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Abstract: - Accurate identification of strawberries at different growth stages as well as determination of optimal picking points by strawberry 

picking robots is a key issue in the field of agricultural automation. In this paper, a fast detection method of strawberry ripeness and picking 

point based on improved YOLO V8-Pose (You Only Look Once) and RGB-D depth camera is proposed to address this problem. By 

comparing the YOLO v5-Pose, YOLO v7-Pose, and YOLO v8-Pose models, it is determined to use the YOLO v8-Pose model as the 

fundamental model for strawberry ripeness and picking point detection. For the sake of further improving the accuracy of the model detection, 

this paper makes targeted improvements: all the Concat modules at the Neck part are replaced with BiFPN richer feature fusion, which 

enhances the global feature extraction capability of the model; the MobileViTv3 framework is employed to restructure the backbone network, 

thereby augmenting the model's capacity for contextual feature extraction. Subsequently, the output-side CIoU loss function is supplanted 

with the SIoU loss function, leading to an acceleration in the model's convergence. The enhanced YOLO v8-Pose demonstrates a 97.85% 

mAP-kp value, reflecting a 5.49% improvement over the initial model configuration.. For the sake of accurately localizing the three-

dimensional information of strawberry picking points, the strawberry picking points are further projected into the corresponding depth 

information to obtain their three-dimensional information. The experimental results show that the mean absolute error and the mean absolute 

percentage error of strawberry picking point localization in this paper are 0.63 cm and 1.16%, respectively. In this study, we introduce a 

method capable of concurrently detecting strawberry maturity and identifying the precise harvesting location while accurately localizing the 

picking point. This investigation holds considerable theoretical and pragmatic relevance in augmenting the intelligence of strawberry 

harvesting robots and actualizing automation and smart capabilities in agricultural production. 

Keywords: Strawberry identification, Ripeness detection, Picking point localization,Improved YOLO v8-Pose, RGB-D 

camera 

I. INTRODUCTION 

Globally esteemed as a crucial fruit produce, strawberries enjoy extensive cultivation and consumption across a 

wide expanse. [1,2]. However, despite advances in agricultural technology, strawberry harvesting predominantly 

depends on conventional hand-picking techniques that are both tedious and labor-intensive. The brief ripening 

window of strawberries exacerbates this challenge, as any delay in harvesting can result in fruit spoilage and 

significant economic repercussions. [3]. The strawberry ripening period is short, and untimely picking can cause 

fruit rot, which brings serious economic losses. With the progress and development of science and technology, 

agricultural picking robots can realize strawberry picking instead of manual labor, which is of great significance 

and prospect in the field of agricultural production[4–6]. The following is a brief description of the advantages and 

disadvantages of using a picking robot in agricultural production. Therefore, rapid and accurate identification and 

detection of strawberries is essential to promote the automated strawberry picking and the intelligent development 

of agriculture[7]. 

Yamamoto et al.[8] suggested a strawberry target separation algorithm based on color threshold segmentation. Arefi 

et al.[9] employed threshold analysis to derive amalgamated features from RGB, HIS, and YIQ domains for ripe 

tomato localization. However, the detection efficacy was suboptimal for smaller fruits.. Lu et al.[10] developed 

canny edge detection method for edge detection on color difference maps for further recognition of ripe citrus fruits 

in complex environments. Wang et al.[11] designed a geometric center based matching method to detect lychee 

fruits and then used pixel thresholding method for classification. Hayashi et al.[12] designed a strawberry picking 

robot that also used a color threshold segmentation algorithm for strawberry detection and ripeness estimation. Tang 

et al.[13] used a modified Otsu algorithm to detect tea leaves by obtaining G and G-B component thresholds. Yang 

et al.[14] come up with an SVM-based CCL-SVM for disease recognition of tomato leaf images in complex 

environments by combining color texture features for three common pests and diseases of tomato, and achieved an 

overall recognition rate of 97.5% while reducing the amount of computation. Although these methods solve the fruit 

detection problem to a certain extent, the features obtained by these methods need to be manually designed, and it 
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is difficult to automatically extract discriminative information. And targets in complex environments are easily 

interfered by light, occlusion and other factors, which often hinder the high accuracy and robustness of traditional 

algorithms. 

In contemporary times, the swift advancement and extensive implementation of deep learning methodologies have 

become increasingly prominent., a series of common target detection algorithms have emerged, such as the R-CNN 

series[15] , YOLO series[16,17] , SSD, etc.[18]. The extensive application of these algorithms within the realm of 

fruit target detection has led to substantial advancements in both the academic exploration and practical 

implementation of this domain. 

Yu et al.[19] popped the question that a greenhouse strawberry fruit recognition method based on the R-YOLO 

model. The backbone network of the model was lightweight and improved by using MobileNet-V1 lightweight 

network. Liu et al.[20] invoked a method for strawberry detection based on improved YOLOv3. The method 

improves the fruit recognition efficiency by reducing the number of convolutional layers. The recognition accuracy 

for ripe and unripe strawberries reached 97.14 % and 96.51 %, respectively. Wang et al.[21] proposed a DSE-

YOLO network model for detecting strawberries at different growth stages and designed a DSE module that uses 

point-by-point convolution and unfolded convolution to extract various details and semantic features in horizontal 

and vertical dimensions. Zhang et al.[22] projected a new strawberry target detection network RTSD-Net based on 

YOLOv4-Tiny, which simplifies the network structure of YOLOv4-Tiny, improves the computing speed, and 

realizes the real-time detection of strawberries. Lamb and Chuah et al.[23] Yu et al. devised an enhanced variant of 

the SSD model specifically for the purpose of identifying mature strawberry fruits..[24] put in an improved Mask 

R-CNN[25] method to detect strawberry fruits in the laboratory. Mu et al.[26] combined a faster regional 

convolutional neural network with transfer learning to detect unripe tomato fruits. The above studies have achieved 

some success in strawberry target detection and ripeness classification, providing strong support for realizing 

intelligent strawberry picking. Although the above methods can accurately detect strawberries, they cannot 

recognize the corresponding picking points, and thus cannot be directly applied in strawberry picking operations. 

YU et al.[19] using the fruit attitude estimation rotation YOLO to localize the main axes of fruits, the picking points 

of strawberries are predicted by the positions of the main axes of the plants. Guo et al.[27] used segmented 

strawberry images to determine the strawberry pose by calculating the major axis of its binarized image, and used 

a geometric method to derive the predicted picking point, but in the actual picking work, it would result in the 

picking point prediction bias resulting in wrong picking and missed picking. In addition, after detecting the 

strawberry picking point, it is essential to further pinpoint the accurate coordinates of the selection point. Employing 

either monocular or stereoscopic vision methodologies to achieve object localization has emerged as a focal point 

in contemporary research pursuits. [28,29]. The target localization has become a research hotspot in the current 

research. However, because monocular camera is difficult to provide accurate depth information, binocular camera 

usually adopts parallax method to calculate depth information, which is greatly affected by matching accuracy and 

has high computational complexity, making it difficult to meet the practical needs. Depth cameras have higher depth 

measurement accuracy and stronger environment sensing ability, and are suitable for application scenarios that 

require high precision depth information [30]. Considering that in the natural environment, strawberry targets are 

small and usually obscured to different degrees, which makes it difficult for the picking robot to recognize them. 

Picking robots not only need to accurately identify the ripeness of strawberries, but also need to be able to accurately 

localize the picking point of strawberries. Consequently, this investigation puts forth an approach to ascertain 

strawberry maturity and 3D pinpointing of the harvesting site, employing a refined YOLO v8-Pose algorithm in 

conjunction with an RGB-D camera. This technique allows for precise identification of strawberry ripeness, as well 

as the harvesting site localization, and accurately captures the three-dimensional data of the designated picking 

point. 

II. MATERIALS AND METHODS 

2.1Data collection 

2.1.1 Image acquisition and analysis 

In this paper, the RealSense D435i depth camera made by Intel is used for data acquisition, which can provide images 

with a resolution of up to 1280×720 at a speed of 30 frames per second, which can be used both indoors and outdoors, 

and the depth distance is valid from 0.1m-10 m. The research data in this paper were collected in January 2023 at the 
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strawberry planting base of Ricetime Agricultural Technology Co., Ltd. in Jiaxing City, Zhejiang Province, China, 

using a depth camera to record video at multiple times throughout the day to collect data on strawberries under 

different light conditions to ensure the complexity of the light environment. During the recording process, the height 

of the depth camera was 120 cm, and the distance from the target was 10-70 cm, which was within the permissible 

range of vision of the depth camera, and the dataset was collected in the way shown in Figure 1, and an external 

portable computer was used for data storage. 

 

Figure 1: Data collection method 

2.1.2 Dataset construction 

The recorded video was sliced and segmented to obtain strawberry images using Python script. The original dataset 

containing 3860 images was obtained in total after screening, and the strawberry dataset contains three kinds of 

samples: immature, semi-mature and mature strawberries. The fundamental information of the dataset is shown in 

Table 1, which ensures the completeness and complexity of the dataset. The initial dataset is divided into training set, 

validation set, and test set according to the division ratio of 7:2:1. In this paper, we use Labelme software to label 

strawberries and keypoints, and the strawberries with different maturity levels are labeled with the minimum outer 

rectangle of the target, and the labels are "Maturity", "Medium" and "Immaturity". The key point "Pick" was labeled 

2 cm up the fruit stem, and the labeled image is shown in Figure 2. The labeling results are stored in json standard 

format, and the stored information includes: image path, width and height dimensions, number of channels, and the 

location information of the strawberry labeling frame and picking point. The test platform is a hardware platform of 

AMD Ryzen 9 7845HX (CPU) with 3.00GHz main frequency, 16GB of running memory (RAM), and a graphics 

card (GPU) of NVIDIA GeForce RTX 4070, and all the programs are written in python under the system of Win10, 

based on the Pytortch deep learning framework. 

Table 1 Data capture shooting information 

Weather Counts of Image 

Cloudy 1250 

Sunny 1230 

Rainy 1380 
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Figure 2: Labelme image annotation 

2.2 Strawberry ripeness and picking point detection 

2.2.1 Improved YOLO v8-Pose Model 

YOLO v8-Pose is a deep convolutional network based on YOLO v8, which not only implements target detection, but 

also adds estimation of key point locations[31] . Compared with YOLO v5 and YOLO v7, YOLO v8 has improved 

in accuracy and speed, so we choose to use YOLO v8n model as the base model for strawberry ripening and picking 

point detection in this paper. The structure of the YOLO v8 model is mainly composed of Backbone, Neck and Head. 

In the Backbone part of the backbone network, the CSP (Cross Stage Partial) idea is adopted, and feature extraction 

is performed through the Conv module using a 3×3 convolutional kernel. For the sake of preventing the gradient from 

vanishing and to ease the training, residual connectivity is introduced and the C2f module is used to convert the 

feature maps into inputs for the fully connected layers. Finally, the SPPF module receives pooling windows of 

different scales, pools and splices the feature maps. The Neck part performs bottom-up feature extraction and top-

down feature fusion. The Upsample module uses a neighborhood interpolation algorithm to expand the size of the 

feature maps by a factor of 2. The Concat module joins the feature maps from the Backbone with the feature maps 

from the upsampled layers to fuse the low-level and high-level semantic information. And the Neck part of the FPN 

performs the downscaling and channel number adjustment by convolution operation. At the Head end, the detector 

Detect consists of a series of convolutional and fully connected layers, which is responsible for localizing and 

identifying the target on the feature map, and generating the location and category prediction of the bounding box. 

Such a network structure design can effectively accomplish the task of strawberry ripeness and picking point detection 

while maintaining high accuracy and efficiency. 

Typically manifested as diminutive targets with fluctuating shapes and hues within their natural surroundings, 

strawberries pose an elevated challenge for detection. Furthermore, shifting lighting conditions and potential 

occlusions can influence the model's efficacy in pinpointing strawberries with precision. Particularly, in terms of key 

point detection at picking locations, strawberry ripeness and picking points are often tiny targets that are more difficult 

to capture and localize. To address the above problems, this paper makes the following three improvements to the 

YOLO v8-Pose model: (1) Replace all the Concat modules at the Neck part with BiFPN richer feature fusion to 

enhance the global feature extraction capability of the model. (2) Adopting MobileViTv3 to reconstruct the backbone 

network to enhance the model's contextual feature comprehension capability and further enhance the model's feature 

extraction capability in complex environments. (3) Replace the CIoU loss function at the output end with the SIoU 

loss function to accelerate model convergence and improve the regression accuracy of the prediction frame. The 

improved YOLO v8-Pose model is shown in Figure 3. 
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Figure 3: Improved YOLO v8-Pose network structure 

2.2.2 Feature Fusion Layer Improvement 

The YOLO v8-Pose network structure fuses the FPN and PAN structures, and the target information is mainly 

concentrated in the top layer semantic information, while the position information of small-sized targets is easily lost, 

which affects the effectiveness of small target detection. To overcome this problem, we optimize the Neck network 

of the YOLO v8 network structure to extract the deep features of the image more effectively, thus improving the 

detection accuracy and efficiency. We introduce the concept of multidimensional feature fusion, which aims at 

combining features at different resolutions to enhance the characterization of features. Past feature fusion methods 

usually process all input features in the same way, but the contribution to feature fusion is often unequal due to the 

different resolutions of different input features. To address this problem, we employ the BiFPN (Bidirectional 

Weighted Feature Pyramid Network) module, which realizes bidirectional fusion of deep and shallow features from 

the top layer to the bottom layer and from the bottom layer to the top layer, for the sake of enhancing the transfer of 

feature information from different network layers[32] . 

The BiFPN module, shown in Figure 4, conveys high-level feature semantic information via blue arrows, location 

information of low-level features via red arrows, and feature fusion at the same level via purple arrows. This bi-

directional scale connectivity and weighted feature fusion achieves a better balance between accuracy and efficiency. 

This study addresses the task of strawberry ripeness and picking point detection, aiming to enable a better balance of 

the layers of the feature pyramid to provide a more global and semantic feature representation, which helps to improve 

the detection of targets at different scales in complex environments. 
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Figure 4: BiFPN network structure 

2.2.3 Improvement of backbone feature extraction architecture 

The original YOLO V8-Pose model of the CSPDarknet backbone network has a large number of model parameters 

and requires a large amount of computational information. For the sake of reducing the model parameters and improve 

the detection speed, MobileViTv3 is used as the backbone network of YOLO v8-Pose in this paper. MobileViT 

represents a streamlined vision transformer architecture that diminishes the model's dimensions, parameter count, and 

computational demands, thereby facilitating efficient execution of computer vision tasks on resource-constrained 

devices.[33,34] The structure of MobileViTv3 is exhibited in Figure 5. The module first takes in local information 

through convolutional blocks, which enables the model to better recognize the contours, textures, and shapes of 

objects, and helps to distinguish the differences between the target and the background or other objects. Meanwhile, 

the MobileViTv3 module leverages the self-attention mechanism in Transformer to perform global correlation 

computation on the input feature maps, which can capture long-distance dependencies and contextual information, 

helping the model to understand the visual scene globally, further enhancing the image feature representation, and 

thus improving the detection accuracy of the model. 

 

Figure 5: MobileViv3 Block network structure 

The challenge in complex environments, such as strawberry ripeness and picking point detection, is the small area 

and the difficulty of detection. Traditional target detection methods have limited sensory fields and can only acquire 

local contextual information. MobileViTv3 combines the features of input adaptive weighting and global processing 

in CNN model and ViT model, uses Transformer as convolution to learn global information, effectively encodes local 

and global information, and solves the problem of large computation volume and complexity of Transformer-based 

detection model has the problems of large computation and complexity. 

2.2.4 Enhancing the loss function 

YOLO v8-Pose uses CIoU as the border regression loss function by default, and evaluates the positional difference 

between the predicted and target frames by their aspect ratio. However, the full intersection and merger ratio CIoU 

does not take into account the directional match between the predictor frame and the target frame. Therefore, this 

paper introduces SIoU[35] as the detection frame regression loss function. 
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SIoU, on the basis of CIoU loss function, the relative azimuth between the predicted frame and the real frame is added 

as the cost condition of the distance loss function, and the loss function is redefined to obtain the SIoU loss function: 

1
2

Loss IoU
+

= − +
                     (1) 

Where   , IoU  and   denote the distance loss function, the IoU loss function and the shape loss function, 

respectively. The SIoU incorporates the angular cost into the distance loss function, which strengthens the constraints 

of the loss function. When the angle formed by the line connecting the centers of the two frames with the X and Y 

axes is too large, this loss function makes the prediction frame preferentially move to the nearest coordinate axis. 

Subsequently, the prediction frame only needs to regress on the X or Y axis where the real frame is located, gradually 

approaching the real frame, which accelerates the model convergence and improves the precision of the model 

inference as well as the accuracy of the location of strawberries and picking points. 

2.3 Three-dimensional localization of strawberry picking points 

The methodology for 3D localization of strawberry picking points based on depth cameras is illustrated in Figure 6. 

Initially, the RGB camera along with the left and right infrared cameras within the depth camera capture the RGB 

image and depth image of the strawberry and the picking point, respectively. Subsequently, the refined YOLO v8-

Pose object detection algorithm identifies the strawberry and the picking point in the image, procuring the pixel 

coordinates of the picking point. Following this, depth information is integrated to compute the three-dimensional 

coordinates of the strawberry picking point within the camera coordinate system. Finally, after a coordinate 

transformation, the absolute coordinates of the strawberry picking point relative to the robotic arm are acquired. 

Combined with the corresponding depth information, the three-dimensional coordinates of the picking point in the 

camera coordinate system are calculated, and the absolute coordinates of the strawberry picking point under the robot 

arm are obtained after the coordinate transformation to realize the accurate positioning of the strawberry picking 

point. 

 

Figure 6: Block diagram of three-dimensional positioning of strawberry picking point 

2.3.1 Positioning principles 

In the process of harvesting strawberries, it is imperative for the robot to precisely compute the spatial relation 

between the strawberries and the robotic appendage, guaranteeing accurate manipulation without inflicting harm upon 

the fruit. This three-dimensional information of the strawberry picking point is crucial for the robot's localization and 

motion control. The D435i depth camera measures the depth by calculating the distance through the parallax created 

by the objects on the imaging planes of the left and right infrared cameras. As shown in Figure 7, LO
 and RO

 

represent the optical centers of the left and right infrared cameras respectively, the two cameras are placed horizontally 



J. Electrical Systems 20-3s (2024): 2171-2181 

 

2178 

at a distance of b, with a focal length of
f

 , CP
 is a point in the real world, which is mapped to the LP

 point on the 

imaging plane of LI
 and the RP

 point on the imaging plane of RI
 respectively, and CZ

 is the distance from CP
 

to the depth camera. Due to the horizontal placement, the positional deviation only exists in the X-axis, so the 

deviation of the Y-axis direction is equal, and the deviation of the CP
 point in the left and right imaging planes is

L LC P
 = LX

 , = R RP C 0R RX X− （ ）
 respectively. The similarity can be obtained from

C L R C L RP P P P O O  
 : 

( )

C

C L R

Z b

Z f b X X
=

− − −
                        (2) 

where
f

 , b is the camera internal parameter, obtained by calibration, L RX X−
 is the parallax, obtained by pixel-

point matching, and the final depth distance CZ
 is obtained: 

-
C

L R

fb
Z

X X
=

                       (3) 

 

Figure 7: Depth camera ranging schematic 

Note: OL and OR are the centers of the left and right cameras, respectively; CL is the origin of the left imaging plane 

IL , and CR is the origin of the right imaging plane IR ; PC is a point in the real world, and the mapped points on the 

imaging plane in IL and the imaging plane in IR are the point PL and the point PR , respectively; f is the focal length, 

and b is the baseline; and ZC is the distance from the point PC to the camera. 

Mapping a point in the two-dimensional pixel plane to a position point in the three-dimensional world requires the 

transformation of the pixel coordinate system, the image coordinate system, the camera coordinate system and the 

crab pond coordinate system. As shown in Figure 8, the robot arm coordinate system is first established with the 

origin WO
 , the east direction as the WX

 axis, the north direction as the WY
 , and the upper direction as the WZ

 

axis ( WX
 , WY

 , WZ
 ). Install the depth camera in front of the robot arm, take the camera as the origin, the front 

as CZ
 axis, the right horizontal direction as CX

 axis, and the plumb line over the optical center as CY
 axis to 

establish the camera coordinate system ( CX
 , CY

 , CZ
 ). 
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Figure 8: The Sketch Map of transformation relationship between the manipulator and the pixel  

Note: {XW , YW , ZW } is the mechanical coordinate system, the origin is OW ; {XC , YC , ZC } is the camera 

coordinate system, the origin is CL ; {X, Y} is the image coordinate system, the origin is O; {u, v} is the pixel 

coordinate system, the origin is OP ; the focal length is f; PC is the spatial location of the picking point under the 

camera coordinate system, and the projected point under the pixel coordinate system is the P point; AB is the 

connecting line of the midpoints of the two sides of the heights of the projection frame under the pixel coordinate 

system, and W is the width of the strawberry under the pixel coordinate system; A B is the corresponding projection 

line of AB under the camera coordinate system, and W is the projection width of the strawberry under the camera 

coordinate system. AB is the connecting line of the two sides of the projected frame, and WAB denotes the width of 

the strawberry under the pixel coordinate system; AC BC is the corresponding projected connecting line of AB under 

the camera coordinate system, and WAcBc denotes the projected width of the strawberry under the camera coordinate 

system.  

As seen in Figure 8, the point CP
 is a localization point of the strawberry picking point under the camera coordinate 

system, after the projection transformation, the localization point CP
 is mapped from the three-dimensional space to 

the point P under the two-dimensional image coordinate system, and after the translation, the point P is then 

transformed to the pixel coordinate system, and the transformation relationship between the pixel coordinates and the 

camera coordinate system is as follows: 

0

0

0

0

1 0 0 1

x C

C y C

C

f u X

Z f Y

Z



 

     
     

=
     
                             (4) 

Therein:
( , )u 

 is the 2D coordinates of the strawberry picking point under the pixel coordinate system, which is 

obtained by the improved YOLO v8-Pose model to recognize the RGB image, CZ
 is obtained by the depth camera,

xf
 , yf

 , 0u
 , and 0  are the internal references of the depth camera, and the 3D coordinates of the strawberry 

picking point under the camera coordinate system can be solved by the following equation: 

0

0

( - )

( )

•

C
C

x

C
C

y

C

L R

Z u u
X

f

Z
Y

f

f b
Z

X X

 


=


 −

=


 =

−                        (5) 

It is extremely necessary to convert the 3D coordinates of the picking point under the camera coordinate system to 

the robot arm coordinate system. The conversion from camera coordinate system to mechanical coordinate system 
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belongs to rigid body transformation, which can be accomplished by rotation and translation, and the conversion 

formula is as follows: 

1

0 1

1 1

W C

W C

W C

X X

Y R T Y

Z Z

−

   
   

    =      
   
                        (6) 

Where R is the product of the X, Y, Z 3-direction rotation matrix and T is the translation matrix. The final result is 

the true 3D coordinates of CP
 in the mechanical coordinate system (XPc, YPc, ZPc). 

III. RESULTS AND DISCUSSION 

3.1 Evaluation indicators description 

The evaluation index of the target keypoint detection algorithm is OKS (Object keypoint similarity). The average 

accuracy AP (Average precision) is obtained from OKS. The mAP-kp (Mean average precision - key point) is 

calculated from AP as the evaluation index of the key point. Precision P and Recall R were used as the evaluation 

index of target recognition. Precision and Recall were used as evaluation indexes of target detection results. OKSp is 

calculated as follows: 

2 2 2exp{ / 2 }( 0)

( 0)

pi p i pii

pi

i

d S
OKSp

 

 

− 
=






                  (7) 

1 0

0 0

pi

pi






= 
= 

= 

（ ）

（ ）
                        (8) 

where dpi represents that the Euclidean distance between the i-th keypoint detected and the corresponding keypoint 

in the target, Sp is the scale factor of p-points, pi
 is the picking point visibility, 0 is unlabeled, 1 is labeled occluded, 

and 2 is labeled unseen, and i
 is the normalization factor of picking points of type i. 

The AP mathematical calculation expression is as follows: 

( )

1

m p

m p

OKSp T

AP

 

=




                  (9) 

 

0 )

OKSp OKSp T

OKSp T



= 



（ ）

（
                         (10) 

3.2 Analysis of model training results 

Figure 9 shows the changes in the predicted bounding box loss function of the benchmark model and the improved 

YOLO v8-Pose model after training. From the figure, it can be observed that compared to the benchmark model, the 

improved YOLO v8-Pose has a faster convergence speed at the beginning of training and is able to accurately detect 

the ripeness of strawberries and the location of the picking point while having a lower loss value. As the training 

proceeds, after about 300 iterations, the model's convergence rate exhibits marked stability, and the enhanced version 

demonstrates superior convergent characteristics. 
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Figure 9: Training process loss function change diagram 

The enhanced model underwent evaluation with a dedicated test set, resulting in a normalized confusion matrix that 

highlights the categorization of varied obstructions by the refined model, as depicted in Figure 10. Each column 

signifies the accurate classification of the sample, while each row corresponds to the anticipated classification of the 

sample. Observation of the confusion matrix reveals that the elements on the main diagonal are significantly larger 

than the other non-diagonal elements. This indicates that the improved YOLO v8-Pose has a high discrimination and 

recognition rate in strawberry ripeness and picking point detection. 5% of the strawberries were misidentified as 

Medium strawberries; 2% of Medium strawberries were misidentified as Medium strawberries; 2% of Medium 

strawberries were misidentified as Immaturity strawberries; and 5% of Immaturity strawberries were misidentified as 

Medium strawberries. The analysis was due to the fact that individual Medium strawberries were closer in appearance 

to Maturity strawberries and individual Medium strawberries were closer in appearance to Immaturity strawberries. 

In addition, 6% of the strawberry picks were misidentified as Background, mainly because the strawberry picks are 

small and difficult to distinguish from the background when there is occlusion. Overall, the improved YOLO v8-Pose 

used in this section has a high recognition rate and differentiation between the three different maturity strawberries 

and picking points. 

 

Figure 10: Improved YOLO v8-Pose detection result confusion matrix 

3.3 Analysis of ablation experiment 

For the purpose of verifying the effectiveness of the three improvement strategies of BiFPN feature fusion network, 

MobileViTv3 reconfiguration backbone network, and SIoU loss function in improving the performance of the model, 
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the ablation analysis is conducted utilizing an identical dataset, with progressive incorporation of enhancement 

techniques based on the initial model. The results of the ablation study are displayed in Table 2. 

It can be evidently seen from Table 2, compared with the original YOLO v8-Pose model, Model 2 increases the 

Precision, Recall and mAP − kpvalues by 1.24%, 0.88%, and 1.92%, respectively, without a significant increase in 

the number of parameters and computation. It shows that replacing all the Concat modules with BiFPN at the Neck 

part effectively increases the feature extraction capability and improves the detection accuracy. Model 3 is based on 

Model 2, the MobileViTv3 module is used to reconfigure and optimize the backbone network, and the Precision, 

Recall and mAP-kp values are increased by 0.89%, 1.36% and 1.19%, respectively. The reason for analyzing this is 

mainly because the MobileViTv3 module is able to extract global long-distance dependency relationships through 

the self-attention in Transformer. mechanism to extract full Director Sequence Modeling Dependency and contextual 

information while fusing the local information obtained by the convolutional block to improve the detection accuracy 

of the model. On the basement of model 3, the border loss function of the original model is changed to the SIoU loss 

function to obtain the final model 4, in which the number of parameters and computation amount remain basically 

unchanged, the Precision, Recall and mAP-kp values are increased by 1.58, 2.11 and 2.38 percentage points, 

respectively. The detection time of a single frame is 17.1 ms. In contrast to the the past model, the number of 

parameters, computation and detection time of the improved YOLO v8-Pose are basically unchanged from that of the 

initial model and meet the real-time requirements, but the Precision, Recall and mAP-kp values are increased by 

3.71%, 4.35%, and 5.49%, respectively. For picking robots, improving the accuracy of strawberry ripeness, and 

picking point detection while keeping the model parameters basically unchanged is an important prerequisite to ensure 

the subsequent precise picking. 

Table 2. Ablation test results 

No. Model 
Parameter 

Quantity/M 

Calculation 

Quantity/(× 

109s-1) 

Precision/% 
Recall 

/% 

mAP-

kp/% 

Detection 

Time/ms 

1 YOLO v8-Pose 3.01 3.79 93.41 92.54 92.36 16.2 

2 YOLO v8-Pose-BiFPN 3.25 4.09 94.65 93.42 94.28 16.4 

3 
YOLO v8-Pose-BiFPN-

MobileViTv3 
3.65 4.59 95.54 94.78 95.47 17.1 

4 
YOLO v8-Pose-BiFPN-

MobileViTv3-SIoU 
3.65 4.59 97.12 96.89 97.85 17.1 

 

3.4 Analysis of the results of experiments comparing different models 

This study carries out comparative investigations employing YOLO v5-Pose, YOLO v7-Pose, YOLO v8-Pose, and 

the refined YOLO v8-Pose models. The deep learning training outcomes for each respective model are illustrated in 

Table 3, and the analysis of the computer calculation results exhibits that the YOLO v8-Pose base model selected in 

this paper has the smallest number of parameters, and the number of parameters, Precision, Recall , mAP-kp values 

and the single-frame image detection time of the improved YOLO v8-Pose are 3.65M, 97.12%, 96.89%, respectively, 

97.85% and 17.1 ms. The improved YOLO v8-Pose in this paper. where Precision, Recall, mAP-kp value and 

Detection time are the best, the YOLO v8-Pose model is overall better than other common models. This demonstrates 

that the foundational model selected for this study is not merely superior, but the employed enhancement approach 

also proves effectual, consequently augmenting the model's detection precision. 

Table 3. Red ripe stage strawberry identification and picking point detection results of different models 

Model 
Parameter 

Quantity/M 
Precision/% Recall/% mAP-kp/% 

Detection 

Time/ms 

YOLO v5-

Pose 
16.45 89.35 90.18 90.16 32 

YOLO v7-

Pose 
13.76 90.89 91.24 91.32 24 
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YOLO v8-

Pose 
3.01 93.41 92.54 92.36 16.2 

Improved 

YOLO v8-

Pose 

3.65 97.12 96.89 97.85 17.1 

Comparison of the results of red ripening strawberry identification and picking point prediction for YOLO v5-Pose, 

YOLO v7-Pose, YOLO v8-Pose and improved YOLO v8-Pose are shown in Figure 11. As can be seen from Figure 

11a, the YOLO v5-Pose detection results showed omissions (marked by red arrows), and its overall confidence was 

low, and its prediction of picking points was relatively poor, with a large deviation in the location of the predicted 

"Pick" point, and the "Medium" point was incorrectly predicted as "Medium". Medium" was incorrectly predicted as 

"Maturity" (marked with a green arrow). As can be seen from Figure 11b, YOLO v7-Pose also misses the detection 

of shaded strawberries (marked by red arrows), and the overall confidence level is low; the picking points predicted 

by YOLO v7-Pose have the same bias, which is not able to satisfy the accurate detection of stalk picking points. 

The recognition effects of YOLO v8-Pose model and the improved YOLO v8-Pose model are shown in Figure 11c 

and Figure 11d, and the comparison shows that YOLO v8-Pose and the improved YOLO v8-Pose can accurately 

recognize strawberries at different periods of time, but the confidence level of the prediction of YOLO v8-Pose is 

lower; in the aspect of the detection of the picking point, both models can detect the "pick" key point for detection, 

but there is the same deviation in the location of the key point predicted by YOLO v8-Pose. In terms of picking point 

detection, both models are able to detect "pick" keypoints for detection, but YOLO v8-Pose predicts the location of 

keypoints with the same bias. The improvement of YOLO v8-Pose can solve the problem of low confidence of 

strawberry detection in YOLO v8-Pose and make more accurate prediction of the key point location, which is more 

suitable for the picking work of the robot. 

 

(b) YOLO v5-Pose 

 

(c) YOLO v7-Pose 

 

(d) YOLO v8-Pose 

Figure 11: Comparison of strawberry ripeness and picking point detection with different network models 
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3.5 Picking point localization accuracy analysis 

During the test, the strawberries in the greenhouse were detected and located within the distance range of 10~70 cm, 

and after the strawberries were successfully detected, the three-dimensional coordinates of the center point of the 

strawberries were recorded (XPci , YPci , ZPci,), and the depth distance ZPci was used as the measurement data for 

evaluation and analysis, and the distance from the center point of the strawberries to the mid-point of the camera 

baseline, ZdPci , which was obtained with a high-precision laser distance meter, was used as the real distance, and 

the measurement accuracy of the high-precision laser distance meter was + (2.0 mm + 5 × 10-5 D) (D denotes the 

distance, km), and the maximum measurement error within 10 m is ± 2.5 mm. The absolute and relative errors of the 

two sets of data were finally analyzed, and the validation results are shown in Table 4. 

The validation results showed that the mean absolute error and the mean absolute percentage error of the measured 

distances were 0.63cm and 1.16% in the range of 10-70cm, respectively. The maximum absolute error and maximum 

relative error of the measured distance were 1.37cm and 2.22% respectively. It can be approximately believed that 

the error steadily increases as the distance increases, mainly due to the limitation of the camera resolution. The depth 

information of the camera is not sufficient when capturing a long-distance target, and it is also affected by the 

illumination, which leads to the loss of target details, thus affecting the accuracy of distance measurement. 

Nevertheless, the overall distance error is still in line with the actual acquisition requirements. 

Table 4 Test results of locating accuracy of picking point 

Number 
Pick 

ZPci /cm ZdPci /cm EZ /cm EZr /% 

1 10.12 10.32 0.20 0.02 

2 13.31 13.36 0.05 0.00 

3 16.43 16.48 0.05 0.00 

4 19.23 19.19 0.04 0.00 

5 22.56 22.48 0.08 0.00 

6 25.72 25.57 0.15 0.01 

7 28.01 27.78 0.23 0.01 

8 31.45 31.21 0.24 0.01 

9 34.98 34.62 0.36 0.01 

10 37.51 38.08 0.57 0.01 

11 40.87 41.56 0.69 0.02 

12 43.93 44.64 0.71 0.02 

13 46.36 47.28 0.92 0.02 

14 49.81 50.94 1.13 0.02 

15 52.92 54.11 1.19 0.02 

16 55.94 54.82 1.12 0.02 

17 58.69 59.83 1.14 0.02 

18 61.78 62.91 1.13 0.02 

19 64.85 66.12 1.27 0.02 

20 67.68 69.05 1.37 0.02 

Mean   0.63 1.36 

Maximum   1.37 2.22 

The detection research outputs are shown in Figure 12. In this paper, In accordance with the RGB-D depth camera 

and using the improved YOLO v8-Pose algorithm can not only accurately detect the ripeness of strawberries, but also 

accurately recognize the exact location information of the picking point. 
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Figure 12: Strawberry ripeness detection and three-dimensional location of picking point  

Note: The information above the prediction box is the strawberry category and confidence level, and the information 

above the picking point is the three-dimensional coordinate information of the picking (unit:m) 

IV. CONCLUSIONS 

This paper presents an accurate detection of strawberry ripeness and picking point based on an RGB-D depth camera 

with an improved YOLO v8-Pose algorithm. The foremost advancements presented in this study encompass the 

following: 

(1) In response to the difficulty of detecting strawberry ripeness and picking point at the same time in the current 

research, this paper adopts the improved YOLO v8-Pose that can accurately detect strawberry ripeness and picking 

point in complex environments simultaneously. 

(2) In order to improve the detection performance of the model in complex background environments, this paper has 

targeted the YOLO v8-Pose model to improve the Neck part by replacing all the Concat modules with BiFPN richer 

feature fusion; adopting MobileViTv3 to reconfigure the backbone network to cement the ability of the model's 

contextual feature comprehension; and replacing the CIoU loss function at the output end with an SIoU loss function 

to accelerate the model convergence. The mAP-kp value of the improved YOLO v8-Pose is 97.85%, which is 5.49% 

higher than that of the initial model, and the single-frame image detection time is 17.1ms, which is basically 

unchanged from that of the original model and meets the real-time requirements. 

(3) In this paper, we utilize the three-dimensional perception characteristics of the depth camera to accurately detect 

the strawberry picking point while accurately obtaining its three-dimensional coordinate information. The mean 

absolute error and the mean absolute percentage error in depth estimation amount to 0.63cm and 1.16%, respectively, 

which are of high accuracy. This study provides effective technical support for the picking robot to accurately localize 

the strawberry position. 
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