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Abstract: - Federated learning is a distributed machine learning technique that can train models from decentralized data, collaboratively 

building central models and protecting data privacy by passing partial model updates rather than raw data in each iteration of model learning. 

However, recent work has shown that the information during the exchange between the server and the client is still vulnerable to gradient-

based privacy attacks, and traditional privacy protection methods can incur significant costs (such as communication consumption and 

performance evaluation). Therefore, we need an algorithm that can protect data privacy while reducing communication costs and performance 

losses. Here, we propose a federated learning framework FedCGS that leverages conditional generation adversarial networks and feature 

compression in order to achieve privacy protection while maintaining competitive model performance and effectively improving 

communication efficiency. We divided the local network of each client into feature extractor and public classifier, and kept the extractor local 

to protect privacy, and sent  classifier and client generator to the server for aggregation and update through singular value decomposition, so 

as to improve the performance of the local network and efficient communication. A lot of experimental data prove that FedCGS can improve 

the performance of local model better than traditional federation learning, and improve the communication efficiency better than common 

conditional generation adversarial network. Therefore, we believe that FedCGS has better federal learning potential 

Keywords: Federated learning, conditional generation adversarial network, singular value decomposition, privacy security, 

communication compression 

I.  INTRODUCTION  

With the development of deep learning, many fields have achieved great success. People think that with enough 

training data, we will eventually get a satisfactory model. In reality, however, a lot of data resides in different clients 

that are reluctant to share them due to privacy security concerns, which makes it impossible for us to train many 

aspects of data to fit our deep learning models. To solve these problems, McMahan [1] proposed Federated Learning 

(FL). It can train the final model by transmitting the parameters required for model updates without sharing all data 

and protecting privacy. 

However, in a recent study, we found that the number of parameter exchanges between the server and client during 

FL training is frequent, resulting in increasing communication overhead, especially as the local model scales up. 

Therefore, communication has become one of the main bottlenecks of FL [19, 21]. In addition, as FL continues to 

advance, studies have found that the classical joint average approach (FedAvg [1]) is still vulnerable to gradient-

based privacy attacks [6], that is, FL's privacy protection is no longer sufficient to support today's technology. 

Subsequently, homomorphic encryption (HE) [4,7] and differential privacy (DP)[5, 27] have been incorporated into 

FL. HE provides high-level security by encrypting the information exchanged between clients, but its high 

computing and communication costs lead to its excessive limitations. In addition, DP results in a loss of precision, 

which degrades the performance of the model. Later, FedCG [2] proposed the use of conditional generation 

adversarial networks cGAN [11] to ensure privacy security without excessive loss of computing cost and accuracy. 

However, communication issues remain and the larger scale of local models still cannot be solved. 

We propose a new FL method called FedCGS in this paper, which uses cGAN to achieve a higher level of privacy 

protection. The client local model is divided into feature extractors and classifiers, and the model is trained using 

cGAN generators and discriminators so that each client generator matches the feature extractor. Finally, moving the 

generator and classifier to the server instead of the original feature extractor avoids direct contact with the local 

model. Compared with traditional methods such as FedEx and FedProx [3] that directly transmit local model 

gradients, it can better resist gradient privacy attacks. At the same time, the singular values of the local generator 

and classifier are decomposed by the dynamic gradient compression technique, and finally, the server is restored, 

and the global generator and classifier are aggregated by knowledge distillation [8]. Compared with traditional FL 

methods, FedCGS still has strong model performance. Compared with FedCG, FedCGS overcomes the high cost of 
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large-scale local model communication and greatly improves communication efficiency. The novelty of this paper 

is that it combines cGAN with dynamic gradient compression. A lot of experiments show that compared with 

traditional FL methods, this method can obtain effective performance and efficient communication. Privacy analysis 

proves that FedCGS has high protection ability against gradient privacy attacks. Therefore, whether facing large or 

small models, training purposes can be safely and efficiently achieved, which is the direct advantage of this method 

II. RELATED WORK 

Federated Learning 

Federated learning is an approach to distributed machine learning in which the training of a model is distributed 

across multiple clients rather than centralized in a single data center. Each client trains the model locally and then 

sends updated parameters to a central server for integration, which helps protect user privacy. However, as FL has 

grown, a number of serious challenges have emerged. First, traditional FL methods have been shown to be prone to 

deep leakage [6, 13, 14] and model inversion [15]. Secondly, when the client data scale becomes large, the required 

communication overhead cannot be controlled. Therefore, a large number of technologies have been adopted to 

solve the privacy security and communication efficiency problems of FL. Examples include homomorphic 

encryption (HE) and differential privacy (DP). However, the balance between privacy security, model performance, 

loss of accuracy, and communication efficiency is not well controlled. 

GAN In Federated Learning 

GAN addresses several important issues in FL: One is privacy protection [23], and a major challenge in FL is how 

to share model updates without compromising user privacy. With GAN, generators generate synthetic data on local 

devices instead of sharing raw data. This approach avoids the risk of transferring sensitive data to a central server 

[9, 12], thereby increasing the level of user privacy protection. The second is data scarcity, in FL, participants often 

have only a small amount of data, which can lead to models being poorly trained on some devices. Using GAN can 

solve the problem of data scarcity by generating synthetic data on local devices. This generated data can increase 

the number of local training samples, thereby improving the performance and generalization ability of the model. 

The data distribution is not uniform, FL involves multiple devices or nodes, and these devices may have different 

data distribution. Using GAN can help to adjust the model to different data distributions, thereby improving the 

applicability and performance of the model. Fourth, the model performance is improved [22, 24]. The adversarial 

training between the GAN generator and discriminator can help improve the model performance. By training the 

generator on a local device and the discriminator on a central server, the model can be promoted for efficient 

parameter updating and improvement while protecting data privacy, thus enhancing the expressiveness and 

robustness of the model. 

SVD In Federated Learning 

In FL, singular value decomposition (SVD) research results mainly focus on two aspects: First, it can reduce the 

communication overhead [26], because FL involves multiple clients, each of which may have a large amount of 

data. In a traditional federated learning setup, participants need to send updated model parameters to a central server 

for aggregation, which leads to significant communication overhead. Using singular value decomposition, the model 

parameters can be decomposed and only a small number of parameters are sent or compressed, thus reducing the 

communication overhead. Second, SVD can be privacy-friendly because it can help model training without sharing 

raw data [25]. By shredding data on local devices and then sharing only partial or decomposed parameters, you 

reduce the risk of data breaches and improve privacy protection. To sum up, the two main functions of SVD are the 

same as the FedCGS method I studied. When we face the problem of a large number of clients and a large amount 

of data, the combination of SVD and cGAN can effectively achieve the purpose of reducing communication costs 

and improving privacy security. 

III. ALGORITHM STEP 

Client Update 

In this work, we first set up a central server and N client clients with individual data sets {𝜒1, 𝜒2, 𝜒3, . . . 𝜒𝑛}in 

accordance with traditional Federated learning (FL).These private data sets are taken from different sample spaces. 
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We define the parameter of some client i as θ𝐸𝑖,𝐶𝑖
:=[θ𝐸𝑖

；θ𝐶𝑖
]. It shows that each client i consists of a feature 

extractor 𝐸𝑖: 𝜒𝑖→ Ř𝑑 and a common classifier 𝐶𝑖: Ř
𝑑→ Ř𝑐 , where d is the feature dimension and c is the class 

number. Not only that, but each client has a conditional GAN (cGAN), which consists of a generator 𝐺𝑖:Z→ Ř𝑑 and 

a discriminator 𝐷𝑖: Ř
𝑑 → μ, where Z satisfies the Gaussian distribution and μ is some scalar in the range [0,1]. Each 

client trains the generator 𝐺𝑖 to approximate the extractor 𝐸𝑖 and sends 𝐺𝑖（z,y） to the server instead of 𝐸𝑖（x|y

）, thus ensuring data privacy. 

As shown in Figure 1, in each round of FL, each client i first completes local training and uploals its 𝐺𝑖 and 𝐶𝑖 to 

the server, while 𝐸𝑖  and 𝐷𝑖  remain local. In the process of uploading, we apply the singular value decomposition 

method to dynamic gradient compression of 𝐺𝑖 and 𝐶𝑖. The server then aggregates and uses knowledge distillation 

to maintain a global generator 𝐺𝑔 and a global classifier 𝐶𝑔. Then, the server SVD 𝐺𝑔 and 𝐶𝑔 and pass it to the client 

to download the aggregation, replace the original local model, and proceed to the next training.Experiments show 

that the algorithm can guarantee performance, privacy security and efficient communication at the same time. The 

following will be a specific analysis of the client and server. 

 

As can be seen from the Figure 2 above, we define the classification network loss function 
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𝐿𝑐𝑠=È𝑥,𝑦~ 𝜒𝑖
Ω(𝐶𝑖(𝐸𝑖(x|y,;θ𝐸𝑖

);θ𝐶𝑖
), y)         (1) 

Where Ω is the cross entropy function. Client i optimizes by freezing the global generator and minimizing the mean 

square error loss, receiving the parameters of the global generator to its local extractor. As follows 

𝐿𝑚𝑠𝑒=È𝑥,𝑦~ 𝜒𝑖
 È𝑧~Z|| 𝐸𝑖(x|y, ; θ𝐸𝑖

)  − 𝐺𝑔(z, y; θ𝐺𝑔
)||2        (2) 

Hence our task loss L, which is a combination of 𝐿𝑐𝑠 and 𝐿𝑚𝑠𝑒: 

𝐿𝑡 = 𝐿𝑐𝑠 + ε𝐿𝑚𝑠𝑒        (3) 

 

We set the ε to slowly increase from 0 to 1 to adjust the balance between the two loss terms. 

When generating network updates, each client approximates the output of its local generator to its local extractor. 

It trains the generator by freezing the parameters of the extractor, and then performs cGAN. Specifically, it sends a 

small batch of training date (𝑥, 𝑦) to 𝐸𝑖 to obtain the feature representation ý. Then generates the same batch size 

Gaussian noise z randomly, and sends (𝑧, 𝑦) to the generator 𝐺𝑖 to generate the estimated feature representation ÿ. 

Finally, y and ÿ are sent to the discriminator 𝐷𝑖 , the discriminator loss 𝐿𝑑 and energy loss 𝐿𝑒 are calculated, and the 

generator θ𝐺𝑖
 and discriminator θ𝐷𝑖

 are optimized by minimizing these two losses alternately. 

𝐿𝑑=È𝑥,𝑦~ 𝜒𝑖
È𝑧~Z[log(1-𝐷𝑖(𝐸𝑖(x|y,;θ𝐸𝑖

);θ𝐷𝑖
)) + log𝐷𝑖(𝐺𝑖(z,y;θ𝐺𝑖

);θ𝐷𝑖
 )]         (4) 

𝐿𝑔  = È𝑥,𝑦~ 𝜒𝑖
È𝑧~Zlog(1-𝐷𝑖( 𝐺𝑖(x|y,; θ𝐺𝑖

);θ𝐷𝑖
)            (5) 

After the local training is completed, each client uses the SVD method to decompose the gradients of the generator 

and classifier into smaller matrices and then upload them. The server then  aggregate the previous decomposition 

matrix to reconstruct the local gradient.The aggregated global generator and classifier are further decomposed and 

distributed to clients for model updates. Specifically, we represent the gradient 𝑔𝑖∈R𝑃×𝑄 as a matrix with P rows 

and Q columns (assuming P≥Q). It can be decomposed into the product of three matrices,𝑔𝑖 ≈Ui ∑ Vii , where 

Ui∈R𝑃×𝐾,∑ ∈i R𝐾×𝐾, Vi∈R𝐾×𝑄, K is the number of singular values preserved. 
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If the value of K is PK+𝐾2+KQ<PQ, then the size of the upload and download gradients can be reduced. In addition, 

we express the singular values of 𝑔𝑖 as [α1,α2,α3. . . . . α𝑄] . We use the energy threshold T to determine how many 

singular values to retain so that we can control the approximation error, as follows: 

minK
∑ α𝑖

2𝐾
𝑖=1

∑ α𝑖
2𝑄

𝑖=1

             (6) 

Then, we propose a dynamic gradient approximation strategy, which can make the model converge better. The 

function is as follows: 

T(t) = 𝑇𝑠𝑡𝑎𝑟𝑡+ (𝑇𝑒𝑛𝑑 - 𝑇𝑠𝑡𝑎𝑟𝑡)t, t∈[0, 1]          (7) 

 

𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑒𝑛𝑑  are two hyperparameters that can control the start and end values of T. It helps to learn more accurate 

generator θ𝐺𝑖
 and classifier θ𝐶𝑖

 models 

Server Aggregation 

When the server receives the generator {𝐺𝑖}𝑖=1
𝑛  and classifier {𝐶𝑖}𝑖=1

𝑛  uploaded by the client, it initializes the 

parameters of global generator θ𝐺𝑔
 and global classifier θ𝐶𝑔

 by weighted average method. The small batch training 

data (𝑧, 𝑦) is then sent to all generators using a method of knowledge distillation (KD)[10, 20], where label y is 

obtained by sampling from the uniform distribution U(0, 𝑐), and noise z is obtained from the Gaussian distribution 

N(0,1).We define two class probability distributions 𝑃𝑎(𝑦, 𝑧)  and 𝑃𝑏(𝑦, 𝑧) , where 𝑃𝑎(𝑦, 𝑧) is from the client 

classifier and 𝑃𝑏(𝑦, 𝑧)）is from the global classifier. Finally,the server optimizes the global classifier θ𝐶𝑔
 and 

generator θ𝐺𝑔
 by minimizing the KL deviation of the two class probabilities. 

𝑃𝑎(y,z)=softmax(∑
|𝜒𝑖|

∑ |𝜒𝑖|𝑛
𝑖=1

𝐶𝑖(𝐺𝑖(y, z;  θ𝐺𝑖
);  θ𝐶𝑖

)𝑛
𝑖=1 )         (8) 

𝑃𝑏(y,z)=softmax(𝐶𝑔(𝐺𝑔(y, z; θ𝐺𝑔
);  θ𝐶𝑔

))          (9) 

𝐿𝐾𝐿=È𝑦~𝑈È𝑧~ZKL(𝑃𝑎(y,z), 𝑃𝑏(y,z))          (10) 

 

After the server aggregation update is completed, we use SVD method to decompose the global generator θ𝐺𝑔
 and 

global classifier θ𝐶𝑔
 and send them to all clients. 

IV. EXPERIMENTS 

In this section, we compared FedCGS with FedAvg, FedProx, and FedCG in terms of performance and 

communication. 
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Experiment Settings 

Model architecture: Using LeNet5 [16], the first 2 convolutional layers of LeNet are used as feature extractors, and 

the last 3 fully connected layers are used as common classifiers. The size and step size of the convolution kernel in 

the cGAN are then adjusted to match the output dimensions of the extractor and generator 

Dataset: We evaluated client model performance on 2 datasets, namely FMNIST [17] and CIFAR10[18].FMNIST 

can simulate independent homodistribution (IID).  

Baselines: We selected 3 of the existing FL methods as baselines. It includes FedAvg [1], FedProx [3], and FedCG 

[2], among which FedAvg is the best known FL method. FedProx is also a widely used FL algorithm that allows 

for more standardized local model training. FedCG algorithm is the use of cGAN and FL fusion, can be a good 

privacy protection but can not solve the communication problem. 

Configuration: We performed 50 global communication rounds and 15 local epochs, with 16 small batches per local 

epoch. All of them use Adam optimizer with learning rate of 2e-4 and weight attenuation of 1e-4.For FedProx, we 

chose the best factor in the range {0.001, 0.01, 0.1, 1}. For FMNIST and CIFAR10, let each client randomly extract 

2000 images as a local training set.  

Results 

Performance Evaluation: We first evaluate the performance of FedCGS by comparing the average customer 

accuracy of four FL algorithms on two datasets. Figure 3 shows the results. As shown in the figure, FedCG achieved 

the best accuracy in five of the eight different comparisons between the two datasets. The FedCGS algorithm also 

closely followed the other three FL methods in the FMNIST dataset and slightly underperformed in the CIFAR 

dataset, but in the worst case, the FedCG algorithm was only 14.1% less accurate than the best case on average. In 

FMNIST, it is less than 10%. 

 

Figure 3: Test set accuracy representation of four FL methods on different clients in two scenarios 

 

Figure 4: Communication time of four federated learning algorithms 

Communication evaluation: We evaluated the communication consumption of four FL methods in Lenet5 and 

Resnet18 communication networks, including client training time, communication time, and server aggregation 
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time, with little difference in performance evaluation. Considering the conduct of the simulation experiment, we 

assume that the data transmission rate during communication is 100bit/s, and the results are shown in Figure 4. The 

figure shows that in the Lenet5 network, the communication cost of the FedCG algorithm is significantly greater 

than that of the other three algorithms, and the communication capability of FedCGS after compression has been 

significantly improved. The optimization is about 30.7%. In Resnet18, the communication capability of FedCGS is 

significantly less than that of the other three methods, and the communication cost is greatly reduced by 30.6% 

compared with FedCG. 

 

Figure 5: Performance of the four FL methods against heterogeneous data 

Isomerism evaluation: Finally, we evaluated the performance of FedCGS in the face of heterogeneous data, thus 

proving that it has reliable research value and can withstand a variety of external factors. I used unequal random 

sampling on the FMNIST dataset to select training sets for each client of the four FL methods, to simulate data 

heterogeneity. The results are shown in Figure 5. The degree of inequality and heterogeneity in (2) is greater than 

that in (1). The results show that when faced with heterogeneous data, the accuracy of FedCGS's test set is about 

7.2% less than that of the other three methods. Therefore, we believe that FedCGS can deal with some heterogeneous 

data 

It can be seen from the experimental results that FedCGS greatly improves the communication efficiency within the 

acceptable performance loss range, and can maintain the accuracy comparable to the traditional FL method in the 

face of heterogeneous data. Therefore, FedCGS is a new FL method with research value. 

V. CONCLUSION 

In this paper, we propose a new FL method called FedCGS, which uses cGAN and SVD to protect data privacy 

security and ensure excellent model performance and can greatly improve the efficiency of communication, which 

solves the security and communication problems encountered in federated learning. In FedCGS, each client's local 

network is divided into a feature extractor and a common classifier, and the extractor is left local to protect privacy. 

Improve the performance of the client's local network by sharing the client's generator with the server using cGAN. 

A large number of experiments show that FedCGS has good privacy protection ability, {Phong, 2018 #9}can obtain 

competitive model performance and efficient communication efficiency. After my analysis, the future FedCGS has 

a good prospect of federal learning, and we can continue to study in this direction. 
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