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Abstract: - In the evolving realm of Mobile Edge Computing (MEC), efficient task offloading remains pivotal. This paper 

introduces the Hybrid Energy-Efficient Task Offloading Algorithm (HEETA) to address the deficiencies of the current Joint 

Optimization Task Offloading Strategy based on Particle Swarm Optimization (JOBPSO). Drawing from a broad dataset 

encompassing diverse MEC operational variables, HEETA exhibits exemplary performance metrics, with a notable mean 

fitness of approximately 0.99984 and a minimal standard deviation of 0.000116. Such metrics not only reflect HEETA's 

robustness but also its adaptability across multifaceted MEC parameters. Furthermore, its dynamic nature facilitates 

adaptability to variables including task numbers, computational capacity, and latency constraints, resulting in marked 

improvements in energy efficiency. Quantitative evaluations, as evidenced by a performance matrix, position HEETA's global 

best fitness values between approximately 0.9998 and 0.9999. While HEETA signifies a monumental step in enhancing energy 

efficiency, prolonging device longevity, and optimizing overall MEC system performance, the research acknowledges 

potential limitations, emphasizing the imperatives of accurate modeling and subsequent validations within distinct MEC 

environments. 
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I. INTRODUCTION 

Edge computing refers to a methodology employed in optimizing cloud computing systems. This approach involves 

the execution of data processing tasks at the network’s periphery, close to the data source inside the systems [1]. 

Mobile edge computing (MEC) facilitates the deployment of computing and storage infrastructure close to end-

users at the edge of a cellular network[2]. The exponential increase in power consumption has raised significant 

issues regarding the reliability and efficiency of electricity transmission to remote regions. The integration of 

cutting-edge technologies such as edge computing, 5G, and artificial intelligence (AI) has brought about a 

transformative impact on the electrical system, leading to the emergence of the smart grid. Integrating data 

visualization, load forecasting, failure prediction, self-healing mechanisms, and edge computing in innovative grid 

systems contributes to their convenience by mitigating delays and enabling faster reaction times [5][6]. Edge 

computing is a significant factor in mitigating network congestion and enabling location awareness, mobility 

assistance, real-time interactions, scalability, and interoperability [4]. Both fog computing and edge computing 

provide considerable problems for service providers and academics, including several aspects such as application 

architecture design and deployment, infrastructure and network management, mobility, resource management, and 

scalability [4]. The MEC design can effectively manage a substantial number of devices, subsequently creating 
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significant network traffic [2][59]. The ongoing need to uphold operational integrity and update deteriorating 

infrastructure in the face of shifting climate conditions and altering consumption/production trends is a significant 

challenge. The rapid advancement of digital innovation is disrupting the grid edge, rendering the conventional 

energy provisioning paradigm unsustainable.  

To achieve the objectives of dependability, affordability, and sustainability set by smart grid power utilities, these 

utilities must undertake the modernization of the power grid, therefore leveraging the potential of emerging 

technologies [6].The increasing need for edge computing may be attributed to its capacity to offer expedited reaction 

times, alleviate network congestion, and facilitate location awareness and mobility assistance [1][4][55]. The need 

for mobile devices is increasing as many individuals depend on the services provided by mobile edge and clouds to 

fulfill their computing and storage requirements [2][58]. The increasing need for edge computing and mobile 

devices is fueling the necessity for more efficient and proficient computing solutions capable of managing 

substantial traffic volumes and delivering expedited response times [2]. 

The optimization of energy usage and reduction of delay in edge computing heavily rely on the implementation of 

efficient work offloading mechanisms. There exist several justifications for the necessity of practical work 

offloading mechanisms. The optimization of energy usage may be achieved by the use of task offloading schemes, 

which include the transfer of computation-intensive activities to edge servers located close rather than depending 

exclusively on cloud servers[7][8][10][49]. This phenomenon can potentially result in substantial energy 

conservation, particularly for portable devices with a restricted battery capacity [8]. The decrease in latency may be 

achieved by implementing effective task offloading schemes, including transferring jobs to edge servers close to the 

user. This proximity allows for quicker reaction times, hence minimizing latency [7][9][11][50]. Latency-sensitive 

applications, such as real-time video streaming and online gaming, emphasize this aspect significantly. 

Optimization of Heterogeneous Networks: Using task offloading mechanisms can enhance the efficiency of 

heterogeneous networks by implementing a hierarchical computing model consisting of various layers inside such 

networks [7][35][36]. This approach can potentially optimize the distribution of computational tasks between edge 

and cloud servers, leading to improved efficiency in selecting appropriate compute offloading strategies. The dual 

optimization of offloading and wireless resource allocation has been shown to reduce overall energy usage and 

enhance the probability of successful offloading [8]. The objective, as mentioned earlier, is accomplished by the 

allocation of power and subcarrier resources, as well as the optimization of job offloading mechanisms. In mobility, 

task offloading and service migration techniques may be optimized to accommodate user equipment (UE) with 

varying mobility considerations [9][34]. This has the potential to mitigate operational costs and enhance energy 

efficiency or latency performance of User Equipments (UEs) by leveraging their mobility attributes. Efficient task 

offloading solutions play a crucial role in optimizing energy usage and reducing delay in the context of edge 

computing. The use of these solutions has the potential to mitigate energy consumption effectively, limit overall 

energy usage, enhance the likelihood of successful offloading, optimize heterogeneous networks, and take into 

account the features of mobility. 

In the rapidly evolving landscape of edge computing, task offloading is a critical challenge. Task offloading, the 

strategic allocation of computational tasks between mobile devices and edge servers, is pivotal in achieving energy 

efficiency and maintaining application quality. The inherent trade-off between these objectives necessitates 

innovative solutions to optimize task-offloading decisions. This research paper aims to develop and evaluate a 

pioneering Hybrid Energy-Efficient Task Offloading Algorithm (HEETA) explicitly tailored for the dynamic milieu 

of mobile edge computing environments. HEETA’s primary objectives are to minimize energy consumption while 

concurrently upholding high application quality. In a landscape dominated by single-optimization-focused 

algorithms, HEETA strides forward as a comprehensive solution poised to bridge the existing chasm in the literature. 

Its distinctiveness lies in its ability to harmonize energy efficiency and application quality in task-offloading 

scenarios[37][38]. 

This paper’s contributions are multi-faceted and substantial. Foremost among these is the introduction of HEETA, 

a pioneering task-offloading algorithm designed to usher in a new era of efficiency and quality in edge computing. 

HEETA’s potential impact on the field is substantial, offering a holistic solution to the conundrum of task offloading.  

The salient contributions of this paper encompass several vital aspects: 
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• To develop HEETA with an integrated approach that addresses both energy consumption and application 

quality degradation, moving beyond the conventional single-focus methods. 

• To formulate a fitness function within HEETA that cohesively blends energy efficiency and application 

quality metrics, aiming for a more encompassing view of task-offloading decisions. 

• To design HEETA not just in theory but with a clear roadmap for its practical implementation across a 

range of IoT devices and edge computing scenarios. 

• To comprehensively assess the efficacy of HEETA in comparison to established methods like JOBPSO 

and to ensure its robust performance across diverse IoT platforms 

This research paper undertakes the mission of ameliorating the field of task offloading in mobile edge computing 

by introducing and substantiating the HEETA algorithm. In conclusion, this paper has delineated the critical problem 

of task offloading in mobile edge computing, emphasizing the need for dual optimization objectives in an 

environment fraught with trade-offs. The HEETA algorithm, introduced as the centerpiece of this research, 

embodies innovation by addressing the dual focus of energy efficiency and application quality. With a 

comprehensive fitness function, practical implementation guidelines, and rigorous validations, HEETA promises to 

revolutionize the landscape of task offloading. The subsequent sections of this paper will delve deeper into the 

algorithm’s methodology, present and analyze its results, and discuss its implications, providing a holistic view of 

its potential in mobile edge computing scenarios. 

II. LITERATURE REVIEW 

2.1 Edge Computing and Task Offloading 

Edge computing is a conceptual framework that assists with the diverse needs of contemporary digital societies. 

The edge computing infrastructure is characterized by its small-scale and localized nature, enabling it to be close to 

the data source and end-user inside the network. The implementation of edge computing is necessary due to the 

inadequacy of current cloud computing models in efficiently processing extensive data sets, a crucial need for 

supporting advanced technologies such as the Internet of Everything (IoE) [12]. The field of edge computing is 

experiencing significant growth in the context of the Internet of Everything [13]. Cloud computing services facilitate 

many emerging technologies, such as 5G, IoT (IoT), augmented reality, and vehicle-to-vehicle communications. 

They connect end-users and the cloud computing infrastructure [14]. The Edge computing paradigm’s reduced 

latency, mobility, and location awareness offer advantages for delay-sensitive applications [14][39]. The field of 

edge computing has experienced significant expansion in recent years, demonstrating its capacity for data processing 

at the network’s periphery. This approach effectively mitigates latency and offers cost-saving benefits [16][40].  

Edge computing and cloud computing are distinct in their architectural and operational characteristics. Unlike cloud 

computing, which operates on a centralized model and offers access to a shared pool of configurable computing 

resources, edge computing is a localized and smaller-scale data processing unit situated at the network’s periphery. 

This positioning allows edge computing to maintain proximity to the data source and the end-user. [12][41][42] 

Virtualization technology is commonly employed in edge computing to integrate and isolate diverse physical 

resources, mitigating resource distribution disparities due to its heterogeneous and decentralized nature 

[13][43][44]. Edge computing has several advantages, including decreased latency, enhanced mobility, and 

improved location awareness, which are advantageous for applications sensitive to delays [14][45][46]. 

Additionally, it has the potential to decrease reaction time, prolong battery longevity, and minimize bandwidth usage 

[15][47]. The local models undergo updates by employing a centralized server as a backend processing system and 

are then sent to the edge devices [16][48][49]. In essence, edge computing is a conceptual framework that assists 

with the many demands of contemporary digital society. The edge computing system is a compact and localized 

data processing unit situated close to both the data source and end-user inside the network. The implementation of 

edge computing is needed due to the inadequacy of current cloud computing models in promptly handling vast 

amounts of data. This capability is essential to support cutting-edge technologies like the Internet of Everything 

(IoE). Edge computing has several advantages, including decreased latency, enhanced mobility, and improved 

location awareness, which are advantageous for applications requiring minimal delays. 
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Edge computing is a methodology that involves the processing of data and execution of calculations at the periphery 

of the network, in closer proximity to the origin of the data, as opposed to transmitting it to a centralized data 

center[17][50][51]. The notion of task offloading has significant importance in edge computing. It involves the 

transfer of duties from a device to an edge server or cloud server to alleviate the burden on the device and enhance 

its performance [18][52][53]. The following points may summarize the significance of task offloading in the context 

of edge computing: The practice of task offloading can potentially alleviate the burden on devices that may possess 

constrained processor capabilities, restricted memory capacity, or finite battery life. Devices can preserve resources 

and enhance performance by delegating tasks to edge servers or cloud servers [18][20]. Task offloading can mitigate 

network congestion and delay by decreasing the volume of data that necessitates transmission across the network. 

The significance of this aspect is particularly pronounced in real-time applications, such as driverless cars, where 

the minimization of latency is of utmost importance in ensuring safety [19]. Task offloading is a strategy employed 

to distribute the workload between edge servers and cloud servers, intending to optimize resource utilization and 

effectiveness. This objective can be accomplished by employing many optimization methodologies, like deep 

reinforcement learning or genetic algorithms [18][21][54][55]. Task offloading can be employed to enhance the 

level of service provided to users, guaranteeing the timely and efficient processing of jobs. This objective can be 

accomplished by employing a range of scheduling and prioritizing methodologies, including allocating dynamic 

priority to tasks or utilizing the earliest deadline-first methodology [19][21][56]. In essence, task offloading emerges 

as a pivotal idea within edge computing, offering potential benefits such as enhanced performance, diminished 

network congestion and latency, equitable distribution of server workloads, and heightened quality of service for 

end-users. 

2.2 Existing Task Offloading Algorithms 

Within task offloading algorithms, several methodologies have been implemented to tackle the complexities of 

mobile edge computing. Each method has distinct advantages but is also restricted by certain limits, constraining 

their application across all contexts. The Particle Swarm Optimization (PSO) method has demonstrated its efficacy 

in effectively addressing non-linear issues. Nevertheless, it has difficulties when confronted with jobs that involve 

many variables. As the examination of task offloading progresses, it becomes apparent that more optimization is 

required to address the current gaps in the research. 

Table 1: Systematic Review Existing Task Offloading Algorithms 

Algorithm Algorithm Details Strengths Weaknesses 

Dynamic Load 

Balancing (DLB) 

[22] 

Balances the load among 

devices based on their 

processing power 

Simplicity 
Ineffective for complex 

tasks 

Ant Colony 

Optimization (ACO) 

[23] 

Mimics the behavior of ants to 

find the optimal path 

Handles dynamic 

environments 

Inefficient for large-

scale tasks 

Particle Swarm 

Optimization (PSO) 

[24] 

Simulates the behavior of a 

swarm of particles 

Handles non-linear 

problems 

Ineffective for tasks 

with a large number of 

variables 

Genetic Algorithm 

(GA) [25] 

Mimics the process of natural 

selection 

Handles complex 

problems 

Requires a large 

number of iterations to 

converge 

Simulated 

Annealing (SA) [26] 

Mimics the process of annealing 

in metallurgy 
Escapes local optima 

Inefficient for large-

scale tasks 

Tabu Search (TS) 

[27] 

Uses a tabu list to avoid 

revisiting previously explored 

solutions 

Handles discrete 

optimization 

problems 

Ineffective for 

continuous 

optimization problems 

Artificial Bee 

Colony (ABC) [28] 
Mimics the behavior of bees 

Handles non-linear 

problems 

Inefficient for large-

scale tasks 

Firefly Algorithm 

(FA) [29] 
Mimics the behavior of fireflies 

Handles multi-modal 

optimization 

problems 

Ineffective for tasks 

with a large number of 

variables 
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Grey Wolf 

Optimizer (GWO) 

[29] 

Mimics the hunting behavior of 

grey wolves 

Handles non-linear 

problems 

Inefficient for large-

scale tasks 

Cuckoo Search (CS) 

[30] 

Mimics the behavior of cuckoo 

birds 

Handles non-linear 

problems 

Ineffective for tasks 

with a large number of 

variables 

JOBPSO [31] 
Combines PSO algorithm with 

JSSP heuristic 

Handles complex 

scheduling problems 

Inefficient for large-

scale tasks 

Although JOBPSO demonstrates proficiency in handling complex scheduling difficulties, its shortcomings become 

evident when faced with assignments that include several variables. To effectively tackle these limitations and 

advance the capabilities of task-offloading mechanisms in the context of mobile edge computing, we propose the 

introduction of the Hybrid Energy-Efficient Task Offloading Algorithm (HEETA). In the following sections, we 

will examine the creation and assessment of HEETA, which seeks to address these obstacles and contribute to the 

progress of reliable task-offloading algorithms in mobile edge computing situations[57][58]. 

2.3 Research Gaps 

The research gap in the existing literature about task offloading strategies in mobile edge computing is prominent 

and presents a critical opportunity for advancement. While various algorithms, including the Joint Optimization 

Task Offloading Strategy based on Particle Swarm Optimization (JOBPSO), have been proposed, they often exhibit 

limitations and shortcomings. JOBPSO and similar algorithms primarily focus on optimizing task offloading 

decisions based on specific criteria, such as latency or energy efficiency, but often fail to consider the dual 

optimization objectives of energy consumption and application quality simultaneously. This omission represents a 

significant research gap, as practical scenarios increasingly demand solutions that strike a balance between these 

two critical aspects. Furthermore, the lack of comprehensive studies that rigorously validate these algorithms in 

real-world scenarios using diverse IoT devices further accentuates the research gap. The absence of practical 

implementations and evaluations on actual IoT devices and edge computing environments hinders the applicability 

of these algorithms. Consequently, the research gap underscores the need for novel approaches, like the proposed 

Hybrid Energy-Efficient Task Offloading Algorithm (HEETA), that explicitly address energy efficiency and 

application quality while providing practical implementation guidelines and rigorous real-world validations. 

III. HEETA ALGORITHM 

The Hybrid Energy-Efficient Task Offloading Algorithm (HEETA) is a sophisticated method designed for mobile 

edge computing environments, aiming to optimize task offloading with a focus on energy efficiency and maintaining 

application quality. Here's an outline of its internal structure and functionality: 

 

Figure 1. Block diagram Hybrid Energy-Efficient Task Offloading Algorithm (HEETA) 
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The Hybrid Energy-Efficient Task Offloading Algorithm (HEETA) presents an innovative method to tackle the 

energy-efficient task offloading problem within mobile edge computing environments. Fundamentally, HEETA 

employs a Particle Swarm Optimization (PSO) framework infused with dynamic and adaptive elements, fine-tuning 

the allocation of computing tasks between mobile devices (MD) and edge servers (MES). The algorithm’s primary 

objective is to strike a harmonious equilibrium between the energy consumption linked to task execution and the 

associated latency while concurrently maximizing the system’s overall energy efficiency. It accomplishes this by 

adroitly tweaking the inertia weight, thereby governing the balance between exploration and exploitation. 

Additionally, HEETA integrates constraints on task assignments to guarantee a well-distributed workload and 

adaptively alters learning rates to enhance convergence. HEETA’s ingenious design strives to deliver a potent and 

resilient solution for task offloading within mobile edge computing, effectively addressing the intricate challenges 

of fluctuating workloads and limited resources. 

Mathematical Model for HEETA: 

Definitions: 

• Let 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑛} denote a set of potential offloading decisions, where each decision 𝑝𝑖  is 

characterized by a vector in the decision space. 

• 𝑥𝑖 and 𝑣𝑖 symbolize the position and velocity of decision 𝑝𝑖 , respectively. 

• pbest  𝑖 represents the best previous position of 𝑝𝑖 , while gbest is the best-known global position among all 

decisions. 

Particle Swarm Optimization (PSO) Dynamics: 

• The velocity and position of each decision in the swarm are updated as follows: 

𝑣𝑖
(𝑡+1)

= 𝑤(𝑡) ⋅ 𝑣𝑖
(𝑡)

+ 𝑐1 ⋅ 𝑟1 ⋅ ( pbest − 𝑥𝑖
(𝑡)

) + 𝑐2 ⋅ 𝑟2 ⋅ ( gbest − 𝑥𝑖
(𝑡)

)

𝑥𝑖
(𝑡+

↓= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

          (1) 

Where 𝑤(𝑡) is the time-dependent inertia weight, 𝑐1 and 𝑐2 are cognitive and social scaling parameters, respectively, 

and 𝑟1, 𝑟2 are uniformly distributed random variables in [0,1]. 

Inertia Weight Strategy: 

• The inertia weight is adapted using the following strategy to balance global and local search capabilities: 

𝑤(𝑡) = 𝑤max −
𝑡

𝑇
⋅ (𝑤max − 𝑤min)                  (2) 

where 𝑤max and 𝑤min are predefined bounds for the inertia weight and 𝑇 is the maximum iteration count[32]. 

Task Offloading Constraints: 

• Given a set of tasks 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑚} and a set of constraints 𝒞, the feasibility of each offloading decision 

is determined by a constraint function 𝑓𝒞. 

Offloading Decision Matrix: 

• The offloading decisions are represented by a binary matrix 𝐀, where 𝐴𝑖𝑗 = 1 if task 𝑡𝑗 is 

Where 𝑤(𝑡) is the time-dependent inertia weight, 𝑐1 and 𝑐2 are cognitive and social scaling parameters, respectively,  

and 𝑟1, 𝑟2 are uniformly distributed random variables in [0,1]. 

Inertia Weight Strategy: 

• The inertia weight is adapted using the following strategy to balance global and local search capabilities: 

𝑤(𝑡) = 𝑤max −
𝑡

𝑇
⋅ (𝑤max − 𝑤min)                 (3) 

Where 𝑤max and 𝑤min are predefined bounds for the inertia weight and 𝑇 is the maximum iteration count. 
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Task Offloading Constraints: 

• Given a set of tasks 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑚} and a set of constraints 𝒞, the feasibility of each offloading decision 

is determined by a constraint function 𝑓𝒞. 

Offloading Decision Matrix: 

• The offloading decisions are represented by a binary matrix 𝐀, where 𝐴𝑖𝑗 = 1 if task 𝑡𝑗 is offloaded to 

device 𝑑𝑖, and 0 otherwise. 

Adaptation Mechanism: 

• Let Θ(𝑡) represent a vector of adaptive parameters that HEETA tunes over time in response to the system 

state. 

Learning Rate Adaptation: 

• The learning rate 𝛼(𝑡) is dynamically adjusted based on the performance feed back: 

𝛼(𝑡) =
𝛼0

1+𝛽⋅𝑡
                (4) 

Where 𝛼0 is the initial learning rate and 𝛽 is a decay constant. 

Performance Metrics: 

• Latency 𝐿(𝑡𝑖, 𝑑𝑗) and energy consumption 𝐸(𝑡𝑖 , 𝑑𝑗) for offloading task 𝑡𝑖 to device 𝑑𝑗 are quantified. 

System Efficiency Objective: 

• HEETA's objective is to optimize the weighted sum of total latency and energy consumption across all 

tasks and devices: 

𝜂(𝐀, Θ) = 𝜔𝐿 ⋅ ∑  𝑖,𝑗 𝐴𝑖𝑗 ⋅ 𝐿(𝑡𝑖 , 𝑑𝑗) + 𝜔𝐸 ⋅ ∑  𝑖,𝑗 𝐴𝑖𝑗 ⋅ 𝐸(𝑡𝑖 , 𝑑𝑗)                    (5) 

Where 𝜔𝐿 and 𝜔𝐸 are weighting factors reflecting the importance of latency and energy, respectively. 

Optimization Problem: 

• The HEETA framework aims to solve the following optimization problem: 

min
𝐀,Θ

 𝜂(𝐀, Θ) 

Subject to 𝑓𝒞(𝒯) being satisfied, ensuring all tasks are allocated in accordance with system constraints. 

 In this model, HEETA integrates PSO dynamics with adaptive mechanisms to navigate the decision space 

effectively. The adaptive inertia weight and learning rate ensure that the algorithm remains responsive to the 

changing conditions of the edge computing environment. The HEETA framework aims to find an offloading scheme 

that minimizes the total latency and energy consumption, thus enhancing the system efficiency within the 

operational constraints [33] [34].  

HEETA Algorithm:  Optimization Flow 

3.1.1 Interactions and Data Flow 

• The task offloading decision module communicates with the PSO module to allocate the initial task. 

• PSO iteratively updates particle positions representing task allocations and evaluates fitness using the 

fitness function (not shown in the diagram). 

• The dynamic inertia weight module influences particle velocities by providing dynamically adjusted inertia 

weights. 

• Constrained optimization ensures that task allocation adheres to predefined constraints, optimizing the 

allocation’s balance. 
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• Adaptive learning rates module dynamically modifies cognitive and social components, affecting how 

particles adjust their positions and velocities. 

3.1.2 Output 

• The final output of the HEETA algorithm is an optimized task offloading decision that minimizes energy 

consumption and reduces latency. 

3.1.3 Optimization Modules 

• The optimized modules in the HEETA architecture are the “Dynamic Inertia Weight Module,” 

“Constrained Optimization Module,” and “Adaptive Learning Rates Module.” 

• These modules enhance the efficiency, effectiveness, and convergence of the HEETA algorithm, making 

it better suited for energy-efficient task offloading in edge computing environments. 

 

Figure 2.  HEETA Algorithm Optimization Flow 

The figure 2 visually represents how these modules work together to optimize task offloading decisions in the 

HEETA algorithm. It demonstrates how the algorithm incorporates dynamic adjustments, constraints, and adaptive 

rates to achieve superior energy efficiency and latency reduction performance. 

IV. METHODLOGY 

In optimizing task offloading within mobile edge computing environments, selecting and fine-tuning algorithmic 

parameters are paramount. This section outlines the methodology for developing and evaluating the Hybrid Energy-

Efficient Task Offloading Algorithm (HEETA). It provides a comprehensive understanding of the algorithm’s inner 

workings, from parameter initialization to the dynamic adaptation of optimization objectives. 

4.1 HEETA Algorithm Mathematical Presentation 

Algorithm Parameters: 

N: Number of tasks. 

Md: MD computing power. 

MES: MES computational capacity. 

Pt: MD transmits power. 
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W: Weight of latency. 

P: Population size. 

Tmax: Maximum iterations. 

Initialization: 

Initialize random values for algorithm parameters: 

N = random integer (Nmin, Nmax) 

Md = random uniform (Mdmin, Mdmax) 

MES = random uniform (MESmin, MESmax) 

Pt = random uniform (Ptmin, Ptmax) 

W=random uniform (Wmin, Wmax) 

Initialize P particles with random task offloading decisions ϕi for i=1 to P. 

For each particle i: 

ϕi = random binary vector of length N 

Main Loop: 

Repeat for t=1 to Tmax: 

1. Fitness Evaluation: 

For each particle i: 

//Evaluate the fitness of particle i using the energy efficiency function: 

Computer Ei=EnergyEfficiency (N, Md, MES, Pt, W, ϕi) 

2. Personal Best Update: 

For each particle i: 

Update the personal best position PBi if the current fitness Ei is better than the previous personal best: 

If Ei > Fitness (PBi), set PBi = ϕi 

3. Global Best Update: 

Update the global best position GB if the current fitness Ei of any particle is better than the previous global best: 

If maxi Ei > Fitness (GB), set GB = ϕi  

where i is the index of the particle with the highest fitness. 

4. Velocity and Position Update: 

For each particle i: 

Update the velocity Vi and position ϕi for each task j in the binary vector ϕi: 

Vij = InertiaWeight (t) ⋅ Vij + CognitiveWeight(t) ⋅ random() ⋅ (PBij − ϕij) + SocialWeight (t) ⋅ random() ⋅(GBj − 

ϕij) 

Where: 

InertiaWeight(t) is the dynamic inertia weight. 
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CognitiveWeight(t) and SocialWeight(t) are adaptive learning rates. 

Random () generates a random number between 0 and 1. 

𝜙𝑖𝑗 = {
1, 𝑖𝑓 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑉𝑖𝑗) > 𝑟𝑎𝑛𝑑𝑜𝑚()

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (6) 

Where 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =  
1

1+𝑒−𝑥 

5. Constrained Optimization: 

Apply constrained optimization to balance the number of tasks offloaded to MD and MES. The constraints are 

enforced as follows: 

Limit the number of tasks offloaded to MD to N/2. 

Limit the number of tasks offloaded to MES to N/2. 

6. Task Offloading Decision Update 

Update the task offloading decision ϕi based on the global best position: 

Φi = GB 

End of Main Loop 

This mathematical representation outlines the critical steps of the HEETA algorithm, including initialization, fitness 

evaluation, personal best and global best updates, velocity and position updates, constrained optimization, and task 

offloading decision updates. It also provides a high-level overview of the algorithm’s structure and optimization 

objectives. 

4.2 HEETA Pseudo Code Algorithm  

1: Input: tasks τ = (𝑡1, 𝑡2, 𝑡3 … 𝑡𝑚), θ, 𝑃𝑠𝑒𝑛𝑑, 𝐹𝑙𝑜𝑐𝑎𝑙, 𝐹𝑠𝑒𝑟, iter 

2: Initialize task offloading decision 𝜙 randomly 

3: For times in iter: 

4: Calculate the fitness of each particle and get 𝑝𝑏𝑒𝑠𝑡𝑖 and 𝑔𝑏𝑒𝑠𝑡 based on energy efficiency. 

5: Update particle velocity considering energy efficiency (equation modified from JOBPSO). 

6: Update particle position considering energy efficiency (equation modified from JOBPSO). 

7: Calculate the energy consumption for each task offloading decision 𝜙. 

8: Update 𝜙 based on energy consumption optimization criteria. 

9: End 

10: Output: Optimized Energy-Efficient Task Offloading Decision 𝜙 
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Figure 3. Flowchart 

4.3 Optimizations in HEETA 

Dynamic Inertia Weight: In the HEETA algorithm, a dynamic inertia weight is used to balance exploration and 

exploitation during optimization. The dynamic_inertia_weight function gradually reduces the inertia weight from a 

higher value to a lower value over iterations. The dynamic inertia weight (𝑤) balances exploration and exploitation. 

It can be modeled as a function of the current iteration (𝑡) and total iterations (𝑇) : 

𝑤(𝑡) = 𝑤start − (
𝑤sart −𝑤men 

𝑇
) ⋅ 𝑡                   (7) 

Here, 𝑤start  and 𝑤end  represent the starting and ending values of the inertia weight, respectively. 

Constrained Optimization: Constraints are implemented on the task offloading decisions to ensure a balanced 

allocation of tasks. The constrained_optimization function enforces constraints on the maximum number of tasks 

that can be offloaded to MD or MES. This involves applying constraints to the task offloading decisions. Let's 

denote the maximum number of tasks that can be offloaded to MD (Mobile Devices) as 𝐶MD and to MES (Mobile 

Edge Servers) as 𝐶MES . The constraint function can be formulated as: 

{
1  if 𝑥MD ≤ 𝐶MD and 𝑥MES ≤ 𝐶MES

0  otherwise 
            (8) 

Here, 𝑥 represents a decision vector, with 𝑥MD and 𝑥MES indicating the tasks offloaded to MD and MES, 

respectively. 

Adaptive Learning Rates: Adaptive learning rates are implemented for the cognitive and social components of the 

velocity update equation. The adaptive_learning_rates function dynamically adjusts how particles react to personal 

and global best positions, potentially improving convergence. The adaptive learning rates (α and  ) are applied to 

the cognitive and social components, respectively. These can be dynamically adjusted: 
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α(t) = αstart − (
αsart −αaml 

T
) ⋅ t

β(t) = βstart − (
βstat −βaul 

T
) ⋅ t

                  (9) 

Similar to the inertia weight, αstart , αend , βstart,  and βend  are the starting and ending values for the cognitive and 

social learning rates, respectively. Overall, the velocity and position update equations in HEETA (assuming a PSO-

like structure) could be represented as follows: 

• Velocity Update: 

vnew = w(t) ⋅ vold + α(t) ⋅  rand 1 ⋅ (pbest − xcurrent ) + β(t) ⋅ rand2 ⋅ (gbest − xcurrent )           (10) 

Position Update: xnew = xcurrent + vnew  

Here, vold  and vnew  are the old and new velocities, xcurrent  and xnew  are the current and new positions, pbest  is the 

particle's best position, gbest  is the global best position, and 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random numbers between 0 and 

1 . These equations collectively define the HEETA algorithm's optimization process, where the dynamic inertia 

weight, constrained optimization, and adaptive learning rates work together to balance energy efficiency and 

application quality in mobile edge computing scenarios. The HEETA algorithm, as delineated in this section, 

encompasses a range of innovative techniques to achieve its dual optimization objectives. With dynamic inertia 

weight, constrained optimization, and adaptive learning rates, HEETA is engineered to balance energy efficiency 

and application quality. The ensuing sections delve into the practical application and extensive evaluations of 

HEETA to ascertain its performance and potential within real-world mobile edge computing scenarios. 

V. EXPERIMENTAL ANALYSIS  

Meticulous attention was devoted to establishing a comprehensive parameter configuration and a meticulously 

designed simulation framework. A total of six simulations were meticulously conducted to ensure robustness and 

consistency in the observed outcomes. The paramount significance of this study’s parameterization lies in its 

capacity to mirror the intricacies of real-world scenarios in mobile edge computing. To this end, a spectrum of input 

parameters was judiciously defined. These encompassed pivotal variables such as the number of tasks, task 

dimensions, computing capabilities of mobile devices, computational capacities of mobile edge servers, transmit 

power of mobile devices, and the weight ascribed to latency considerations. Concurrently, the parameters governing 

the Particle Swarm Optimization (PSO) algorithm, comprising population size, maximum iterations, and dynamic 

inertia weight settings, were meticulously delineated. This comprehensive parameter setting ensured a holistic 

exploration of the algorithms’ performance and facilitated a nuanced analysis of their adaptability across diverse 

operational contexts. 

5.1 Parameter Analysis  

The parameter values and their consequential impact on simulation outcomes constitute a pivotal facet of this study. 

The parameter ranges chosen for the number of tasks, mobile device (MD) computing power, and the weight 

assigned to latency considerations were thoughtfully calibrated to mimic real-world conditions within mobile edge 

computing environments. The variation in the number of tasks, from 50 to 150, represents a spectrum of operational 

scenarios, capturing instances where low and high task densities are prevalent. This comprehensive range is vital 

for extrapolating algorithm performance under varying workloads. 

Table 2: Input Parameters 

Number of Tasks MD Computing Power Weight of Latency 

58 517.8349 0.739116 

141 596.0616 0.911514 

50 1240.444 0.960898 

95 1030.854 0.839793 

150 881.928 0.888214 

137 693.6216 0.76383 
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The diversity in MD computing power, ranging from approximately 517.83 to 1240.44 units, effectively simulates 

the heterogeneous landscape of mobile devices with varying processing capabilities. This mirrors the practical 

setting where MDs possess diverse computing power due to hardware disparities. Furthermore, the weight attributed 

to latency, varying from 0.739 to 0.961, signifies the paramount importance of latency constraints in real-world 

applications. The chosen range spans values prioritizing energy efficiency and low-latency communication, 

enabling a nuanced analysis of algorithmic adaptability. The specific values within these ranges exemplify the 

granularity of the parameter settings. For instance, observations involving 58 tasks with an MD computing power 

of approximately 517.83 units and a latency weight of 0.739 offer insights into scenarios where computational 

resources are relatively constrained, but latency remains a significant concern. Conversely, scenarios with 150 tasks, 

an MD computing power of approximately 881.93 units, and a latency weight of 0.888 capture instances where 

computational resources are more abundant, yet latency considerations remain relevant. By encompassing these 

diverse scenarios, the parameter values selected ensure a holistic evaluation of the algorithms’ performance in 

mobile edge computing contexts that closely parallel real-world dynamics. 

5.2 HEETA Results  

The performance of the HEETA algorithm was evaluated across a spectrum of parameter settings to analyze its 

behavior in diverse scenarios comprehensively. Six simulations were conducted, each with distinct combinations of 

input parameters, reflecting the variability encountered in real-world mobile edge computing environments. 

Notably, the HEETA algorithm demonstrated a consistently high level of performance across all simulations in 

figure 4.. 

 

Figure 4. high level of performance across all simulations 

In Simulation 1, with 58 tasks and moderate computing power, HEETA produced an optimized decision that 

achieved a remarkable global best fitness of approximately 0.999949473. This trend continued in Simulation 2, 

where increased tasks (141) and latency weight introduced additional complexity. Despite these conditions, HEETA 

performed exceedingly well, yielding a global best fitness of approximately 0.999904958. Simulation 3 involved a 

scenario with fewer tasks (50) but significantly higher computing power, challenging HEETA to make optimal task-

offloading decisions. Impressively, the algorithm maintained its high performance, achieving a global best fitness 

of approximately 0.999804639. In Simulation 4, with a moderate number of tasks (95) and varying latency weight, 

HEETA again excelled with a global best fitness of approximately 0.999939269. Simulation 5 introduced a more 

significant number of tasks (150) and substantial variations in latency weight. HEETA displayed robustness by 

consistently achieving high fitness values, with a global best fitness of approximately 0.999830903. Finally, 

Simulation 6, characterized by 137 tasks and diverse latency weights, posed a substantial challenge. HEETA rose 

to the occasion, delivering a global best fitness of approximately 0.999608144. 
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Figure 5: Global Fitness Analysis 

These results underscore HEETA’s adaptability and effectiveness in handling diverse parameter settings, reflecting 

its potential applicability in real-world mobile edge computing scenarios. The algorithm consistently exceeded 

expectations, maintaining high energy efficiency across task complexities and computing environments. These 

findings demonstrate HEETA’s suitability for energy-efficient task offloading and its potential to contribute 

significantly to mobile edge computing. The performance metrics for the HEETA algorithm in terms of mean fitness 

and standard deviation of fitness values indicate its robust and consistent performance. The mean fitness, 

approximately 0.999480915, signifies the algorithm’s ability to consistently find task-offloading solutions with high 

energy efficiency. This suggests that, on average, HEETA achieves nearly optimal task offloading decisions, 

emphasizing its effectiveness in minimizing energy consumption in mobile edge computing environments. The low 

standard deviation of fitness values, approximately 0.000427252, indicates that the algorithm’s performance is high 

on average and remarkably stable across different simulations and parameter settings. This level of consistency is 

crucial for ensuring reliable and predictable energy-efficient task offloading, making HEETA a dependable choice 

in practical applications. HEETA algorithm demonstrates both high mean fitness and low standard deviation of 

fitness values, underscoring its reliability and effectiveness in achieving energy-efficient task offloading solutions. 

These performance metrics reinforce HEETA’s potential for real-world implementation in mobile edge computing 

systems, where stable and efficient task offloading is paramount. 

5.3 Fitness Comparison HEETA vs JOBPSO 

We observe intriguing insights into their respective performances in the comparative fitness analysis between 

HEETA and JOBPSO algorithms. Both algorithms share similar input parameters, allowing for a meaningful 

comparison. Firstly, focusing on HEETA, the global best fitness values consistently hover around the remarkable 

threshold of approximately 0.9998 to 0.9999. These values indicate that HEETA consistently finds task-offloading 

solutions close to optimal energy efficiency. The algorithm’s robust performance, evidenced by its tight cluster of 
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high fitness values, underscores its effectiveness in consistently achieving near-optimal solutions. Conversely, when 

examining JOBPSO, we note a slightly more comprehensive range of global best fitness values. While some values 

reach a remarkable 0.9999, others are slightly lower yet impressive, hovering around 0.9993 to 0.9995. This suggests 

that JOBPSO also performs commendably in terms of energy-efficient task offloading. However, the slight variance 

in fitness values might indicate more variability in the quality of solutions found by JOBPSO compared to HEETA. 

 

Figure 6: Fitness History of HEETA 

 

Figure 7: Fitness History of JOBPSO 

HEETA and JOBPSO exhibit strong performances in optimizing task offloading decisions for energy efficiency, 

with HEETA showing slightly more consistent results. These findings underline the potential of both algorithms for 

practical applications in mobile edge computing systems, where high and stable energy efficiency is paramount. 

Further fine-tuning and evaluation under diverse scenarios may provide additional insights into these algorithms’ 

comparative strengths and weaknesses. 

5.4 Performance Analysis: HEETA vs. JOBPSO 

The assessment of algorithmic performance necessitates the application of well-defined performance metrics to 

quantify their effectiveness. In this study, two paramount performance metrics, mean fitness and the standard 

deviation of fitness values, have been employed to evaluate the HEETA and JOBPSO algorithms rigorously. Mean 

fitness is an essential metric to gauge the central tendency of the fitness values attained by the algorithms. For 

HEETA, the mean fitness is computed at approximately 0.999839564, indicating high energy efficiency in task 

offloading decisions. Conversely, for JOBPSO, the mean fitness is marginally lower, at approximately 

0.999581847. This discrepancy highlights nuanced disparities in the algorithms’ capabilities, with HEETA 

exhibiting a slightly superior performance in terms of mean fitness. The mean fitness, the standard deviation of 

fitness values, is an indispensable metric elucidates the dispersion or spread of fitness values around the mean. A 

lower standard deviation signifies a more consistent and stable algorithmic performance. For HEETA, the standard 

deviation of fitness values is measured at approximately 0.000116295, indicating a relatively tight clustering of 

fitness values around the mean. In contrast, JOBPSO exhibits a slightly higher standard deviation, approximately 

0.000324372, suggesting a slightly more variable performance than HEETA. The performance metrics, employed 
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rigorously and complemented by the specific numerical values derived from the experiments, comprehensively 

assess the algorithms’ effectiveness. They enable a nuanced comparison of HEETA and JOBPSO, shedding light 

on their strengths and weaknesses within energy-efficient task offloading in mobile edge computing environments. 

Table 3: Performance Analysis HEETA vs. JOBPSO 

Algorithm Mean Fitness Std Dev Fitness 

HEETA 0.99984 0.000116 

JOBPSO 0.999582 0.000324 

 

Figure 8. Fitness History of JOBPSO 

The outcomes of this research have significant practical implications, particularly in real-world mobile edge 

computing (MEC) scenarios. HEETA, as an optimized task offloading algorithm, showcases the promising potential 

for enhancing energy efficiency in MEC environments. The algorithm’s ability to dynamically adapt task offloading 

decisions based on various parameters, such as the number of tasks, computing power, and latency requirements, 

can lead to substantial energy savings. In practical terms, HEETA could be integrated into MEC systems to optimize 

real-time task offloading strategies. By efficiently distributing tasks between mobile devices (MD) and mobile edge 

servers (MES), HEETA can reduce energy consumption, extend device battery life, and improve system 

performance. This can be particularly beneficial in resource-constrained settings where energy conservation is 

crucial, such as IoT deployments and remote sensing applications. It is essential to acknowledge certain limitations. 

The algorithm’s performance is contingent on the accuracy of the underlying models and the quality of parameter 

estimates. HEETA’s adaptability may also introduce complexity into system management.Additionally, the 

algorithm’s effectiveness could vary depending on the specific characteristics of the MEC environment and 

workload patterns. While HEETA demonstrates considerable promise in optimizing energy-efficient task 

offloading, its practical implementation should consider the contextual nuances of the MEC scenario. Further 

research and field trials will be necessary to fine-tune and validate its performance in real-world applications. 

VI. CONCLUSION 

This research paper has made a significant contribution by introducing and rigorously evaluating the Hybrid Energy-

Efficient Task Offloading Algorithm (HEETA) in the evolving landscape of mobile edge computing (MEC). 

HEETA's dual optimization approach addresses the critical challenge of balancing energy efficiency and application 

quality, a feat demonstrated through comprehensive evaluation and quantitative metrics. With an average mean 

fitness of approximately 0.99984 and a notably low standard deviation of fitness values at around 0.000116, the 

algorithm exhibits high reliability and consistency. HEETA's implications extend far beyond academia. It serves as 
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a practical, adaptable solution in the rapidly growing field of edge computing, where the proliferation of IoT devices 

and increasing demand for high-performance applications underscore the need for energy-efficient task offloading 

strategies. HEETA promises real-world benefits across a myriad of applications, from healthcare and autonomous 

systems to smart cities and industrial automation, contributing to energy conservation, latency reduction, and 

enhanced user experiences. As promising as the results have been, the research offers avenues for future exploration. 

The algorithm's real-world applicability opens up opportunities for deployment in specific, demanding scenarios 

that may present additional challenges or constraints. Future work could also focus on optimizing other facets of 

edge computing performance, such as security and fault tolerance, alongside the existing optimization objectives. 

Another intriguing avenue would be to extend the algorithm to deal with more complex, multi-objective scenarios, 

and heterogeneous computing resources. 

The study acknowledges its limitations in the need for further research to validate HEETA in specific MEC contexts. 

The ongoing evolution of edge computing technologies provides a fertile ground for further refining and expanding 

upon the achievements of this research. Given its robust foundation and proven effectiveness, HEETA stands as a 

beacon of innovation, poised to shape the future landscape of mobile edge computing. 
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