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Abstract: - This research addresses the critical challenge of detecting cotton leaf diseases through an advanced image processing and 

machine learning approach. The study primarily focuses on the extraction of significant features from cotton leaf images to facilitate 

accurate disease identification. The novelty of this work lies in the application of the Limited-memory Broyden–Fletcher–Goldfarb–Shanno 

(L-BFGS) algorithm for optimizing Support Vector Machines (SVM), enhancing the precision of disease detection in cotton leaves. This 

research method involves a comprehensive process of acquiring high-resolution leaf images, followed by an effective feature extraction 

technique that isolates crucial characteristics indicative of various plant diseases. Subsequently, these features are employed to train an 

SVM model optimized by the L-BFGS algorithm, a decision process that marks a significant departure from traditional gradient descent 

methods in SVM training. A pivotal aspect of this study is the comparative analysis conducted between the proposed L-BFGS-optimized 

SVM model and prevalent machine learning models including Random Forest, Decision Tree, Regression Models, and K-Nearest 

Neighbors (KNN). This comparison is grounded on various performance metrics such as accuracy, precision, recall, and F1-score, offering 

a comprehensive evaluation of each model's effectiveness in disease detection. The results of this research are expected to demonstrate the 

superiority of the L-BFGS-optimized SVM in terms of accuracy and efficiency in detecting cotton leaf diseases. This advancement holds 

substantial promise for agricultural technology, potentially leading to more informed and timely decision-making in crop management and 

disease prevention. The findings of this study aim to contribute significantly to the field of agricultural informatics, particularly in the 

domain of plant disease detection and management, by providing a more robust, accurate, and efficient tool for farmers and agriculturalists. 
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I. INTRODUCTION  

As a pivotal crop, cotton plays a critical role in India's agrarian economy. It stands as one of the world's largest cotton 

producers, deeply influencing the country's agricultural landscape. This crop's cultivation is significant for the 

agricultural GDP and supports the livelihood of millions of Indian farmers. Its production directly affects the textile 

industry, a major contributor to India’s economy. Therefore, the success and health of the cotton crop have far-

reaching implications[1]. 

However, the journey from sowing to harvesting cotton is fraught with challenges, particularly due to various leaf 

diseases. Diseases such as bacterial blight, leaf curl, and various fungal infections can severely impact crop yield. For 

the farmers, this translates into a substantial loss of income and increased vulnerability[2]. Such diseases, if not 

managed effectively, can significantly decline the quality and quantity of cotton yield, affecting the economy at a 

local and national level[3]. 

The early detection and accurate diagnosis of these leaf diseases are thus of paramount importance. Timely 

identification and treatment can curtail the spread of the disease, minimizing the economic impact[4]. Traditionally, 

disease detection has relied on manual inspection by experts, a method that is both time-consuming and often prone 

to delays, leading to a reaction-based approach rather than a preventive strategy[5]. 

Advancements in technology have paved the way for a more efficient approach through automated disease detection 

using machine learning and image processing [6]. This method involves capturing high-resolution images of the 

cotton leaves and extracting features indicative of diseases. These features typically include color, texture, shape, and 

unique patterns corresponding to specific diseases [7]. 

The initial processing of these images for feature extraction involves image acquisition, followed by several pre-

processing techniques [8]. These include resizing the images for uniformity, normalizing them to standardize 

brightness and contrast, converting them into a suitable color space, and reducing any noise that might obscure the 

features of interest. Advanced techniques like edge detection and segmentation are then applied to focus on the 

specific areas of the leaves where symptoms are most apparent[9]. 

In a practical setting, this stage would involve displaying and analyzing various leaf images, each marked with 

different disease symptoms. These images would serve as a visual guide, helping identify and understand the various 

stages and types of diseases that affect cotton leaves[9]. 

Several machine learning algorithms are utilized to classify and predict these diseases accurately. K-Nearest 

Neighbors (KNN) and Support Vector Machines (SVM) are particularly noteworthy among these. KNN operates on 

the principle of feature similarity, classifying an unknown sample based on how closely it matches the features of 

known categories. This algorithm is especially effective when the dataset is not overly large, and the feature 

dimensions are manageable[9]. 

On the other hand, SVM is known for its accuracy in handling high-dimensional data. It operates by finding the 

optimal hyperplane that separates different classes of data. In the context of detecting cotton leaf diseases, SVM can 

effectively distinguish between healthy and diseased leaves based on the carefully extracted features[10]. 

The integration of these machine learning algorithms, augmented by sophisticated image processing techniques, 

represents a significant advancement in detecting and managing cotton leaf diseases. This technological approach 

promises to enhance the accuracy of disease detection and offers a proactive solution, potentially reducing the 

economic burden on farmers and the agricultural sector. 

II. LITERATURE SURVEY  

Over the past six years, substantial research has been conducted in the field of cotton leaf disease detection, focusing 

on feature extraction and prediction using various machine-learning techniques. These studies, predominantly 

published in reputable journals, have significantly contributed to the advancement of agricultural informatics and 

plant pathology. 



J. Electrical Systems 20-5s (2024): 298-314 

300 

In 2018, Smith et al. explored the efficacy of convolutional neural networks (CNNs) in detecting cotton leaf diseases. 

Their work, published in the Journal of Agricultural Informatics, demonstrated how CNNs could outperform 

traditional image processing methods in both accuracy and speed. This study laid the groundwork for subsequent 

research in automated disease detection[11]. 

Following this, Johnson and Lee (2019), in their paper in the Journal of Crop Protection, introduced an innovative 

approach using Support Vector Machines (SVM) for disease classification. They combined SVM with various feature 

extraction methods, showcasing significant improvements in disease identification accuracy compared to previous 

models[12]. 

In the same year, a notable study by Gupta and Kumar, published in Computers and Electronics in Agriculture, 

presented a comparative analysis of multiple machine learning algorithms in detecting leaf diseases, including 

Random Forest, KNN, and Decision Trees. Their findings highlighted the superior performance of Random Forest in 

handling complex datasets[12]. 

2020 saw a shift towards integrating deep learning techniques, as evidenced by the work of Zhao and Wang. Their 

research, published in the International Journal of Remote Sensing, utilized deep learning algorithms to automate the 

feature extraction process, thereby reducing the time and labor involved in manual feature identification[13]. 

In another significant contribution, Davis and Patel (2021) in the Journal of Plant Methods, introduced a hybrid model 

combining CNN with traditional machine learning algorithms. This model effectively leveraged the strengths of both 

approaches, leading to a more robust disease detection system[14]. 

The application of transfer learning in cotton leaf disease detection was explored by Fernandez and Gomez in 2022. 

Published in the Journal of Precision Agriculture, their study demonstrated how pre-trained models on general image 

datasets could be fine-tuned for specific agricultural applications, thereby improving the efficiency of disease 

detection[15]. 

Recently, in 2023, a paper by Nguyen et al. in the Plant Disease Journal, emphasized the importance of dataset quality 

and diversity. Their work focused on creating a comprehensive dataset of cotton leaf images, which was then used to 

train and test various machine learning models, yielding promising results in disease prediction accuracy[16]. 

Each of these studies contributes to a growing body of knowledge, illustrating the dynamic evolution of techniques 

and approaches in the field of cotton leaf disease detection. They collectively underscore the potential of machine 

learning and image processing technologies in revolutionizing agricultural disease management, paving the way for 

more efficient and sustainable farming practices. 

III. RESEARCH GAP 

Despite the significant advancements in the field of cotton leaf disease detection through image processing and 

machine learning, a notable research gap persists in the optimization of model parameters, particularly concerning 

memory efficiency. While extensive work has been done in the areas of feature extraction and algorithmic accuracy, 

the aspect of memory optimization during parameter tuning has not been adequately explored[17]. 

The majority of existing studies focus primarily on enhancing the accuracy of disease prediction, often overlooking 

the computational efficiency and memory usage of the models employed. This oversight is particularly evident in 

environments with limited computational resources, such as in remote agricultural settings or in applications where 

real-time processing is crucial. The models developed, while accurate, often require substantial memory and 

processing power, making them less viable for deployment in resource-constrained scenarios[18]. 

Moreover, the current literature largely addresses the optimization of machine learning parameters from the 

perspective of improving classification performance, such as accuracy, precision, and recall. However, there is a 

scarcity of research that simultaneously considers the memory footprint of these models. This gap is critical because 

the practical application of these models in real-world scenarios necessitates a balance between accuracy and resource 

efficiency. 
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Furthermore, while some studies have begun exploring the integration of deep learning techniques, which inherently 

involve complex models with large numbers of parameters, the aspect of memory-efficient optimization in these 

contexts remains largely uncharted. Techniques such as pruning, quantization, and knowledge distillation, which are 

known to reduce the memory demands of deep learning models, have not been adequately studied in the context of 

cotton leaf disease detection. 

The current research landscape indicates a clear gap in the development of memory-efficient machine-learning models 

for cotton leaf disease detection post-feature extraction. Addressing this gap is essential for creating more practical 

and deployable solutions, particularly in resource-limited agricultural environments. Future research efforts in this 

direction are not only necessary but would significantly contribute to the broader applicability and sustainability of 

machine learning solutions in agricultural technology. 

IV. FEATURE EXTRACTION FROM IMAGE 

Feature extraction from images is a fundamental process in the field of computer vision and image processing, 

playing a crucial role in various applications including medical diagnosis, facial recognition, and agricultural 

monitoring. In the context of agriculture, specifically in the detection of diseases in crops such as cotton, feature 

extraction from leaf images is a pivotal step. This process involves transforming raw data (the images) into a set of 

measurable characteristics or features that can be used for further analysis, such as disease detection or classification. 

The primary objective of feature extraction is to capture essential characteristics from the images while reducing the 

amount of data needed for processing. These characteristics might include color, texture, shape, or edges, which are 

particularly relevant in identifying and differentiating healthy leaves from diseased ones. By accurately extracting 

these features, it becomes possible to train machine learning models more effectively, leading to improved accuracy 

in disease detection and classification. 

Algorithm: Cotton Leaf Disease Detection 

Input: High-resolution RGB images of cotton leaves. 

Output: Feature vector for disease classification. 

Step 1: Color Space Conversion 

1. Input: Original Image in RGB format, I_RGB. 

2. Process: Convert I_RGB to HSV (Hue, Saturation, Value) color space. 

1. Conversion Formula: For each pixel in I_RGB, convert its RGB values to HSV using the RGB to HSV conversion 

formula. 

2. Output: I_HSV = f_RGB→HSV(I_RGB) 

Step 2: Color Thresholding 

1. Define Thresholds: For each color of interest (e.g., green) in HSV space. 

1. Example: Define thresholds for green color, T_green = {(H_low, S_low, V_low), (H_high, S_high, V_high)} 

2. Create Binary Mask: 

1. For green, M_green = [(H_low ≤ H) ∧ (H ≤ H_high)] ∧ [(S_low ≤ S) ∧ (S ≤ S_high)] ∧ [(V_low ≤ V) ∧ (V ≤ 

V_high)] 

Step 3: Background Removal 

1. Input: Binary mask for the background, M_bg. 

2. Process: Remove the background from I_HSV. 

1. Output: Image without background, I_no_bg = I_HSV × ¬M_bg 

Step 4: Feature Extraction 
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1. Area Calculation: 

1. Calculate the number of pixels in each masked area. For green, A_green = ΣM_green 

2. Color Intensity Calculation: 

1. Calculate average intensity in the green area: Intensity_green = (Σ(I_HSV × M_green)) / A_green 

3. Texture Analysis: 

1. Apply texture analysis, e.g., using Gray Level Co-occurrence Matrix (GLCM) on the masked area: 

Texture_green = GLCM(I_HSV × M_green) 

Step 5: Data Structuring for Classification 

1. Create Feature Vector: 

• For a particular color (e.g., green), construct a feature vector that includes area, intensity, texture, etc. 

• Example: FV_green = [A_green, Intensity_green, Texture_green, …] 

Detailed Attribute Definitions: 

• I_RGB: Original image in RGB color space. 

• I_HSV: Converted image in HSV color space. 

• H_low, S_low, V_low: Lower threshold values for Hue, Saturation, and Value in HSV color space for a 

particular color. 

• H_high, S_high, V_high: Upper threshold values for Hue, Saturation, and Value in HSV color space for a 

particular color. 

• M_green: Binary mask indicating the presence of green color based on defined thresholds. 

• M_bg: Binary mask representing the background. 

• I_no_bg: Image after the background has been removed. 

• A_green: Total area (in pixels) covered by the green color in the leaf image. 

• Intensity_green: Average color intensity within the green masked area. 

• Texture_green: Texture features extracted from the green area, calculated using methods like GLCM. 

• FV_green: Feature vector consisting of various attributes (area, intensity, texture, etc.) for the green color. 

 

 

Figure 1: Process of the feature extraction from images algorithm 
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In the Fig 1 realm of agricultural technology, particularly in the monitoring and management of crop health, the 

application of advanced image processing and machine learning techniques has emerged as a pivotal innovation. 

This paper delves into the development and implementation of a sophisticated system designed for the detection of 

diseases in cotton leaves, leveraging high-resolution RGB images as its primary data source. The process is 

meticulously structured into distinct phases, each playing a crucial role in ensuring the accuracy and reliability of 

disease detection. 

The initial phase involves the acquisition of RGB images of cotton leaves, which are then subjected to a critical 

colour space conversion. This conversion from the RGB to the HSV (Hue, Saturation, Value) model is a deliberate 

choice, driven by the HSV model's proficiency in enhancing specific features that are less discernible in the RGB 

spectrum. The transformation is executed pixel by pixel, employing a well-defined conversion formula, thereby 

resulting in an HSV representation of the original image. 

After the colour space conversion is the phase of colour thresholding. Here, thresholds are meticulously defined for 

colours that are indicative of healthy or diseased leaf tissue, with a particular emphasis on varying shades of green. 

The establishment of these thresholds facilitates the creation of a binary mask, which serves to isolate regions of 

interest within the leaf image. This step is particularly critical as it lays the groundwork for precise disease 

identification. 

The third phase, background removal, is pivotal in enhancing the focus on the leaf itself. By applying a binary mask 

for the background and subsequently removing it from the HSV image, the system effectively eliminates potential 

noise and distractions, thus ensuring that subsequent analysis is exclusively concentrated on the leaf. 

In the feature extraction phase, the system embarks on a detailed analysis of the isolated leaf areas. This includes 

calculating the area covered by the masked regions, which are potential indicators of disease. Additionally, the 

average color intensity within these regions is computed, providing insights into the severity or type of disease. 

Moreover, texture analysis, utilizing advanced techniques like the Gray Level Co-occurrence Matrix (GLCM), is 

conducted. This analysis is crucial as it aids in distinguishing between different types of leaf diseases based on 

textural patterns. 

The final phase involves structuring the data for classification. In this stage, a comprehensive feature vector for each 

leaf is constructed. This vector, encompassing a range of features including area, intensity, and texture, serves as a 

quantifiable representation of the leaf's condition. These vectors are then utilized in machine-learning models for 

the classification and detection of diseases. 

 

Figure 2: Total Architecture Diagram how to extract the Features 
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Fig 2 discusses the significance of this automated disease detection process cannot be overstated. It marks a 

substantial advancement over traditional, labor-intensive methods of disease identification, offering a rapid, 

accurate, and efficient alternative. The implications of such a system in the agricultural sector are profound, 

particularly in terms of facilitating early intervention, preventing the spread of diseases, and minimizing crop loss. 

Furthermore, the data accumulated through this process holds immense value for ongoing research and development 

in plant pathology and crop management strategies. 

This paper presents a comprehensive overview of an innovative system designed for the automated detection of 

cotton leaf diseases. Through a series of carefully structured phases, from image acquisition and processing to 

feature extraction and classification, the system demonstrates a high degree of accuracy and efficiency. This 

advancement not only contributes significantly to the field of agricultural technology but also offers promising 

insights for future research in sustainable crop management practices. 

PREDICTIVE MODEL ALGORITHM L-BFGS OPTIMIZATION FOR SUPPORT VECTOR MACHINES 

(SVM) 

In the realm of machine learning, particularly in the optimization of Support Vector Machines (SVM), the Limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm has gained prominence. This algorithm is 

renowned for its efficiency in handling large-scale optimization problems, particularly those involving a high 

number of variables and constraints, as is often the case with SVMs. The primary objective of this algorithm is to 

optimize the parameters of an SVM, thereby enhancing its performance in classification tasks. L-BFGS, being a 

quasi-Newton method, provides a refined approach to approximating the Hessian matrix, which is essential for 

effective optimization. 

Input: 

• Training dataset (xi,yi), where xi represents the features, and yi represents the labels. 

• SVM parameters: Weights vector w, bias b. 

• L-BFGS parameters: Memory size m, tolerance ϵ, maximum iterations max_iter. 

Output: 

• Optimized SVM parameters w∗ and b∗. 

Steps: 

1. Initialization: 

• Initialize the weights vector w and bias b (often with zeros or small random values). 

• Set initial values for the L-BFGS parameters: history size m, convergence tolerance ϵ, and maximum iterations 

max_iter. 

2. Objective Function for SVM: 

• Define the objective function of the SVM, which typically includes a regularization term and a loss term:  

• f(w,b)=21∣∣w∣∣2+C∑i=1nmax(0,1−yi(w⋅xi+b))2 

• Here, C is the regularization parameter, and the summation term represents the hinge loss. 

3. Gradient Computation: 

• Compute the gradient of the objective function concerning w and b. 

• The gradient is used to guide the optimization process in the L-BFGS algorithm. 

4. L-BFGS Optimization: 
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• Employ the L-BFGS algorithm to optimize the objective function. The algorithm iteratively updates w and b 

based on the computed gradients and past gradient information. 

• L-BFGS maintains a history of the last m updates of w and the corresponding gradients to approximate the 

inverse Hessian matrix efficiently. 

5. Convergence Check: 

• After each iteration, check for convergence by evaluating whether the change in the objective function or the 

norm of the gradient is below the tolerance ϵ. 

• Terminate the optimization if convergence is achieved or if the number of iterations exceeds max_iter. 

6. Output Optimized Parameters: 

• Upon convergence, output the optimized parameters w∗ and b∗, which define the decision boundary of the SVM. 

 

Figure 3: Predictive Model Diagram 

the provided flowchart outlines the procedure for training a Support Vector Machine (SVM) using the L-BFGS 

optimization algorithm, which is a memory-efficient variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method. The process begins with a set of training data, consisting of input features and corresponding output labels. 

These are fed into the SVM, which is parameterized by weights and a bias term, denoted as w and b, respectively. 

The training process initiates with the initialization of these parameters, which can be set to zero or small random 

values. Alongside, the L-BFGS algorithm requires setting its specific parameters such as the memory of the past 

update steps (m), the convergence threshold (ϵ), and the maximum number of iterations (max_iter). These govern 

the behavior of the optimization routine. 

The SVM training aims to find the optimal hyperplane that separates the data into classes by minimizing an objective 

function. This function typically includes a term that maximizes the margin between different classes and a 

regularization term that helps to avoid overfitting. The regularization strength is controlled by a hyperparameter, 

often denoted by C. 
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The L-BFGS algorithm proceeds to iteratively update the parameters w and b using the gradients of the objective 

function. The gradients provide the direction along which the parameters should be adjusted to minimize the 

objective function. The L-BFGS method is particularly suited for large-scale problems because it approximates the 

Hessian matrix, which represents the curvature of the objective function, using only a limited amount of memory. 

As the optimization progresses, a convergence check is performed to determine if the optimization has effectively 

reduced the objective function below a pre-set threshold or if the maximum number of iterations has been reached. 

When one of these criteria is met, the algorithm concludes, yielding the optimized parameters w∗ and b∗. 

These optimized parameters represent the final SVM model, which is now tuned to classify new data with improved 

accuracy. The training process is thus a series of mathematical operations and checks that aim to construct a robust 

classifier by balancing the model's complexity with its ability to generalize to new, unseen data. 

the implementation of the L-BFGS optimization method for training Support Vector Machines (SVM) has proven 

to be highly effective in the context of cotton leaf disease detection. By leveraging this approach, we have developed 

an algorithm that not only achieves a high degree of accuracy in classifying diseased versus healthy leaves but also 

operates with efficiency even on large datasets. The L-BFGS algorithm, known for its memory efficiency and fast 

convergence, has been instrumental in optimizing the SVM parameters, thus ensuring that our model is both robust 

and reliable. 

Through iterative updates and careful convergence checks, the algorithm fine-tuned the SVM parameters to discern 

subtle patterns and indicators of disease in cotton leaves. The optimization process focused on maximizing the 

margin between the different classes while also incorporating a regularization term to prevent overfitting, resulting 

in a model that generalizes well to new data. As a result, the optimized SVM model stands out as a powerful tool 

for agriculturalists and researchers in the early and accurate detection of leaf diseases, which is critical for timely 

intervention and crop management. This success underscores the potential of advanced machine learning techniques 

in agricultural applications, paving the way for smarter, data-driven approaches to plant health and crop 

management. 

V. RESULTS AND DISCUSSIONS  

The results and discussion section of the study on Cotton Leaf Disease Detection using L-BFGS Optimization for 

Support Vector Machines (SVM) showcases the application of a classification algorithm implemented using the 

Python programming language. Key libraries such as Scikit-learn and OpenCV were utilized in the process. 

OpenCV, recognized for its comprehensive image processing capabilities, facilitated the preprocessing of cotton 

leaf images. This preprocessing involved standardizing image formats, enhancing contrast for improved feature 

extraction, and segmenting diseased portions from healthy areas. The features extracted post-image processing were 

vital for the machine learning stage. In the machine learning phase, Scikit-learn provided the necessary tools for 

building and optimizing the SVM classifier. The library's SVM module supports the L-BFGS optimization 

algorithm, which was used to optimize the hyperparameters of the SVM, including the penalty parameter C and the 

kernel coefficients. Experimental results highlighted the SVM's optimized performance via L-BFGS in classifying 

different stages of cotton leaf disease. The model demonstrated high metrics in accuracy, precision, recall, and F1-

score, reflecting its capability to accurately identify diseased leaves. One of the notable benefits of using the L-

BFGS algorithm was the acceleration of the convergence process, a considerable advantage when handling large 

datasets. The algorithm's efficient approximation of the Hessian matrix reduced computational demands while 

maintaining high-performance levels in the model. The study also explored the effects of varying kernel functions 

and regularization parameters on the model's accuracy. It was observed that the hyperparameters significantly 

influenced the performance, highlighting the critical role of hyperparameter tuning in machine learning models. The 

study indicates that Python's machine-learning libraries, when combined with the mathematical efficiency of the L-

BFGS optimization algorithm, provide a potent solution for the detection of diseases in cotton leaves. This approach 

offers an advanced, scalable, and efficient tool for crop disease detection and management. 

DATA SET  

The envisioned dataset for training a machine learning model to detect diseases in cotton leaves consists of 

approximately 300 annotated images. These images capture a range of conditions, from various disease states to 

healthy foliage, ensuring the model learns to discriminate effectively. To standardize input and reduce variability 
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that could stem from external factors, images would be collected under uniform lighting and processed to a 

consistent resolution. 

For the critical task of feature extraction from these images, several methods are employed. Color histograms are 

used to quantify the color distribution within the leaves—a key indicator of health or disease. Texture analysis, 

potentially through methods like the Gray-Level Co-occurrence Matrix (GLCM), assesses changes in leaf texture 

characteristic of disease symptoms. Shape descriptors and edge detection techniques help in identifying 

morphological changes in the leaves, such as spots or lesions typical of certain diseases. Additionally, the pattern of 

the leaf veins, which may be altered by disease, is analyzed through vein extraction techniques. 

To bolster the dataset and enhance the model's ability to generalize, data augmentation strategies such as random 

rotations, scaling, flipping, and brightness adjustments are applied. This not only increases the volume of data but 

also introduces a variety of perspectives from which the model can learn. 

Before diving into feature extraction, preprocessing steps are crucial. These include noise reduction to eliminate 

irrelevant variances, normalization to scale the feature values, and color space transformations that can provide more 

discriminative information for disease detection. 

Once features are extracted, it might be necessary to reduce the dimensionality of the dataset to focus on the most 

informative attributes. Techniques like Principal Component Analysis (PCA) can streamline the dataset to retain 

features that contribute most significantly to the model's predictive power. 

This dataset is then partitioned, typically allocating 70% for training, with the remaining 30% split equally between 

validation and testing. This separation allows for the evaluation of the model's performance and the fine-tuning of 

its parameters. 

With the dataset prepared, encompassing rich feature sets and comprehensive annotations, the SVM is trained. The 

L-BFGS optimization algorithm refines the SVM's hyperparameters, seeking the best combination that minimizes 

error on the training data while maximizing the model's ability to generalize to new, unseen data. This process 

ensures the trained model is well-equipped to classify cotton leaf images accurately, providing a valuable tool in the 

management of crop health. 

 

 

Figure 4: Shows the Cotton Leaf Diseased Images 
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AFTER PROCESSING DETECT DISEASES, IMAGES GETTING FEATURES  

The envisioned dataset for training a machine learning model to detect diseases in cotton leaves consists of 

approximately 300 annotated images. These images capture a range of conditions, from various disease states to 

healthy foliage, ensuring the model learns to discriminate effectively. To standardize input and reduce variability 

that could stem from external factors, images would be collected under uniform lighting and processed to a 

consistent resolution. 

For the critical task of feature extraction from these images, several methods are employed. Color histograms are 

used to quantify the color distribution within the leaves—a key indicator of health or disease. Texture analysis, 

potentially through methods like the Gray-Level Co-occurrence Matrix (GLCM), assesses changes in leaf texture 

characteristic of disease symptoms. Shape descriptors and edge detection techniques help in identifying 

morphological changes in the leaves, such as spots or lesions typical of certain diseases. Additionally, the pattern of 

the leaf veins, which may be altered by disease, is analyzed through vein extraction techniques. 

To bolster the dataset and enhance the model's ability to generalize, data augmentation strategies such as random 

rotations, scaling, flipping, and brightness adjustments are applied. This not only increases the volume of data but 

also introduces a variety of perspectives from which the model can learn. 

Before diving into feature extraction, preprocessing steps are crucial. These include noise reduction to eliminate 

irrelevant variances, normalization to scale the feature values, and color space transformations that can provide more 

discriminative information for disease detection. 

 

Figure 5 Original image before processing 

 

Figure 6 Shows the removed background to avoid the green color detected area identification 
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Figure 7 Shows the histogram pixel intensity green channel 

Table 1 : Discuss the Extract the feature from the Images  following table sample data 

Image Name Red % Green % Black % Brown % Yellow % Pink % 

image_0.png 0.00 95.13 0.05 0.34 0.41 0.00 

image_1.png 0.01 92.61 0.00 0.14 0.10 0.00 

image_2.png 0.00 92.49 0.02 0.14 0.03 0.00 

image_3.png 0.00 95.27 0.01 0.21 0.15 0.00 

image_4.png 0.00 95.37 0.01 0.30 0.21 0.00 

image_5.png 0.00 92.59 0.00 0.17 0.06 0.00 

image_6.png 0.00 95.41 0.01 0.25 0.18 0.00 

image_7.png 0.00 95.84 0.01 0.17 0.12 0.00 

image_8.png 0.00 93.36 0.01 0.10 0.12 0.00 

image_9.png 0.00 96.30 0.04 0.24 0.25 0.00 

The dataset encapsulates a series of images, each denoted by a filename such as image_0.png to image_9.png, and 

quantifies the percentage of different colors present in each image. These colors include red, green, black, brown, 

yellow, and pink, which are likely indicative of various conditions of the leaves imaged. 

For example, image_0.png is characterized by a predominant green coverage of 95.13%, suggesting a healthy leaf 

with minimal signs of stress or disease. It also shows a minor presence of black and brown areas at 0.05% and 0.34% 

respectively, and an even smaller yellow region at 0.41%, which might be early signs of leaf discoloration. Notably, 

this image has no pink or red areas, which could be significant for certain types of conditions. 

As the series progresses, a consistent pattern emerges where green dominates the color distribution, always staying 

above 92%, which strongly suggests that the majority of the leaf area in these images is healthy. The presence of 

other colors like black and brown remains relatively low across all images, generally below 0.3%. This could be 

indicative of small spots or blemishes which may not necessarily correspond to serious leaf conditions. 

The yellow percentages fluctuate slightly but are consistently low, with image_9.png showing the highest yellow 

area at 0.25%, still a minor proportion compared to the overall green. This could indicate varying levels of chlorosis, 

a common symptom in leaf diseases. However, the absence of red and pink across all images implies that the 

conditions represented in the dataset may not include those that cause reddening or pink spots on leaves. 
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Overall, the dataset appears to be capturing the health of leaves, primarily focusing on the extent of greenery, with 

additional attention to colors that could signal potential health issues. The low percentages of stress-indicative colors 

like yellow, brown, and black suggest that the leaves are largely healthy or may have only minor issues. The absence 

of red and pink across the dataset might be intentional, possibly to focus on a specific type of condition or to reflect 

the absence of certain diseases. This color-based analysis could be instrumental in training machine learning models 

to detect and classify leaf health automatically. 

PREDICTIVE MODEL ALGORITHM L-BFGS OPTIMIZATION FOR SUPPORT VECTOR MACHINES 

(SVM) RESULTS  

In this section, the results of applying the L-BFGS optimization algorithm to a Support Vector Machine (SVM) 

classifier, as reflected in the confusion matrix shown in the image. The confusion matrix is a critical tool used to 

evaluate the performance of classification models, providing a visual representation of the actual versus predicted 

labels. 

 

Figure 8 Confusion Matix for Hybrid model 

The Fig 8  depicts a confusion matrix with two classes, labeled as '0' and '1'. The matrix is divided into four 

quadrants: the top-left quadrant represents the true positives for class '0', the bottom-right shows the true positives 

for class '1', and the off-diagonal quadrants represent the misclassifications, with the top-right being the false 

positives for class '0' and the bottom-left the false negatives for class '0'. 

The matrix indicates a high number of true positives for both classes, suggesting that the SVM classifier, optimized 

with L-BFGS, is performing well. Specifically, the classifier correctly predicted class '0' 133 times and class '1' 110 

times. There is a small number of misclassifications: only 1 instance of class '0' was incorrectly predicted as class 

'1', and conversely, 1 instance of class '1' was incorrectly predicted as class '0'. 

To evaluate the confusion matrix, one would look at various metrics: 

• Accuracy: This measures the proportion of true results (both true positives and true negatives) among the total 

number of cases examined. In the case of the presented matrix, the accuracy would be calculated as (133 + 

110) / (133 + 1 + 1 + 110). 

• Precision (for each class): This metric is calculated as the number of true positives divided by the number of 

true positives plus the number of false positives. For class '0', it would be 133 / (133 + 1). 

• Recall (for each class): Also known as sensitivity, it is calculated as the number of true positives divided by 

the number of true positives plus the number of false negatives. For class '0', the recall is 133 / (133 + 1). 



J. Electrical Systems 20-5s (2024): 298-314 

311 

• F1 Score (for each class): The F1 score is the harmonic mean of precision and recall, providing a balance 

between the two. It is particularly useful when the class distribution is uneven. For class '0', it would be 

calculated as 2 * (Precision * Recall) / (Precision + Recall). 

The confusion matrix indicates an SVM classifier that is very effective, with high accuracy and balanced precision 

and recall across the classes. These metrics suggest that the SVM, when optimized with the L-BFGS algorithm, is a 

robust model for the classification task at hand. 

 

Figure 9 Shows Hybrid Learning line graph 

The Fig 9 graph presents a learning curve, which is a visual representation of how the performance of a machine 

learning model evolves as more training data is used. Learning curves are essential for diagnosing the behavior of a 

model during the training process. 

In this learning curve, two key performance metrics are plotted: the training score and the cross-validation score. 

Both are charted against the number of training examples used to train the model. The training score is indicative of 

how well the model is fitting the training data, while the cross-validation score reflects how well the model 

generalizes to unseen data. 

Observations from the graph are as follows: 

1. Training Score (Red line): The training score starts high and remains high as more training examples are added, 

which demonstrates that the model fits the training data well across different training set sizes. This is typical 

behavior for models with a good capacity to learn from the data provided. 

2. Cross-validation Score (Green line): The cross-validation score increases with the number of training 

examples, suggesting that as the model is exposed to more data, its ability to generalize improves. Initially, the 

model’s ability to generalize is lower, as indicated by the lower score for a small number of training examples. 

However, it improves significantly as more data is provided. 

The convergence of the training and cross-validation scores as the number of training examples increases is a 

positive sign. It indicates that the model is not overfitting since the performance on the training data and unseen data 

is similar. If the scores were to diverge, that would typically indicate overfitting (if the training score is much higher) 

or underfitting (if both scores are low). 
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The ideal learning curve should show both scores converging at a high value as the number of training examples 

increases, which seems to be the case here. The high cross-validation score near the end of the curve suggests that 

adding more training data beyond this point may not significantly improve the model’s performance on unseen data. 

In conclusion, the learning curve indicates a well-performing model with a good fit to the training data and strong 

generalization to new, unseen data. The model, likely optimized with L-BFGS for SVM, appears to benefit from 

more training data but shows diminishing returns after a certain point. This is a valuable insight for understanding 

the trade-off between investing in more data and the expected performance gains. 

COMPARISON MODELS 

Table 2 Compare the Performance metrics the algorithm with hybrid model 

Algorithm Accuracy Precision Recall F1Score 

Logistic Regression 0.9 0.8 0.77 0.76 

Decision Tree 0.9 0.8 0.77 0.76 

Random Forest 0.9 0.8 0.77 0.76 

SVM 0.73 0.68 0.6 0.59 

HybridAlgo 0.99 0.99 0.99 0.98 

The table 2 presents a comparative summary of various algorithms' performance metrics on a classification task. 

Each algorithm is evaluated based on accuracy, precision, recall, and F1 score, which are standard metrics for 

assessing classification models. 

Here's a breakdown of the performance metrics for each algorithm: 

1. Logistic Regression, Decision Tree, Random Forest: All three of these algorithms have identical 

performance metrics with accuracy, precision, and recall of 0.9, 0.8, and 0.77 respectively. Their F1 scores are also 

the same at 0.76. This suggests that, for the given dataset, these algorithms are equally effective in terms of these 

metrics. However, it is somewhat unusual to see three different algorithms yielding identical metrics, which could 

indicate a scenario with limited dataset variability or possibly an error in evaluation or reporting. 

2. SVM (Support Vector Machine): The SVM has lower metrics across the board, with an accuracy of 0.73, 

precision of 0.68, recall of 0.6, and an F1 score of 0.59. This indicates that SVM, in this instance, is less effective at 

correctly identifying positive instances and is more prone to false positives and false negatives than the other models. 

It is worth exploring why SVM underperformed compared to the others; it could be due to various factors like 

hyperparameter settings, the choice of kernel, or the nature of the data. 

3. HybridAlgo: This algorithm significantly outperforms the others, with nearly perfect scores: an accuracy, 

precision, and recall of 0.99 and an F1 score of 0.98. Such high metrics suggest that this algorithm is highly effective 

at both classifying positive instances correctly (high precision) and capturing the majority of positive instances (high 

recall). This could indicate a sophisticated or ensemble method that combines the strengths of multiple algorithms 

to achieve better performance. 

In general, accuracy is a measure of the model's overall correctness, precision measures the accuracy of the positive 

predictions, recall reflects the model's ability to find all the positive samples, and the F1 score is the harmonic mean 

of precision and recall, providing a balance between the two. High scores across all these metrics, as seen with the 

HybridAlgo, indicate a model that is well-suited for both the data and the task at hand. 

The comparison suggests that while traditional algorithms like Logistic Regression, Decision Trees, and Random 

Forests can perform well, specialized or hybrid approaches can potentially offer superior performance. However, 

caution should be exercised when interpreting these results, as extremely high scores like those of HybridAlgo could 

also be indicative of overfitting, especially if these results are not cross-validated or tested on an independent dataset. 
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Figure 10 Comparison Algorithm 

The FIG 10  chart is a horizontal bar chart that compares the performance of five machine learning algorithms — 

Logistic Regression, Decision Tree, Random Forest, SVM (Support Vector Machine), and HybridAlgo — across 

four different evaluation metrics: F1 Score, Recall, Precision, and Accuracy. 

Starting with Logistic Regression at the bottom, each algorithm is represented by four horizontal bars corresponding 

to the four metrics, with the length of each bar indicating the metric's value. A longer bar signifies a higher value, 

hence a better performance on that metric. The sequence of the bars for each algorithm is consistent, with the F1 

Score in dark blue, Recall in orange, Precision in grey, and Accuracy in light blue. 

The chart demonstrates that Logistic Regression, Decision Tree, and Random Forest algorithms have equivalent 

performance across all four metrics, which is notable as these bars are of equal length, reaching up to 0.9 for 

Accuracy, Precision, and Recall, and slightly less for the F1 Score. This might suggest that for the specific dataset 

being used, these algorithms have similar predictive power or that they may be capturing the same patterns in the 

data. 

The SVM shows a decrease in performance compared to the first three, with all metrics dropping below the 0.8 

mark. The bars are shorter, indicating lower values for all four metrics, with Accuracy, Precision, and Recall just 

over 0.7 and the F1 Score slightly below. 

The HybridAlgo outperforms all other algorithms with nearly perfect scores, as its bars reach close to 1.0 for 

Accuracy, Precision, and Recall, and just below 1.0 for the F1 Score. This superior performance suggests that the 

HybridAlgo may utilize a combination of strategies or models to achieve high predictive accuracy. 

The chart provides a clear visual comparison of how each algorithm performs according to the critical metrics of F1 

Score, Recall, Precision, and Accuracy, indicating the strengths and weaknesses of each model in the context of the 

classification task they are applied to. The HybridAlgo's dominance across all metrics points to its robustness and 

effectiveness for the dataset and task at hand. 

VI. CONCLUSION  

The conclusion of this research underscores the importance of algorithm selection in machine learning tasks, 

particularly in classification problems. The empirical results obtained from the analysis reveal that while traditional 

algorithms such as Logistic Regression, Decision Trees, and Random Forests maintain commendable levels of 

accuracy, precision, recall, and F1 score, it is the Hybrid Algorithm that demonstrates a marked superiority across 

all performance metrics. This finding suggests that the integration of multiple models or techniques within a hybrid 

framework can significantly enhance predictive performance. Moreover, the study highlights the critical balance 

between memory optimization and parameter complexity. Employing algorithms that support L-BFGS optimization 

can lead to memory efficiency, which is particularly advantageous when working with large datasets. Such 
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algorithms are capable of reducing memory usage without compromising performance, thus providing an optimal 

solution for scenarios where computational resources are a constraint. Additionally, the research indicates that 

careful tuning of hyperparameters plays a pivotal role in achieving the best possible model performance. By 

optimizing the parameters, one can avoid unnecessary complexity in the model, reducing the risk of overfitting 

while maintaining high accuracy. Parameter reduction should be approached judiciously to preserve the model's 

ability to capture essential patterns in the data. In essence, the study concludes that a judicious choice of algorithm, 

paired with strategic memory management and hyperparameter optimization, is crucial for developing robust 

machine learning models. This approach not only enhances performance but also ensures computational efficiency, 

making it a valuable practice for achieving state-of-the-art results in various classification tasks. 
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