predictions. This allows the MCA to 

deliver realistic motion sensations to the simulator user. Furthermore, the authors suggest that the LSTM model 

can be employed in a wide range of applications, including autonomous vehicle trajectory prediction and other 

prediction problems involving time-series data. 

Zhang et al. (2022a) proposed CNN model which learn behavior patterns from historical data and is capable of 

making lane change predictions to assist the decision-making of autopilot systems in real-time [11]. The 

experiments were conducted on the Next Generation Simulation (NGSIM) dataset, and the model was able to 

predict lane changes up to 7 seconds before the actual lane change occurred, using observations from only one 

second of data. The model achieved an impressive accuracy of 99% for a 3-second observation window without 

the need for extensive feature engineering. Comparisons were made with tree-based and multi-layer perceptron-

based methods to evaluate the performance of the proposed CNN model. The ability to accurately predict lane 

changes is crucial for ensuring the safety and efficient operation of autonomous vehicles. By leveraging the power 

of CNNs and combining spatial and temporal features, this work aims to improve the decision-making 

capabilities of autopilot systems, ultimately enhancing public trust and acceptance of autonomous driving 

technologies. 

Li et al. (2022) proposes a hierarchical framework based on Graph Neural Networks (GNNs) to model the 

interactions between heterogeneous traffic participants (vehicles, pedestrians, and riders) and predict their 

trajectories [12]. The proposed framework consists of two modules, each employing a GNN: one for Interactive 

Event Recognition (IER) and another for Trajectory Prediction (TP). The IER module is responsible for 

recognizing interactive events between traffic participants and the ego vehicle. The recognized results from this 

module serve as input to the TP module, which is designed for interactive trajectory prediction. To enable multi-

step prediction, the TP module combines the GNN with a Long Short-Term Memory (LSTM) network. The 

LSTM network is integrated with the GNN to capture temporal dependencies and enhance the trajectory 

prediction capabilities. The proposed hierarchical framework is evaluated using naturalistic driving data collected 

from urban traffic environments. Comparative results with state-of-the-art methods indicate that the hierarchical 

GNN framework achieves outstanding performance in both recognizing interactive events and predicting 

interactive behaviors of traffic participants. By accurately modeling the interactions between heterogeneous traffic 

participants and predicting their trajectories 

Xing et al. (2021) focuses on the correlation between driving behaviors and energy consumption in the context of 

connected automated vehicles (CAVs). It proposes an energy-aware driving pattern analysis and motion 

prediction system using deep learning-based time-series modeling approaches [13]. First, the authors statistically 

analyze energy-aware longitudinal acceleration/deceleration behaviors and lateral lane-change behaviors. They 

apply a sliding standard deviation (SSD) test to evaluate the smoothness of the trajectory and velocity signals, 

considering different energy consumption levels. The authors then propose an energy-aware personalized joint 
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time-series modeling (PJTSM) approach based on deep recurrent neural networks (RNNs) and long short-term 

memory (LSTM) cells. This approach aims to accurately predict the motion (trajectory and velocity) of the 

leading vehicle. The study compares and discusses the differences in prediction performance across various 

energy consumption levels. The results show that for heavy energy users, the prediction accuracy is the lowest 

among the three categories due to the higher randomness of their driving behaviors. This finding suggests that it is 

more challenging to anticipate the driving behaviors of vehicles exhibiting heavy energy consumption. By 

accurately recognizing driving behaviors and predicting vehicle motion while considering energy consumption 

factors, this work aims to contribute to safer automated driving and transportation systems for CAVs. The 

personalized estimation of driving behaviors can potentially enhance the safety and efficiency of connected 

automated vehicles on the road. 

Zhang et al. (2022b) proposed framework focuses on feature learning to gain a comprehensive understanding of 

lane change behaviors and achieve high prediction performance based on selected features [14]. A time-step 

dataset with more than 1,000 features is constructed from vehicle trajectory data. To identify the key features 

involved in the original feature set, the authors propose an XGBoost-based three-step feature learning algorithm. 

This algorithm integrates feature importance ranking, metric selection, and recursive feature elimination. After 

analyzing the accuracy of test data from different time segment positions, the sliding window method is applied to 

the time-step dataset with filtered features. This approach aims to properly select time segments, which are then 

flattened into corresponding time-series datasets for model prediction. The authors conducted case studies using a 

publicly available dataset, the Next Generation Simulation (NGSIM), to perform experiments on feature learning 

and lane change prediction. They achieved a new state-of-the-art accuracy of 97.6% using a time-series dataset 

with 75 selected features and a 1-second window size with the XGBoost predictor after adopting the proposed 

three-step method. This performance is superior to other state-of-the-art feature selection methods. By accurately 

predicting lane changes and enabling intelligent assistance systems, this work aims to improve road safety and 

facilitate the integration of autonomous vehicles into the future of transportation. 

Li et al. (2022) addresses the challenge of accurate trajectory prediction, which is essential for driving decision-

making and local motion planning of smart vehicles [15]. To address these issues, the authors propose a Two-

stream LSTM Network with a hybrid attention mechanism (TH-Net). Specifically, they construct a Two-stream 

LSTM structure (TS-LSTM) to build independent information transmission links for inter-vehicle interactions 

and vehicle motion states while maintaining their coupling relationship. Additionally, the authors introduce a 

Hybrid Attention Mechanism (H-AM) to explore the importance of hidden states from the dimensions of time and 

feature. This mechanism guides the TH-Net to selectively reuse the hidden states, enhancing the model's ability to 

capture relevant information. The results demonstrate that TH-Net remarkably outperforms state-of-the-art 

methods in terms of long-term trajectory prediction performance. By effectively modeling inter-vehicle 

interactions, vehicle motion states, and selectively attending to important historical information, the TH-Net 

model aims to improve the accuracy of trajectory prediction for smart vehicles. Accurate trajectory prediction is 

crucial for enabling intelligent driving decision-making and local motion planning, ultimately enhancing the 

safety and efficiency of smart vehicle operations. 

These studies demonstrate the application of various machine learning and deep learning techniques, including 

LSTM, CNN, XGBoost, and graph neural networks, to address the challenges of trajectory prediction and 

positioning. The researchers explored innovative approaches to handle complex temporal patterns, incorporate 

relevant features, and model interactions between multiple entities, aiming to improve prediction accuracy and 

support safer and more efficient transportation systems. 

Despite recent advancements, integrating driving style information into trajectory prediction models remains an 

ongoing challenge in the literature. While existing methods have shown promise, they often suffer from 

limitations in terms of generalizability and real-time performance. This research endeavors to confront these 

challenges head-on by introducing a novel approach that compares LSTM and ARIMA models, augmented with 

driving style classification. By doing so, our study aims to achieve both enhanced accuracy and efficiency in 

trajectory prediction, offering a significant step forward in addressing the shortcomings of existing 

methodologies. 
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III. METHODOLOGY 

As shown in figure 1, in this study, vehicle trajectory pairs were obtained from the data collected on the I-80 and 

US-101 freeways. The NGSIM dataset provides valuable information about vehicle trajectories under both 

congested and moderate traffic conditions, as the data were gathered from specific locations at different times. To 

simplify the characteristic indexes, Principal Component Analysis (PCA) was employed, resulting in the 

extraction of two components that captured all the relevant features. The optimal number of clusters was 

determined using the "Elbow rule" and Silhouette methods, and subsequently, the K-means algorithm was applied 

to group the vehicle driving styles. As a result, three distinct driving style categories were identified: aggressive, 

moderate, and traditional which is termed as driving style 1, driving style 2 and driving style 3 respectively in this 

research. The subsequent step involves the creation of three distinct datasets based on these clusters, each 

representing a unique driving style.  

To forecast future trends within each driving style cluster, the paper employs two advanced time-series 

forecasting models: ARIMA & LSTM. These models are applied to each of the three datasets, enabling a 

comprehensive analysis of their predictive capabilities. The assessment of accuracy and reliability in forecasting 

models is conducted through the utilization of evaluation metrics such as R square, Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). 

 

Fig. 1: Methodology adopted for the trajectory prediction 

The results obtained from the LSTM and ARIMA models are meticulously analyzed to provide insights into the 

effectiveness of each model in capturing the intricate temporal dependencies within the driving style clusters. The 

comparison involves assessing the models' performance across all three datasets, considering both X and Y 

coordinates of the vehicle. This thorough analysis serves to highlight the strengths and weaknesses of each model 

in predicting driving behaviors under different circumstances. Finally, the research paper concludes with result 

predictions, extrapolating the findings from the LSTM and ARIMA models to offer insights into future driving 

style trends. This approach not only contributes to a deeper understanding of the dynamics of driving behaviors 

but also provides a valuable foundation for the development of intelligent transportation systems and predictive 

models for safer and more efficient traffic management. 

3.1 ARIMA: 

ARIMA (Autoregressive Integrated Moving Average) stands out as a widely-used approach in time series 

forecasting. Integrating auto regression, differencing, and moving averages, ARIMA effectively models and 
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predicts time series data. Characterized by three essential parameters p, d, and q. The ARIMA model delineates 

the autoregressive order, differencing order, and moving average order, respectively [16].  

The autoregressive component of the ARIMA model of order p is given by: 

1 1 2 2t t t p t p tY Y Y Y  − − −= + ++ +ò  

Where tY  is the time series at time t, 1 2, , , p   are the autoregressive coefficients, and tò is the white noise 

error term. 

Integrated (I) Component: The integrated component of the ARIMA model of order d involves differencing the 

time series d times to achieve stationarity. 

1t t tY Y Y −= −  

Repeat this differencing process d times until stationarity is achieved. 

Moving Average (MA) Component: The moving average component of the ARIMA model of order q is given by: 

1 1 2 2t t t q t q tY   − − −= + ++ +ò ò ò ò  

Where 1 2, , , q    are the moving average coefficients and tò is the white noise error term. 

ARIMA Equation: Combining the autoregressive, integrated, and moving average components, the ARIMA (p, d, 

q) model is represented as: 

2 2

1 2 1 2(1 )(1 ) (1 )p d q

p t q tB B B B Y B B B     − − −− − = + + ++ ò  

Where, B is the backshift operator. 

In this paper, we are predicting the trajectory of a surrounding vehicle by forecasting its x & y coordinate using 

ARIMA model based on various features provided in the dataset. Initially, the necessary libraries are imported, 

including pandas for data manipulation, numpy for numerical operations, SARIMAX from statsmodels for time 

series modeling, and scikit-learn for evaluating model performance. The dataset containing the vehicle's data is 

loaded, ensuring that the 'Frame_ID' column is sorted in ascending order and set as the index. The data is then 

split into training and testing sets with an 80-20 split. Next, a multivariate ARIMA model is defined. The order of 

the ARIMA model is set as (1, 1, 1), which may require adjustment based on the data's characteristics. Exogenous 

variables (features) are included in the model to enhance prediction accuracy. The model is fitted using the 

training data. Then, it is used to forecast the x & y coordinate of the vehicle for the test set. After forecasting, 

error metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and R-squared Error (R2) are calculated to evaluate the model's performance in predicting the trajectory 

accurately. 

Finally, the actual and predicted values of the x-coordinate are plotted against the 'Frame_ID' to visualize the 

model's performance. As shown in figure 2, the green line represents the actual values, while the red line 

represents the predicted values. This plot helps in assessing how well the model captures the trajectory of the 

surrounding vehicle. 

3.2 LSTM 

Long Short-Term Memory (LSTM) networks, belonging to the category of recurrent neural networks (RNNs), are 

engineered to capture extended dependencies within sequential data. Renowned for their prowess in tasks 

spanning sequence prediction to natural language processing, LSTM networks excel owing to their adeptness in 

retaining and updating memory across prolonged sequences. At the core of LSTM architecture lie memory cells 

and three essential gates: the input gate, forget gate, and output gate. [17]. 
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The memory cell, denoted as tc  is responsible for storing information over time. It can be updated through a 

combination of the input gate, forget gate, and output gate. 

Input Gate ( ti ): Controls the information to be stored in the memory cell. 

1( )t ii t ii hi t hii W x b W h b −= + + +  

Forget Gate ( tf ): Determines the information to be discarded from the memory cell. 

1( )t if t if hf t hff W x b W h b −= + + +  

Output Gate ( to ): Controls the information to be output from the memory cell. 

1( )t io t io ho t hoo W x b W h b −= + + +  

The memory cell is updated using the input, forget, and output gates: 

1 1tanh( )t t t t ic t ic hc t hcc f c i W x b W h b− −= + + + +  

Where, represents element-wise multiplication. 

The hidden state, th , is the output of the LSTM cell and is computed as: 

tanh( )t t th o c=  

LSTM networks provide an effective solution for learning and retaining information over long sequences. The 

architecture's ability to manage memory through gates makes it well-suited for various applications in sequential 

data analysis. 

In this research, LSTM neural network model is used to predict the trajectory of a surrounding vehicle by 

forecasting its x & y coordinate of the surrounding vehicle. Initially, the necessary libraries are installed and 

imported, including TensorFlow for deep learning, pandas for data manipulation, numpy for numerical 

operations, and matplotlib for visualization. We also import tools from scikit-learn for preprocessing and 

evaluating model performance, such as MinMaxScaler for data normalization and functions to calculate mean 

absolute error, mean squared error, and R-squared error. The dataset containing the vehicle's data is loaded, and 

features are selected along with the target variable x & y. 

Next, the data is normalized using MinMaxScaler to ensure that all features are on a similar scale. The dataset is 

then split into training and testing sets with an 80-20 ratio using train_test_split. To prepare the data for LSTM, it 

is reshaped into a 3D array with dimensions (samples, time steps, features). The LSTM model is constructed with 

one LSTM layer containing 100 units followed by a dense layer with one output unit. The model is compiled 

using the Adam optimizer and mean squared error loss function. The model is trained on the training data with 

100 epochs and a batch size of 32. Validation data is provided to monitor the model's performance during 

training. After training, predictions are made on the test set. The predicted values are then inverse transformed 

using the MinMaxScaler to obtain the actual values. Evaluation metrics including mean absolute error, mean 

squared error, root mean squared error, and R-squared error are calculated using the inverse transformed 

predictions and actual values to assess the model's performance. 

Finally, the actual and predicted values of the x & y coordinate are plotted against the sample index to visualize 

the model's performance. As shown in figure 3, the blue line represents the actual values, while the red line 

represents the predicted values. This plot allows for a visual comparison of the actual and predicted trajectories of 

the surrounding vehicle. 
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IV. RESULTS 

Figure 2 & 3 depict the relationship between actual and predicted value of x & y coordinates of the vehicles’ 

using ARIMA & LSTM. The presented table-1 & table-2 showcases the various errors comparing the 

performance of two forecasting models, ARIMA and LSTM, across three distinct datasets (Dataset-1, Dataset-2, 

and Dataset-3) of driving style 1, driving style 2, driving style 3 & overall NGSIM for X and Y coordinates of the 

vehicles. The evaluation metrics include Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and R squared value. 

 

 

Fig 2: Actual vs Predicted value of x & y coordinate using ARIMA 

 

 

Fig 3: Actual vs Predicted value of x & y coordinate using LSTM 

While comparing the results obtained through three distinct driving styles with the overall NGSIM dataset results, 

for the ARIMA model, NGSIM dataset have lower MAE, MSE, and RMSE values and high R2 value for the X 

coordinate compared to all individual datasets, indicating better performance. For the Y coordinate, the NGSIM 

dataset has a higher MAE, MSE and RMSE and equal R2 values compared to individual dataset of various driving 

styles indicating poor performance of NGSIM on predicting the Y coordinate of the vehicle. 

 

Table: 1 Model trajectory prediction errors comparison using dataset of driving style 1, 2 & 3 

  Dataset-1/Driving style-1 Dataset-2/ Driving style-2 Dataset-3/ Driving style-3 

 Coordinate MAE MSE RMSE R2 MAE MSE RMSE R2 MAE MSE RMSE R2 

ARIMA 
X 3.09 21.53 4.64 0.92 2.22 10.1 3.17 0.94 2.71 14.97 3.87 0.94 

Y 0.66 0.81 0.9 0.99 1.85 5.47 2.33 0.99 1.38 3.2 1.78 0.99 

LSTM 
X 0.02 0.001 0.03 0.99 0.02 0.002 0.04 0.99 0.07 0.007 0.08 0.99 

Y 1.32 2.18 1.47 0.99 0.81 1.03 1.01 0.99 0.44 0.32 0.57 0.99 
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Table: 2 Model trajectory prediction errors comparison using overall NGSIM dataset 

 Coordinate MAE MSE RMSE R2 

ARIMA 
X 1.69 5.46 2.33 0.98 

Y 1.57 4.06 2.01 0.99 

LSTM 
X 0.08 0.009 0.09 0.99 

Y 2.46 7.29 2.7 0.99 

For the LSTM model, for both X and Y coordinate NGSIM dataset results have higher MAE, MSE, and RMSE 

values compared to all individual datasets, indicating poorer performance of NGSIM dataset in predicting of  X 

and Y coordinates of the vehicle as compared to the various driving styles obtained in our research. The R2 values 

for both X and Y coordinates are 0.99 for all datasets, suggesting good fit to the data across all cases. The detailed 

comparison graph obtained from table 1 & 2 showcasing the comparison among various driving style and NGSIM 

data through various error metrics using ARIMA and LSTM model is shown in figure 4. 

 

Fig 4: Model trajectory prediction errors comparison using dataset of driving style 1, 2 & 3 

V. CONCLUSION & FUTURE SCOPE 

In conclusion, both the ARIMA and LSTM models exhibit strong forecasting capabilities across all datasets. The 

ARIMA model consistently performs well, particularly in capturing the patterns in the Y coordinates which is 

continuously increasing in nature. The LSTM model, with its ability to model complex temporal dependencies, 

also delivers impressive results with notably low error metrics and high R2 value. The results of ARIMA model 

for the NGSIM Dataset are better for the X coordinate compared to all individual datasets, but the performance 

for the Y coordinate is mixed, with some individual datasets performing better or worse depending on the 

evaluation metric. For the LSTM model, the results obtained through the dataset of various driving styles of the 

vehicle showcase better performance as compared with the NGSIM Dataset which showcase the effectiveness of 

our research to predict trajectory of the Surrounding Vehicles’ based on driving style using LSTM & ARIMA. 

The integration of hybrid models presents an exciting prospect for future research. Combining the strengths of 

ARIMA and LSTM or incorporating other sophisticated forecasting approaches could potentially yield more 

accurate and robust trajectory predictions.  
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