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Abstract: - Infrared and visible image fusion technologies influence distinct image features acquired from distinct sensors, preserving 

complementary information from input images throughout the process of fusion, and utilizing redundant data to enhance the quality of the 

resulting fused image. Recently, deep learning methods (DL) have been employed by numerous researchers to investigate image fusion, 

revealing that the application of DL significantly enhances the efficiency of the model and the quality of fusion outcomes. Nevertheless, it 

is very important to note that DL can be implemented in various branches, and currently, a comprehensive investigation of deep learning-

based methods in image fusion is in process.The paper aims to provide an exhaustive review of the evolution of image fusion algorithms 

grounded in deep learning over the years. Precisely, this paper undertakes a particular exploration of the fusion techniques applied to 

infrared and visible images through deep learning methodologies. The investigation includes a qualitative and quantitative comparison of 

extant fusion algorithms using established quality indicators, along with a thorough discussion of diverse fusion approaches. The current 

research status concerning infrared and visible image fusion is presented, with a forward-looking perspective on potential future directions. 

This research makes an effort to contribute valuable insights into various image fusion methods developed in recent years, thereby laying a 

solid foundation for subsequent research goings-on in this domain. 

Keywords:Image Fusion, Deep Learning (DL), Convolutional Neural Networks (CNN), Generative Adversarial Networks 

(GAN) 

 

I.  INTRODUCTION 

Following diverse image processing domains, image fusion can be broadly categorized into two domains: 

transform domain and spatial domain. The primary objective of the fusion methodology is to extract relevant 

information from the input source image and integrate it effectively. Each fusion method encounters three 

fundamental challenges: image transformation, activity-level measurement, and design of the fusion rule [33]. 

Image transformation encompasses diverse multiscale decomposition, various sparse representation techniques, 

non-down sampling methodologies, and combinations of distinct transformations. Activity level measurement 

aims to quantitatively acquire information for assigning weights from different sources [12]. Fusion rules 

encompass significant rules and weighted average rules, the essence of which serves to distribute weights [32]. 

Given the rapid evolution of fusion algorithms in both theory and application, the essential aspect of image 

fusion lies in the selection of an appropriate feature extraction strategy. Designing a skillful convolution neural 

network and adjusting parameters for deep learning-based image fusion remains challenging. Particularly in 

recent years as there is the introduction of adversarial networks for image fusion. While this approach yields a 

more apparent fusion effect, careful consideration is essential to address the inherent challenges of gradient 

disappearance and gradient explosion encountered during adversarial training. 

Visible images have the same visual qualities as the human eye, displaying a wealth of rich information and 

edge features [13]. Visible light sensors help to produce richer image spectrum information, including distinct 

scene details, texturing, and increased spatial resolution. However, in poor settings such as nighttime, 

camouflage, hidden objects in smoke, background clutter, etc., the target may be difficult to detect in visible 

images. 
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In contrast, in usual circumstances, objects emit thermal radiation in the form of electromagnetic waves at 

various frequencies. This phenomenon, known as thermal radiation, remains imperceptible to the human eye [1]. 

To detect thermal radiation information, the utilization of distinct sensors is requisite, particularly in the 

processing of infrared images to extract thermal radiation data, thereby enhancing target detection capabilities 

[11]. Infrared images offer the advantage of justifying external environmental factors such as sunlight, smoke, 

and other conditions [1,12]. Nevertheless, they present challenges in terms of low contrast, intricate 

backgrounds, and suboptimal feature performance. 

Consequently, the fusion of infrared and visible light technologies combines the respective advantages of the 

two modalities, retaining a more comprehensive set of infrared and visible feature information in the resultant 

fusion [14,35]. The universal applicability and mutual complementarity of infrared and visible images have 

applied the fusion technology into diverse fields, assuming an increasingly crucial role in the domain of 

computer vision. 

The integration technique that combines visible and infrared images has become widely used these days in many 

different fields, such as electronics, industrial applications, remote sensing detection, image enhancement, target 

detection, and recognition, among others. Many visible and infrared image fusion techniques have been put 

forth recently in the image fusion field. However, there are still issues with applying these fusion techniques to 

different circumstances involving the fusion of visible and infrared image [36,37]s. To improve information 

richness, a popular fusion technique incorporates prominent features from the source image into the fusion 

image. On the other hand, the unique properties of infrared heat radiation, which are mostly expressed in terms 

of pixel intensity, are in opposition to the textural detail information found in visual images that are defined by 

gradients and edges. Using conventional manually created fusion rules that are based on the same selection 

criteria as the fused image could lead to a lack of diversity in features and could introduce artifacts into the 

fused image. Furthermore, manual fusion criteria add to the growing methodological complexity in the context 

of multi-source image fusion. The comparison between deep learning-based and conventional image processing 

is explained in Table 1, which is provided below.  

Parameter 
Conventional 

Image processing 

Deep learning-based 

image processing 

Training dataset Small Large 

Computing power Low High 

Training time Short Long 

Algorithm 

Transparency 
High Low 

Assumptions Few Many 

Deployment 

Flexibility 
High Low 

Expenditure Low High 

Table 1 Comparison between deep learning and traditional image processing 

Addressing these issues, the image fusion methodology grounded in deep learning employs an adaptive 

mechanism to assign weights to the model [34]. In comparison to the rule design inherent in traditional methods, 

this approach substantially reduces computational costs, a critical consideration in numerous fusion rules. As 

such, this research paper endeavours to conduct a comprehensive review of existing infrared and visible image 

fusion algorithms based on deep learning, including their future developmental trajectories and associated 

challenges.  

The paper also presents an overview of the theoretical underpinnings of visible and infrared image fusion, as 

well as the corresponding fusion evaluation indices. To provide a solid basis for future study, a qualitative and 

quantitative comparison of studies from relevant literature is offered. In the end, the survey summarizes current 

fusion approaches and examines potential directions for further research in this field. 
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II. FUSION OF INFRARED AND VISIBLE IMAGES USING DEEP LEARNING 

Recent years have witnessed a large number of innovative approaches utilizing deep learning for the fusion of 

infrared and visible images. These state-of-the-art methodologies find widespread application in diverse domains 

such as image pre-processing, target recognition, and image classification. Figure 2 provides a schematic 

representation of the conventional fusion framework, highlighting two essential factors: feature extraction and 

feature fusion. The primary theoretical methodologies employed in these algorithms include multi-scale 

transformation, sparse representation, subspace analysis, and hybrid techniques. However, the inherent limitations 

of these artificially designed feature extraction methods contribute to the complexity of the image fusion 

algorithm.  

In response to the shortcomings of conventional fusion methods, deep learning techniques are incorporated for 

feature extraction. The evolving landscape of deep learning has led to the emergence of several fusion 

methodologies, notably based on convolutional neural networks (CNN), generative adversarial networks (GAN), 

Siamese networks, and autoencoders within the field of image fusion. Table 1 categorically lists the principal 

fusion methods discussed in this section. While image fusion outcomes derived from deep learning exhibit 

commendable performance, it is important that many methods also encounter apparent challenges. Consequently, 

a detailed exposition of each method will be provided to explicate both their merits and challenges. The deep 

learning-based image fusion process typically involves various steps in which training the data is of prime 

importance. 

Data training involves the collection and pre-processing of input images earmarked for fusion. It is imperative to 

ensure that the data is suitably annotated if a supervised learning approach is adopted.Network Architecture 

Design entails the selection of an appropriate deep-learning architecture tailored for image fusion tasks. 

Convolutional Neural Networks (CNNs) stand as a prevalent choice for this purpose. The architectural design 

necessitates the accommodation of multiple input images, culminating in the generation of a fused output. 

 The Training phase goes through the following steps: 

1. Dataset division into training and validation subsets.     Model training using the training subset, wherein 

weight adjustments are made based on the disparity between predicted and ground truth fused images.     

Employment of a loss function to quantify deviations between predicted and actual fusion outcomes. 

2 Validation phase: Assessment of the model's performance on the validation subset to ascertain its 

generalization capabilities to unseen data.  Potential refinement of the model is contingent upon validation 

outcomes. 

3 The Testing/Inference stage: Utilization of the trained model to fuse novel, unobserved images. Application of 

acquired transformations to amalgamate features from input images into a fused output. 

4. Post-processing, while discretionary, may be employed to refine the final fused image in accordance with 

specific criteria. 

5 Evaluation:  Evaluation of fused image quality using pertinent metrics such as the structural similarity index 

and peak signal-to-noise ratio, alongside visual scrutiny. 

 This systematic approach facilitates the acquisition of intricate patterns and relationships within input images 

by deep learning models, thereby facilitating the generation of high-quality fused images with enhanced 

performance relative to conventional methodologies. 

A.  CNN-Based Fusion Methods  

In the area of computer vision, convolutional layers are crucial for feature extraction, often yielding richer 

information compared to conventional manual methods [55,56]. A fundamental challenge in image fusion lies in 

the extraction of salient features from source images and their integration to produce a organized fused image. 

However, the application of Convolutional Neural Networks (CNNs) to image fusion encounters three primary 

obstacles. Firstly, training an effective network demands ample labelled data, yet architectures for image fusion 
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based on CNNs are often simplistic, with insufficient convolutional layers to adequately extract features, leading 

to poor fusion performance. Secondly, the integration of manually devised image fusion rules into an end-to-end 

model network poses challenges, introducing errors during feature reconstruction that compromise image 

fidelity. Lastly, conventional CNN algorithms overlook valuable information in the final layer, resulting in 

incomplete preservation of model features. As network depth increases, the loss of crucial features increases, 

damagingly impacting the overall fusion outcome. 

 

Figure 1. Block diagram of CNN based visible(VIS) and infrared(IR) image fusion algorithm 

The study leads the segmentation of source image data into two distinct components: one encompassing low-

frequency information and the other comprising texture details. The model under consideration adopts a 

multilayer fusion strategy inspired by the architecture of the VGG-19 network [24], facilitating the extraction of 

deep features indicative of intricate content characteristics. In contrast to conventional multiple exposure fusion 

(MEF) algorithms reliant on manually engineered features for image fusion, the discussed model demonstrates 

resilience to variations in input conditions without necessitating parameter adjustments, thereby mitigating 

potential degradation in algorithm robustness and computational overhead associated with processing multiple 

exposure images. The efficacy of Convolutional Neural Networks (CNNs) is primarily dependent upon the 

selection of appropriate loss functions. Notably, Prabhakar et al. [25] propose a method obviating the need for 

parameter tuning in response to input variations. The fusion network architecture comprises three key 

components: an encoder, a fusion layer, and a decoder, leveraging encoder networks for fusion tasks. Within the 

CNN paradigm, optimization of loss function parameters enhances the accuracy of result prediction. In a related 

context, Ma et al. [26] introduce an infrared and visible image fusion approach predicated on minimizing total 

variation (TV), thereby ensuring alignment of the fused image's pixel intensity with that of the infrared image 

and its gradient characteristics with those of the visible image. Similarly, Li et al. [27] present a fusion 

framework integrating deep features and zero-phase component analysis. Initially, a residual network is 

employed to extract depth features from the source image, followed by normalization utilizing ZCA-zero-phase 

component analysis and L1-norm to derive an initial weight map. Subsequently, a weighted average strategy is 

employed for the reconstruction of the fused image. 

B. Autoencoder-Based Fusion Method 

An autoencoder constitutes a fundamental layer within a neural network framework, wherein the application of 

backpropagation facilitates the acquisition of an approximation to the identity function, thereby endeavouring to 

faithfully reproduce its input at its output. Through iterative refinement of network parameters guided by an 

appropriate cost function, the overarching objective is to discern correlations within high-dimensional datasets, 

thus engendering improved feature representations thereof. Structurally, stacked autoencoders (SAEs) are 

composed of multiple layers of such autoencoders, wherein the outputs of each layer are intricately connected to 

the inputs of subsequent layers, facilitating hierarchical abstraction and representation learning [28]. 
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Figure 2. Autoencoder-based infrared and visible image fusion framework [4]. 

C. Siamese Networks-Based Fusion Methods 

One of the inherent challenges in image fusion arises from the disparate imaging modalities employed in 

capturing infrared and visible images. A pyramid framework is utilized for feature extraction, separate from the 

infrared and visible images, to guarantee that the final fused image preserves all of the information from both 

source images. 

A Siamese convolutional network designed especially for image fusion tasks was recently proposed by Liu et al. 

[29]. This network produces a weight map that is essential for the ultimate fusion decision, given two source 

images as input. To produce an excellent training dataset, a large number of natural photos are processed using 

random sampling and Gaussian blurring. Notably, this approach emphasizes activity level measurement, with 

weight assignments concurrently determined by the network. Specifically, convolutional layers and fully-

connected layers function analogously to activity level measurement and weight assignment components, 

respectively, within the context of image fusion. 

The proposed model comprises four key steps: passing the infrared and visible images through the convolutional 

neural network to generate weights, decomposing the source image weights using Gaussian and Laplacian 

pyramids, and finally fusing the information obtained from each pyramid decomposition via weighted 

averaging. The operational principle of the Siamese network in the fusion process is elucidated in Figure 3. 

 

Figure 3. Siamese network-based infrared and visible image fusion scheme [4] 

In a related context, Zhang et al. [30] assert the potent feature representation capability of CNNs, albeit 

acknowledging the time-intensive nature of model training and updating. Hence, they advocate for the 

utilization of the Siamese network for pixel-level fusion to expedite processing time. The proposed method 

involves fusing infrared and visible images before subjecting them to the Siamese network for feature tracking. 

Moreover, Piao et al. [4] devise an adaptive learning model predicated on the Siamese network, aiming to 

automatically generate corresponding weight maps based on pixel saliency in the source images. This approach 
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mitigates the issue of parameter redundancy associated with traditional fusion rules. The proposed methodology 

employs a three-level wavelet transform to decompose the source image into low-frequency and high-frequency 

weight maps, subsequently leveraging scaled weight maps for reconstructing the wavelet image and obtaining 

the fused image. 

D. GAN-Based Fusion Methods 

Current deep learning-based image fusion methodologies commonly employ Convolutional Neural Network 

(CNN) models. However, this approach typically necessitates the provision of ground truth data for model 

training. Yet, in the context of fusing infrared and visible images, establishing definitive fusion image standards 

proves impractical. Consequently, to avoid reliance on ground truth data, a deep model is trained to assess the 

degree of blurring in each patch of the source image, subsequently calculating weights accordingly to generate 

the final fusion image. An alternative approach to addressing these challenges involves employing a generative 

adversarial network (GAN) for image fusion. 

In their work [28], Ma et al. introduced an image fusion method based on generative adversarial network 

architecture. Here, the generator component primarily focuses on fusing infrared and visible images, while the 

discriminator's role is to ensure that the fused image preserves more details from the visible image, thereby 

simultaneously retaining both visible texture information and infrared heat radiation information in the fusion 

image. Figure 4 illustrates the image fusion framework based on GAN. Despite its effectiveness, fusion GANs 

encounter limitations wherein vital information from the source images may not be fully retained during the 

fusion process and considerable computational resources are consumed during convolution operations. 

In response to these challenges, the work presented in reference [32] advocates for the adoption of learning 

group convolution as a means to bolster model efficiency while conserving computational resources. This 

methodology strives to attain a more optimal equilibrium between model precision and processing velocity. 

Moreover, the incorporation of residual dense blocks as foundational elements within the network architecture, 

coupled with the integration of dormant perceptual attributes as features for input content loss, serves to 

facilitate robust supervision of deep networks.  

 

Figure 4. GAN-based infrared and visible image fusion framework 
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Considering the inherent challenges associated with Convolutional Neural Networks (CNNs), relying solely on 

adversarial training may lead to the cost of detailed information. Thus, a min-max game is formulated between 

the generator and discriminator components. The model loss encompasses factors such as detail loss, target edge 

loss, and confrontation loss.  

In a related study, Xu et al. [33] leverage local binary pattern (LBP) analysis to intuitively capture edge 

information in images. By comparing pixel values between central and surrounding pixels, a fusion image with 

enhanced boundary delineation is generated. The discriminator in this approach encodes and decodes both the 

fused image and individual source images, subsequently assessing the disparities in distributions post-decoding. 

Additionally, Li et al. [34] adopt a pre-fused image as a reference strategy, enabling the generator to utilize it as 

a benchmark during the generation process. This ensures that the generated fused image effectively preserves 

the rich texture from the visible image and thermal radiation information from the infrared image.  A 

comprehensive impression of various image fusion techniques based on genetic algorithms (GA) is presented. 

III. EXPERIMENTAL RESULTS 

The qualitative examination of experimental outcomes reveals notable distinctions in the fusion performance 

across various methodologies. Specifically, the fusion results obtained through the guided filtering-based fusion 

method (GFF) exhibit a pronounced presence of artifacts over a substantial area, coupled with a diminished 

prominence of the thermal radiation target. In contrast, fusion images generated via fusion GAN demonstrate a 

heightened presence of texture details, elevated image contrast, and more salient thermal radiation targets 

compared to alternative approaches. Consequently, a qualitative assessment underscores the imperative for 

further optimization across the majority of the aforementioned methodologies. 

The fusion algorithm can be embedded in various applications and enhance the original method due to the 

complementary features present in the feature information of infrared and visible images. This fusion 

technology has been utilized in diverse areas such as target detection, tracking, surveillance, remote sensing, and 

medical image processing [4]. 

The qualitative experimental findings reveal notable distinctions among the fusion outcomes of various 

methods. Specifically, the guided filtering-based fusion method (GFF) exhibits extensive artifacts and lacks the 

prominence of thermal radiation targets, as depicted in Fig. 5 (c). In contrast, fusion images generated by the 

dual-discriminator conditional generative adversarial network (DDcGAN) and fusion GAN display heightened 

texture detailing, increased image contrast, and more pronounced thermal radiation targets, as illustrated in Fig. 

5 (e). 

Comparison between pairs of infrared images and visible images in the TNO dataset. Quantitative experimental 

results show that each fusion algorithm has advantages and disadvantages, and different methods show different 

advantages in different aspects. With deep learning in infrared and visible image fusion, superior new 

technologies have been continuously emerging to achieve better fusion results. In general, the fusion effect of 

GFF, fusion GAN, and DDcGAN is better than other methods in terms of brightness, texture detail, and 

contrast. It can be seen from Figure 5 that DDcGAN was generally, even on individual indexes of several fusion 

methods, is better than the last. However, through Table 3, it is found that the operation efficiency of DDcGAN 

is lower than fusion GAN. Considering that the balance between computational complexity and fusion effect is 

essential for the fusion of infrared and visible images, infrared and visible image features will become a 

challenging problem. Most image fusion indicators can only reflect the quality of the fused image to a certain 

extent. Hence, it is necessary to study more effective fusion methods and evaluation indicators to conduct a 

comprehensive quality evaluation.The table below explains the characteristics of Deep learning based image 

fusion methods.  
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Figure 5. Infrared and visible image fusion results on typical image pairs from the TNOdatabase. From 

left to right: Bunker, Kaptein_1654, Kaptein_1123 and Sand path. From topto bottom: (a) the visible 

image, (b) the infrared image, (c) GFF, (d) deep fuse (e) fusion GAN (f) DDcGAN [4]. 

DL 

Model 
Major Characteristics 

CNN 

- A fully connected CNN is learned to model the complex process of preventing motion artifacts in 

dynamic scenes. 

- Capable of autonomously extracting features and learning representative features from training data 

without human intervention. 

- High computational cost associated with the approach. 

- Utilizes a fully connected Convolutional Neural Network (CNN) to mitigate motion artifacts in 

dynamic scenes, extracting features autonomously and learning representative features from training 

data without manual intervention. However, this method imposes a significant computational burden. 

CSR 
- Operates by computing a sparse representation of the entire image. 

- Facilitates a shift-invariant representation. 

 

 

(a) Input visible images 

    

(b) Input IR images 

    

(c) GFF output images 

   

(d) Deep fuse 

    

(e) Fusion GAN 

    

(f) DDcGAN 
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- Adept at preserving details and less susceptible to misregistration issues. 

- Requires a significant amount of training data for efficacy. 

SAE 

- Employs an automatic feature extraction strategy combining autoencoder and dense network 

architectures. 

- Utilizes separate encoders for RGB and infrared imagery. 

- Followed by a decoder module to restore feature map resolution. 

- Incorporates a two-phase training mechanism with potential in scenarios with limited labeled data. 

- Training process may be prolonged without access to robust GPUs. 

GAN 

- Interaction between generator and discriminator 

- Employing trainable group convolution 

- Adversarial generation network with dual discriminators 

- Utilization of local binary pattern representation 

- Pre-fused image used as the ground truth label 

Table 2Mejor characteristics of DL based Image fusion methods 

IV. EVALUATION METRICS 

Quantitative experimental findings reveal that each fusion algorithm possesses its own set of advantages and 

disadvantages, showcasing distinct strengths in different aspects. The advancement of deep learning in infrared 

and visible image fusion has led to the emergence of superior technologies that consistently deliver improved 

fusion outcomes. Specifically, in terms of brightness, texture detail, and contrast, fusion GAN generally 

outperforms other methods. This observation is evident from the results presented in Table 2.  

Fusion Method SD SF 

CVT 28.700 6.9696 

Deep Fuse CNN 44.0915 6.9603 

Fusion GAN 48.5708 7.4707 

Table 3 Comparison of Evaluation metrics for various fusion methods 

Given the importance of striking a balance between computational complexity and fusion effectiveness in the 

fusion of infrared and visible images, it becomes evident that extracting meaningful features from these types of 

images poses a challenging and intricate problem. It is worth noting that most image fusion evaluation indicators 

only partially gauge the quality of the output fused image. Therefore, research necessitates the exploration of 

more effective fusion methods and evaluation indicators to facilitate wide-ranging quality assessments. Table 3 

given below explains the challenges that need to face while using CNN and CSR methods. Observing that, GAN 

can be a good choice among other deep learning-based models. 

DL Model Challenges 

     CNN 

- Exclusively applicable to multi-focus image fusion 

- Utilizes only the final layer for result computation 

- Valuable information captured by intermediate layers disregarded 

- Heightened network depth exacerbates information loss 

- Feature extraction leads to inevitable information loss 

- Discrepancies in resolution and spectral characteristics across application          

domains affect fusion outcome accuracy 

- Specific characteristics of source images require meticulous consideration 

within each dataset 

- Accommodating multitude of samples with intricate backgrounds imposes 

substantial computational burden during model training 
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            CSR 

- Selection of image transform 

- Design of fusion strategy: activity level measurement and fusion rule 

- Selection of fusion manner: reconstruction-based or non-reconstruction 

based 

- Generation of training examples 

- Setting of learning parameters 

Table 4 Challenges for Various Fusion Methods 

V. CONCLUSION 

The basic goal of image fusion is to generate a single fused image. Image fusion entails the amalgamation of two 

or more images derived from diverse sensors possessing distinct characteristics. This process aims to synthesize 

pertinent information from the source images into a comprehensive, informative singular image. The resultant 

fused image typically offers enhanced reliability and accuracy compared to any singular constituent image. 

Additionally, it exhibits a heightened capacity to discern features within the image. With the expanding adoption 

of deep learning techniques across various Image tasks, fusion methodologies commonly fall into two categories: 

deep learning-based and traditional approaches. Deep learning methods, necessitated by the absence of ground 

truth in image fusion, typically adopt an end-to-end fusion strategy facilitated by specialized loss functions and 

the integration of fusion strategies within the network's feature map set. Conversely, traditional methods tend to 

lack the robust feature representation and learning capabilities inherent to deep learning methodologies. To 

capitalize on the strengths of both paradigms, this study proposes a hybrid approach that amalgamates deep 

learning and traditional methodologies. Here, deep learning serves to extract texture features from images, which 

are subsequently leveraged in traditional image-processing tasks to enhance their efficacy. 

A notable advancement within the realm of deep learning methodologies, particularly in domains such as 

computer vision, is the utilization of a technique known as data augmentation. This technique yields improved 

model performance by enhancing model proficiency and introducing a regularization effect, thereby reducing 

generalization error. Data augmentation operates by generating new synthetic examples within the problem 

domain on which the model is trained. Particularly for image data, these techniques often involve rudimentary 

manipulations such as cropping, flipping, zooming, and other basic transformations applied to existing images 

within the training dataset.Successful implementation of generative modeling offers a potential alternative that is 

more tailored to the specific characteristics of the domain for data augmentation purposes. In essence, data 

augmentation can be perceived as a simplified manifestation of generative modeling. 

The integration of Deep Learning (DL) techniques into the fusion of visible and infrared (VI-IR) images has 

witnessed rapid advancement in recent years. Nonetheless, owing to the intricate nature of application situations 

and the concurrent chase of computational efficiency and fusion efficiency, various facets of VI-IR image fusion 

warrant further refinement. Moreover, there exist promising avenues for potential development in this domain. 

This review critically examines the latest advancements in DL-based image fusion technology, delineating key 

areas necessitating enhancement in the future. Specifically, the review scrutinizes DL-based fusion 

methodologies for infrared and visible imagery that have emerged in recent years. These methodologies are 

broadly categorized into four distinct groups: Convolutional Neural Network (CNN)-based approaches, 

Generative Adversarial Network (GAN)-based methods, Siamese network-based techniques, and Autoencoder 

architectures. The utilization of a deep convolutional network facilitates the acquisition of a fused image wherein 

all objects are accurately focused within a unified foreground and background context. Within this framework, 

convolutional and max-pooling layers inherent to Convolutional Neural Networks (CNNs) are leveraged to 

extract high-frequency details from the input source images. In future scope progress can be made in the field, 

particularly through methodologies such as Fully Learnable Group Convolution (FLGC)-fusion GAN, Dual-

Discriminator Conditional Generative Adversarial Network (DDcGAN), and other contemporary approaches 

discussed herein, it becomes evident that Deep Learning (DL) has progressively evolved and matured in the realm 

of image fusion. However, within the domain of DL, which finds widespread application in the fusion of infrared 

and visible imagery, continued attention to fusion efficacy and computational considerations remains imperative. 
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