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Abstract: - Automatic text summarization is a subarea of natural language processing that generates a summary of the text 

by keeping its key points. The research work done on summarizing low-resourced language text is very limited. In India, 

the Hindi language is being spoken by central and north Indian people and only a few research works have been done on 

abstractive summarization of Hindi language. Having matras in Hindi makes it difficult to tokenize so it is difficult to 

summarize Hindi text using abstractive text summarization. In the proposed method, abstractive Hindi text summarization 

is done using transliteration and fine-tuning. In this work, the model is trained to generate both summaries and headlines. 

ROUGE-score and BERT-score have been utilized to check summary quality. A new semantic similarity score-based 

performance measure is also proposed to measure semantic similarity between reference summaries and predicted 

summaries. Using the proposed method, we have achieved the highest 55.16 ROUGE score, 0.80 BERT score, and 0.98 

similarity score. Along with these performance measures, human evaluation of predicted summaries is also done and it is 

found that summaries and headlines were generated at a human-acceptable level.  
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1. INTRODUCTION 

Text summarization is getting popular nowadays because digital data is flooding every 

day on the internet. If someone is searching for any information on the internet then a lot of 

digital data is shown on the screen and everyone can't read all the data to extract useful facts.  

Automatic Text Summarization (ATS) techniques have gained popularity because they 

produce a useful and concise summary of large texts automatically without human intervention. 

This reduces the time need extract useful information from large texts. One of the important 

requirements of ATS techniques is to generate semantically correct summaries without losing 

the original intent of the text. The concept of ATS is not new but it came into existence, when 

(Luhn, 1958) proposed text summarization using statistical techniques. Earlier text 

summarization methods were based on statistical methods to produce summaries. With the 

increase in high-speed memory and parallel computing resources, many artificial intelligence-

based techniques have been used in ATS. The deep learning and AI-based text summarization 

methods achieve better results in generating better, coherent, and more human-like summaries.  

ATS has many advantages (1) It reduces the reading time (2) During the research, summary 

selection from literature is easy with ATS. (3) Automatic summarization methods are not 

biased like humans and (4) They can generate summaries of different lengths from the same 

text. Sentiment-based summarization (Ali et al., 2020), headline generation(Arora, 2020), and 

customer review summarization (Alsaqer & Sasi, 2017) are some application areas of ATS. 

Text summarization can be done in many ways, depending on the strategies used. Figure 1 

shows the important categories of text summarization (El-Kassas et al., 2021).  

 

 
1 1 Atal Bihari Vajpayee University, Bilaspur, India, jeetendragupta@bilaspuruniversity.ac.in 
2 GLA University, Mathura, India, shashi.shekhar@gla.ac.in 
3 Atal Bihari Vajpayee University, Bilaspur, India, rashmigupta@bilaspuruniversity.ac.in 

 



J. Electrical Systems 20-3s (2024): 2089-2110 

2090 

 

Fig 1. Categories of ATS methods. 

Based on the input size, text summarization methods can be single-document 

summarization and multi-document summarization. In single-document summarization, single 

input is given and a single summary is generated but in multi-document summarization, 

multiple document inputs are given and a single summary is generated. Query-based 

summarization generates summaries from multiple documents based on query results while 

generic summarization generates summaries from one or multiple documents. In the supervised 

text summarization method, supervised training algorithms need to be trained on the labeled 

data. In unsupervised text summarization methods, labeled data is not required. The indicative 

summary identifies the document’s topic, and the informative summary elaborates on some 

topics according to the user's interest. In domain-based methods, summarization is done on the 

text of the general domain while in domain-specific summarization, summarization is done on 

the text of specific domain texts like medical documents, sports documents, legal documents, 

etc. A monolingual summarization summarizes text written in a single language, a multilingual 

summarization summarizes texts written in multiple languages, and a cross-lingual 

summarization summarizes text written in one language to a summary written in another 

language. Based on the length of generated summaries, different length summaries can be 

generated like headlines generation, single sentence summary generation, highlights 

generation, or full summary generation. The last category of summarization is based on the 

summarization approach. It is very common and most text summarization algorithms are 

categorized accordingly. The extractive summarization method extracts important sentences 

from the text to form a summary. Abstractive summarization methods apply Deep Learning 

based algorithms to generate human-like summaries. Hybrid summarization uses both 

abstractive and extractive approaches to generate summaries. Extractive summarization uses 

statistical methods while abstractive summarization uses AI-based Seq2Seq models and 

advanced transformer models. 

A lot of research work has already been done on English text summarization but very 

little work has been done in the area of Hindi text summarization.  Most of the residents in the 

northern and central Indian states like Madhya Pradesh, Rajasthan, Delhi, etc. speak Hindi as 
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their first language. Hindi is also spoken in Mauritius, Fiji, Guyana, Suriname, Trinidad & 

Tobago, and Nepal. It is the fourth most-spoken language in the world with 344 million native 

speakers (Top 10 Most Spoken FIRST Languages in the World in 2023 | TranslateDay, n.d.). 

Furthermore, Hindi is widely spoken in many nations other than India. It has encouraged us to 

study NLP-based techniques for summarization. 

 Most of the research works done for summarization of Hindi text utilized extractive 

approaches which are extensively based on statistical methods to select important sentences 

from large texts. Summaries generated using extractive text summarization are not coherent 

and semantically disconnected. Hindi is more complex than English because of matras. As a 

result, little research has been done on Hindi text summarization. 

Research Problems and Objectives 

● We found that due to matras in the Hindi language, it is very difficult to tokenize Hindi words 

in the right way. Very few Hindi tokenizers are available, and sometimes they cannot tokenize 

Hindi words correctly.  We have seen the case of popular Hindi tokenizers from the inltk 

library[(Arora, 2020)] and tried to tokenize some sample words. It was found that many Hindi 

words were wrongly tokenized. Like ”कियारा” was tokenized into two token i.e ”किया” and 

”रा”,  ”िरकिल” word is tokenized as ”िर” and ”किल”. ”िोहरा” word is tokenized as ”िो” 

and ”हरा”. Due to this, tokenization can generate summaries in the wrong context. To tackle 

this problem, we have proposed that instead of developing new tokenizers for the Hindi 

language, the transliteration process can be used to transliterate the text from Hindi to English 

languages. The English language doesn’t have matras therefore it is easy to tokenize. 
● In continuation of the above objective, it is already known that fewer pre-trained models are 

available for Hindi text summarization whereas, for English text summarization, enhanced pre-

trained models are available. Consequently, the second objective of the proposed work is to 

summarize the transliterated Hindi text using the model that is already trained on English text. 
● The third objective of the proposed work is to explore a new method to calculate semantic 

similarity between reference summaries and predicted summaries. 
 

The main contributions of this paper are: 

▪ Transliteration of Hindi text before summarization is done to generate better summaries. 
▪ A pre-trained model trained on English text is fine-tuned to summarize Hindi text.  
▪ To compare the semantic similarity of predicted and reference summaries, we have proposed 

a method to calculate the semantic similarity between reference summaries and predicted 

summaries. 
▪ Randomly selected summaries have been evaluated by experts. 

 

2. REVIEW OF LITERATURE 

Text summarization is the task of generating concise summaries from a large text by 

keeping the important points. Text summarization is an active research area with many exciting 

developments and advancements. We may anticipate more advancements in the caliber and 

efficiency of text summarizing systems as NLP technology develop further. This field has seen 

a great deal of study, and continuing research is still being done in it. Initially, the text 

summarization algorithms were focused on English text, but research work is also being carried 

out on different languages like French, Chinese, German, Spanish, etc., and other low-resource 

languages (Žagar & Robnik-Šikonja, 2022). In the last few years, research work on the 

summarization of Indian languages like Hindi, Tamil, Telugu, and Bengali is also been done. 

Since our proposed work is on Hindi text summarization so at first we will discuss some recent 

research works on low-resource language text summarization, then we will confer research 

works on Indian language summarization and Hindi text summarization.   
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2.1. Summarization of Low Resource Language  

Many authors have proposed abstractive summarization of low-resource languages. 

(Nawaz et al., 2020) proposed extractive summarization of Urdu. They used local weight and 

global weight-based approaches and obtained promising results. (Bani-Almarjeh & Kurdy, 

2023) proposed Arabic text summarization with RNN-based transformer architecture. They 

used four pre-trained language models mBERT, AraBERT, AraGPT2, and AraT5 for Arabic 

text summarization. They found that AraT5 and AraGPT2 performed better than other language 

models. (Shafiq et al., 2023) proposed abstractive summarization of Urdu. They used 

multilayer encoder and single layer decoder-based transformer. Using the proposed method, 

they achieved acceptable ROUGE scores. (Wijayanti et al., 2023) proposed abstractive 

summarization of low-resource languages. They analyzed two bilingual embeddings i.e. 

VecMap and BiMap for Indonesian languages. Their concept improved the performance of 

VecMap by 16.6% when evaluated intrinsically. 

 

2.2. Summarization of Indian Languages 

The work of abstractive text summarization is also done to summarize the text of other 

Indian languages like Punjabi, Tamil, Telugu, Malayalam, etc. For summarization of Punjabi 

text, many authors have proposed extractive approaches. (Garg et al., 2021) proposed 

extractive Punjabi text summarization using an unsupervised machine learning approach. After 

pre-processing the text, they generated a similarity matrix and ranked it, based on the similarity 

matrix. Using the proposed method, they achieved values of ROUGE_1, ROUGE_L, and 

ROUGE_s scores as 0.71, 0.56, and 0.56, respectively. (Jain, Arora, et al., 2021) proposed 

Punjabi text summarization using three-phase extractive text summarization. After pre-

processing, they extracted statistical and linguistic features. They used neural networks with 

sigmoid activation functions with optimization. Using their proposed method, they achieved 

90.0%, precision, 89.28%, recall, and 89.65% F-measure. (Jain, Yadav, et al., 2021) proposed 

particle swarm optimization for Punjabi text summarization. They used two datasets, and using 

their proposed method, they achieved 78.36% precision, 79.5% recall, and 78.96% F-measure 

as, 79.57. For Tamil text summarization, (Dhivyaa et al., 2022) proposed transliteration and 

transformer-based summarization of Tamil text.  For fine-tuning, they used three pre-trained 

models i.e. GPT-2, T5, and BERT models. They found that GPT-2 model achieved better 

summarization performance T5 and BERT. (Manjari, 2020) proposed extractive Telugu 

summarization using the TextRank algorithm. Followed by text preprocessing, they used the 

continuous bag of words model architecture. After the calculation of word embedding, they 

calculated a similarity matrix for generating summaries. They achieved average values of 

precision, recall, and F-measure as 0.60, 0.63, and 0.62 respectively. (Mamidala & Sanampudi, 

2021) proposed a heuristic approach for extractive Telugu text summarization. They used event 

score and named entity score for sentence ranking of Telugu text. Using their proposed method, 

they achieved better performance than other Telugu text summarization methods. (Babu & 

Badugu, 2023)  proposed Telugu text summarization using the Seq2Seq model. They used a 

Bi-LSTM-based encoder and LSTM-based decoder in their proposed Seq2Seq model. They 

found that their proposed method outperformed other Telugu text summarization methods. 

(Durga et al., 2022) proposed Telugu text summarization using histo-fuzzy means and Median 

Support Based Grasshopper Optimization Algorithm (MSGOA). After pre-processing the data, 

they clustered text documents. Using their proposed method, they achieved 84% accuracy. For 

Malayalam text summarization, (Jaya et al., 2019) proposed the summarization of Malayalam 

documents using the clause identification method. They used a POS tagger and morphological 

analyzer for Malayalam text. Using their proposed method, they were able to generate a clear 

and concise summary. (Nambiar et al., 2021) proposed abstractive text summarization of 
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Malayalam text. They used the Seq2Seq model with an attention mechanism for summarizing 

Malayalam text. Using their proposed model, they achieved better results. (K. Nambiar et al., 

2023) proposed Malayalam text summarization using an enhanced attention model and POS 

tagging. Using their proposed method, they achieved a 0.28 ROUGE score. 

 

2.3. Extractive Hindi Text Summarization 

Extractive text summarization is the process of extracting highly important sentences 

from a large text. (Bafna & Saini, 2019) proposed Hindi summarization using unsupervised 

learning. They utilized TF-IDF, cosine-based document similarity measures, and cluster 

dendrograms. Using the proposed method, they achieved values of entropy score and precision 

as 0.31 and 0.90, respectively. (Rani & Lobiyal, 2021) proposed LDA (Linear Discriminant 

Analysis) tagged-based topic modeling for text summarization. They proposed a PoS tagger 

for Hindi and also proposed four different POS-based, topic modeling-based schemes based on 

different weighting strategies. They achieved 70% ROUGE score. (Joshi et al., 2021) proposed 

semantic graph-based extractive text summarization. In their proposed method, they 

constructed a semantic graph of Hindi documents by establishing the semantic relationship 

between sentences using wordnet ontology. They found that their proposed methods performed 

better than other TextRank algorithms. (Dhankhar & Gupta, 2022) proposed a sentence-scoring 

method based on statistics for Hindi text summarization. With their mathematical combination 

of nine textual feature-based methods and achieved 0.40 ROUGE score. (Jain et al., 2022) 

proposed Hindi text summarization using a real-coded genetic algorithm. After preprocessing 

the data, they extracted eight features from the text. Then they used genetic algorithms. Using 

their proposed method, they achieved 78% ROUGE_1 recall and 68% ROUGE_2 recall. 

(Supreet et al., 2020) proposed selection and elimination-based approach to summarize Hindi 

text. After pre-processing the data, they calculated word frequency, sentence frequency, dice 

coefficient of similarity, and jacquard coefficient of similarity. Their proposed method 

produced a summary that was 30%-40% similar to the original text. (Tawatia et al., 2022) 

proposed extractive summarization of Hindi documents using neural methods. They extracted 

the data from the website of “AajTak” Hindi news and train the data with a neural extractive 

model summarizer. By using their proposed method, they achieved values of F1 scores for 

ROUGE_1 as 20.32 and for ROUGE_2 as 39.81. (Bandari & Bulusu, 2023) proposed political 

elephant herding optimization-based LSTM for extracting Hindi text summarization and 

generated the summary for Hindi text in four stages i.e., preprocessing, feature extraction, score 

generation, and score extraction. Using the proposed method, they achieve 77.5% ROUGE 

score. (Aote et al., 2023) proposed binary particle swarm optimization-based multi-document 

Hindi text summarization. They proposed a combination of binary particle swarm optimization 

to find the optimal score and generate a final summary. They found that their method performed 

better than other methods in terms of ROUGE, precision, and recall. 

 

2.4. Abstractive Hindi Text Summarization 

In the context of the Hindi language, very little work is done in the area of abstractive 

text summarization. (Karmakar et al., 2021) proposed to summarize Hindi text using Seq2Seq 

neural network with attention. They summarized Hindi and Marathi texts using the proposed 

method. Their model was able to accept the text in Hindi and Marathi text and produce the 

summary. (Kumari & Singh, 2022) proposed Hindi text summarization using Seq2Seq neural 

network. After pre-processing the data and word embedding, they applied Seq2Seq neural 

networks. They used two optimizers i.e., RMSprop optimizer and Adam optimizer. Using their 

proposed method, they achieved values of precision, recall, and F-measure as 79.23%, 72.92%, 

and 72.95% respectively. They found that the Adam optimizer was superior to the RMSprop 

optimizer. (Tangsali et al., 2022) proposed a deep learning-based approach for Indian language 
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text summarization. For Hindi text summarization, they used indicBART, XL-Sum, and 

mBART. They achieved the highest 0.55 ROUGE_1 score with fine-tuned indicBART. 

  

3. METHODOLOGY 

In the proposed work, transliteration and fine-tuning-based Hindi text summarization 

is proposed. At first, the Hindi text has been transliterated into English. After that, a pre-trained 

model is fine-tuned on the data. For summarization, we have used fastai and blurr libraries for 

fine-tuning the pre-trained model Facebook/bart-large-cnn. For performance comparison, 

along with the ROUGE score and BERT score, a semantic similarity-based performance 

measure has also been used. Besides calculating performance measures, summaries are also 

evaluated by humans. 

 

3.1. Dataset 

For Hindi text summarization, a few datasets are available, but none are specifically for 

Hindi text summarization. Like XL-Sum (Hasan et al., 2021) and Cross-Sum(Bhattacharjee et 

al., 2022) datasets are benchmark multilingual datasets for summarization containing Hindi 

articles and summaries. But the XL-Sum dataset has very fewer instances of Hindi-to-Hindi 

articles and summary pairs i.e. only 51,715 pairs. The Cross-Sum dataset contains Hindi-to-

other-language articles and summary pairs, but no Hindi-to-Hindi articles and summary pairs. 

Therefore, we couldn’t consider these datasets for the proposed work. Instead, we used a 

publicly available dataset (Hindi Text Short and Large Summarization Corpus | Kaggle, n.d.). 

This dataset contains articles, headlines, and summaries collected from Hindi news websites. 

This dataset contains two files: train data and test data. Train data contains 143867 pairs of 

articles, headlines, and summaries for training, and test data contains 35968 pairs of articles, 

headlines, and summaries for training. In this dataset, Hindi text is written in Unicode. Table 1 

shows dataset statistics. 

 

Table 1. Dataset statistics 

Columns Avereage number of words 

Train Data  

(Total number of instances-143867) 

Test Data  

(Total number of instances-35968) 

Headline 13.54 13.57 

Summary 29.37 29.43 

Articles 537.60 543.72 

 

For the proposed experiment, we have used two combinations of columns: (1) articles 

and headlines for generating headlines and (2) articles and summaries for generating short 

summaries. For pairs of headline and article, there were no missing values; therefore, we have 

used all instances of train data and test data for training and testing the model, but the summary 

column contains many missing values thus, for the article and summary columns, we have 

removed missing values for training and testing. Table 2 shows statistics of summary and 

article data after removing missing values. 

 

Table 2. Statistics of summary and article data after removing missing values 

Columns Average number of words 

Train Data  

(Total number of instances-69033) 

Test Data 

 (Total number of instances-17265) 

Summary 29.37 29.43 

Articles 537.60 543.72 
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3.2. Transliteration 

The process of converting a word from one language's alphabet to another is called 

transliteration. Transliteration assists people in pronouncing words and names in foreign 

languages. A transliteration, unlike a translation, offers you an idea of how the word is spoken 

by placing it in a familiar alphabet. It replaces letters from the original alphabet with similar-

sounding letters from another alphabet. Following are reasons for transliteration of Hindi text 

before summarization. 

▪ Hindi is a very complex language due to matras, and some special symbols. Therefore, 

tokenization of Hindi sentences is difficult. Sometimes existing tokenizers don't tokenize Hindi 

sentences properly. Consequently, rather than tokenizing the complex language sentences we 

have transliterated the Hindi text into English text. 
▪ Most of the pre-trained models for the English language are already trained on huge quantity 

of English text, whereas pre-trained models for the Hindi language have been trained on less 

Hindi text.  It is already known that the models which are trained on huge data perform better 

than the models that are trained on fewer data. For the English language, many pre-trained 

models are available. Thus, in the proposed work, we have used a pre-trained model trained on 

English text rather than on Hindi text. 
▪ Transliteration can help in text summarization by converting text from one script or writing 

system into another. This makes it possible to work with multiple language scripts in a single 

summarization model. For example, if a text summarization model is trained on a certain script, 

it may not perform well on texts written in another script. Transliterating these texts into the 

script on which the model is trained can improve its performance. 
▪ Additionally, transliteration helps to overcome language barriers and make text written in 

different scripts accessible to a wider audience. 

For example, original Hindi text “दिल्ली में डीजल टैक्सिय ों पर बैन से मुक्सिल में पड़ा चुऩाव 

आय ग” transliterated in English as “dilli mem dijala taiksiyom para baina se mushkila mem 

pada chunav aayoga”. 

 

3.3. Fastai  

The PyTorch-based deep learning library fastai (Howard & Gugger, 2020) provides a 

simple interface for creating and training various deep learning models. For tasks like image 

classification, object detection, and language modeling, it offers a wide range of functionality 

and pre-trained models that can be customized for particular use cases. The foundation of 

Fastai's architecture is its data block API, which offers a method for quickly preparing and 

preprocessing data for deep learning model training. With this API, users can specify the 

structure of their data as well as how it should be transformed and set up for training. Fastai 

has a four-layered architecture. The low-level API layer contains the basic building blocks of 

deep learning models such as tensors, auto-grad, pipelines, reversible transforms, and 

optimized operations. The mid-level API layer contains core deep learning and data processing 

methods like callback, generic optimizer, generic metric, and data core. The high-level API 

layer contains learner and data blocks. Beginners and professionals who are primarily 

interested in using existing deep learning techniques will likely find the high level of the API 

to be most helpful. Architecture, an optimizer, and data are combined in the learner class, which 

automatically selects a suitable loss function. The upper application API layer specified 

application areas like vision, text, tabular, and time series data.  

 

3.4. Blurr Library 

The blurr library (Ohmeow-Blurr · PyPI, n.d.) is designed specifically for developers 

who use both fast.ai and Hugging Face Transformers. It essentially acts as a bridge between 

these two frameworks, providing a comprehensive and easy-to-use toolkit for training, 
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evaluating, and deploying transformer models with fast.ai. So, if you're already familiar with 

fast.ai and want to leverage the power of transformers, then ohmeow-blurr can be a valuable 

tool. 

 

3.5. Pre-trained Model 

In the proposed work, we have used Facebook/BART-large-cnn(Lewis et al., 2019) pre-

trained model. BART is a denoising autoencoder used to pre-train sequence-to-sequence 

models. To train BART, the text is first corrupted with a random noise function. Then a model 

is learned to recreate the original text, as shown in Fig. 2. It uses typical Transformer-based 

neural machine translation architecture, which, despite its simplicity, may be considered as 

generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and 

numerous other more contemporary pretraining approaches. In the base BART model, many 

noising techniques have been used for pre-training like token masking, token deletion, token 

infilling, sentence permutation, and document rotation. In the BART-large model, they used 

12 layers of encoder and decoder. In their encode-decoder architecture, they used GeLU 

(Hendrycks & Gimpel, 2016) activation function with parameter initialization from N (0, 0.02). 

The version of the BART model used in the proposed work is BART-large-cnn model. 

This BART-Large model is trained on CNN-dailymail dataset with 406 million parameters. 

The CNN / DailyMail Dataset is an English-language dataset including around 300,000 unique 

news articles published by CNN and Daily Mail writers. So it can be easily said that 

facebook/bart-large-cnn is trained on sufficiently significant amounts of data to perform 

abstractive summarization tasks. 

 

3.6. Proposed Method to Train and Test the Model 

In the proposed method, at first train data in Hindi Unicode is transliterated into 

English. After that, we downloaded the Facebook/ BART-large-cnn model using fastai and 

blurr libraries. After batch creation, fine-tuning parameters were specified. Then the model was 

trained for two epochs. The whole process of training and testing is shown in Fig. 3.  Following 

are step-by-step details of the training and testing phases. 

 

 
Fig 2. Basic working of BART model. 

3.6.1. Training Phase 

Following are detailed steps for training the model  

i. Load the training data. 

ii. Remove the rows containing missing values. 

iii. Transliterate the train data.  

iv. After transliteration of the training data, get the hugging face object with the help of 

blurr.get_hf_object method. While getting the hugging face object using model_CLS method, 

the original model, its architecture, tokenizer, and config is downloaded. Here we have used 

BartForConditionalGeneration as model_cls and pre-trained model facebook/bart-large-cnn. 
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v. Specify fine-tuning parameters. 

vi. Define batch. For creating batches, the Seq2SeqBatchTokenizeTransform instance has been 

created by passing hf object received from blurr.get_hf_object method. 

vii. Create data blocks. The data block is a blueprint that describes how raw data is converted to 

data that can be modeled. Blurr also provides support for working with multiple data blocks in 

parallel, allowing for the efficient processing of large amounts of data in real-time. For creating 

the data block, HF_Seq2SeqBlock method has been used.  

viii. Pass the data using datablock.dataloaders for creating an actual block of the data. 

ix. Create an instance of BaseModelWrapper class by passing the hf_model object. 

BaseModelWrapper is a class from the Hugging Face Transformers library, which provides a 

high-level API for working with pre-trained language models. The class is designed to wrap a 

pre-trained language model and provide an easy-to-use interface for performing common 

natural language processing tasks, such as text classification, sentiment analysis, and question 

answering. 

x. Define the list of callbacks. A callback in fastai is a piece of code that can be executed at certain 

points during the training process, such as after the completion of an epoch or after the 

prediction of a batch of data. Callbacks can be used to modify training process behavior or to 

perform additional tasks, such as logging, early stopping, and model checkpointing. 

xi. Create an instance of the learner class by passing the data block, model object, optimizer 

function, loss function, list of callbacks, and splitter. Data blocks are blocks that were created 

in step vii and the model is an instance of the model that will be retrieved as a result in step ix. 

In the proposed method a ranger optimizer and CrossEntropyLossFlat loss function have been 

used. The list of callbacks is all those callbacks that were defined in step x.  The splitter function 

splits the model into groups of layers for different learning rates. In the proposed method, the 

seq2seq_splitter function is used, with the arch argument set to hf_arch. In the proposed 

method, the to_fp16 method was also used to enable the model to use half-precision floating-

point numbers, which can speed up the training on GPUs with limited memory. 

xii. Create an instance of optimizer using learn.create_opt() method. 

xiii. Freeze the model, so that only the last layer's weight can be updated during the training process. 

Use learn.lr_find() to find the optimal learning rate. 

xiv. Train the model. In the proposed method, we have trained our frozen model for two epochs.  

3.6.2. Testing phase 

Following are steps for testing the model  

i. Transliterate the test data. 

ii. Generate the output using learn.blurr_generate method. 

 
Fig 3. Block diagram of the proposed method. 
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3.7. Performance Matrices 

For the performance measurement of the proposed method, ROUGE score, and BERT 

score have been calculated. Along with these traditional performance comparison methods, we 

have also used semantic similarity-based metrics to assess the performance of the model. 

 

3.7.1. ROUGE score  

It compares an automatically generated summary to a reference or gold-standard summary 

and scores the similarity between the two. ROUGE is often used in the evaluation of text 

summarization models (Lin, 2004), as well as machine translation models, image captioning 

models, and other tasks involving the generation of text. There are several variations of the 

ROUGE metric, including ROUGE_N, ROUGE_L, and ROUGE_W, which measure the 

overlapping n-grams, longest common sequences, and weighted overlapping of words, 

respectively. The choice of the ROUGE metric depends on the task and the desired evaluation 

criteria. But some disadvantages are also associated with the ROUGE score, like  

▪ ROUGE score focuses on recall and is limited in evaluating the content, meaning, and style of 

the generated summary, as it only considers overlapping n-grams between the reference 

summary and the generated summary.  
▪ ROUGE is biased towards longer n-grams, which might result in a higher score for summaries 

that repeat parts of the reference summary rather than generating new and concise information.  
▪ ROUGE score heavily depends on the quality of the reference summaries. This might not 

reflect human summary quality if the reference summaries are poorly written. 
▪ ROUGE is sensitive to the length of the summaries, which might result in a higher score for 

longer summaries, even if they contain redundant information. 
3.7.2. BERT score  

It is a text generation evaluation metric based on the pre-trained language model BERT 

(Zhang et al., 2019). Unlike traditional evaluation metrics such as BLEU and ROUGE, BERT 

Score evaluates the similarity of the generated text to the reference text. This is done by 

considering both the context and the meaning of the words in the text.  It also calculates the 

cosine similarity between the contextualized representations of the generated text and the 

reference text, which are obtained from the BERT model. The final BERT score is the average 

of the pair-wise cosine similarities between all word pairs in the generated and reference texts. 

BERT scores are context-aware and have less reference dependency. BERT score has some 

limitations as well, like high computational cost and limited coverage. 

 

3.7.3. Semantic Similarity-based Metric 

We have also proposed a performance metric to measure the semantic similarity of 

reference summary and predicted summary. Semantic similarity refers to the degree of 

relatedness or similarity between the meanings of two or more pieces of text. This is typically 

measured using computational techniques based on NLP and machine learning. Following is 

the proposed method (as shown in Fig 4) to calculate semantic similarity between reference 

summary and predicted summary. 

▪ Encode the reference summary and predicted summary using a sentence transformer. In the 

proposed method, we have used an all-MiniLM-L6-v2 sentence transformer (Reimers & 
Gurevych, 2019). It converts sentences and paragraphs into a 384-dimensional dense vector 

space that can be used for tasks such as clustering and semantic search. 
▪ Find cosine similarity between each pair of reference summary and predicted summary. Cosine 

similarity is frequently used in NLP to compare the similarity of two document vectors or word 

embedding. It can be used to perform tasks like document retrieval, clustering, and 

recommendation systems. It computes the cosine of the angle between the vectors and has a 
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value ranging from -1 (completely dissimilar) to 1 (identical), with 0 indicating orthogonality 

(no correlation).  
▪ Convert tensor values to scalars. 
▪ Replace the cosine score for each summary pair with 1 if the cosine score is greater than 0.50 

otherwise, replace it with 0. Convert all scores into one list D1. 
▪ Take another list D2 that has all ones, and the same length as D1. 
▪ Find the percentage similarity between D1 and D2. This percentage similarity shows the value 

of the similarity-based metric. 
 

4. RESULTS 

For training the text summarization model, we have used fastai along with the blurr 

library. The dataset we have used in our experiments has three columns i.e. headline, summary, 

and article. So, we have trained and fine-tuned the pre-trained model for the following two 

tasks i.e. generate the short summaries of the articles and generate the headlines of the articles. 

 

 
Fig 4. Block diagram of semantic similarity score calculation. 

 

4.1. Generating short summaries of articles 

For generating short summaries of the articles, we have used two columns of the dataset 

i.e. summary and article for training the model. For this, a pre-trained model Facebook/bart-

large-cnn has been fine-tuned on the dataset. After training and fine-tuning, we have obtained 

results as shown in Table 3. 

 

Table 3. Results obtained during each epoch of training for article and summary pairs. 

Epoch Train 

Loss 

Validatio

n 

Loss 

ROUGE_1 ROUGE_

2 

ROUGE_ 

L 

BERT 

score 

precision 

BERT 

score 

recall 

BERT 

score 

f1 

0 1.097 1.042 0.473 0.336 0.414 0.806 0.821 0.813 

1 0.834 0.967 0.476 0.338 0.416 0.807 0.822 0.814 

 

From Table 3, we can see that at epoch 0, training loss and validation loss were 1.097 

and 1.042, respectively. ROUGE_1 was 0.472, ROUGE_2 was 0.336 and ROUGE_L was 

0.441. At epoch 0, precision, recall and F1 score of BERT score were 0.806, 0.821, and 0.813. 

At epoch 1, all the performance measures were slightly increased and losses were slightly 
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decreased i.e. at epoch 1, training loss and validation loss were 0.834 and 0.967 respectively. 

ROUGE_1 was 0.476, ROUGE_2 was 0.338, and ROUGE_L was 0.416. At epoch 1, precision, 

recall, and F1 score of BERT score were 0.807, 0.822, and 0.814. Epoch 0 took approximately 

6 hours and 10 minutes for training, and epoch1 took approximately 6 hours and 22 minutes. 

For generating short summaries from articles, we have used test data having 17265 instances. 

After testing ROUGE score and BERT score have been obtained as shown in Table 4. 

 

Table 4. ROUGE and BERT score of reference summaries and generated summaries in 

test data 

Performance 

measure 

Recall Precision F-score 

ROUGE_1 score 0.5510 0.4319 0.4749 

ROUGE_2 score 0.3748 0.3033 0.3279 

ROUGE_L score 0.5028 0.3978 0.4358 

BERT score 0.80 0.82 0.81 

. 

  We have obtained 0.55 recall, 0.43 precision, and 0.47 F-score values of  ROUGE_1; 

0.37 recall, 0.30 precision, and 0.33 F-score values of the ROUGE_2 score; 0.50 recall, 0.40 

precision, and 0.44 F-score values of ROUGE_L score; and 0.80 recall, 0.82 precision, and 

0.81 F-score value of BERT score. 

  We also proposed and used a semantic similarity-based score to measure the similarity 

between the reference summaries and generated summaries. For this, we have calculated the 

cosine similarity between two sentences. We found following: 

Number of rows for which cosine score is greater than 0.50  -  16956 

Number of rows for which cosine score is less than 0.50  -  309 

After replacing the cosine score greater than 0.50 with 1 and the cosine score less than 0.50 

with 0, we calculated classification accuracy and found the following classification matrix: 

 Precision Recall F1-Score Support 

0 0.00  0.00 0.00  0 

1 1.00  0.98 0.99  17265 

Accuracy    0.98  17265 

Macro average 0.50  0.49 0.50  17265 

Weighted average 1.00  0.98 0.99  17265 

The similarity score obtained between reference summaries and generated summaries 

is 0.98. So, we can consider that there is a good level of similarity between the reference 

summaries and generated summaries. 

 

4.2. Generating headlines from articles 

For generating the headline of the article, we have used two columns of the dataset i.e. 

headline and article for model training. Here we have used the same model that was used in 

section 5.1. After training and fine-tuning, we have obtained results as shown in Table 5. 

 

Table 5. Results obtained during each epoch of training for article and headline pairs. 

Epoch Train 

Loss 

Validatio

n 

Loss 

ROUGE_

1 

ROUGE_2 ROUGE_ 

L 

BERT 

score 

precision 

BERT 

score 

recall 

BERT 

score 

f1 

0 1.495 1.501 0.310 0.132 0.250 0.742 0.783 0.762 

1 1.358 1.380 0.317 0.138 0.258 0.745 0.786 0.764 
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From Table 5, we can see that at epoch 0, training loss and validation loss were 1.495 

and 1.501, respectively. ROUGE_1 was 0.310, ROUGE_2 was 0.132, and ROUGE_L 

was0.250. At epoch 0, precision, recall and F1 score of the best score were 0.742, 0.783, and 

0.762. At epoch 1, all the performance measures were slightly increased and losses were 

slightly decreased i.e. on epoch 1, training loss and validation loss were 1.358 and 1.380, 

respectively. ROUGE_1 was 0.317, ROUGE_2 was 0.138 and ROUGE_L was 0.258. At epoch 

1, precision, recall, and F1 score of BERT score were 0.745, 0.789, and 0.764. Epoch 0 took 

approximately 9 hours and 35 minutes for training and epoch 1 took approximately 10 hours 

and 6 minutes for training. 

For generating headlines from the article, we have used the same test data as used in 

Section 5.1 for summaries generation but used article and headline columns. After testing, we 

obtained the ROUGE score and BERT score as shown in Table 6. 

 

Table 6. ROUGE and BERT score of reference headline and generated headline pairs in 

test data. 

Performance 

measure 

Recall Precision F-score 

ROUGE_1 score 0.4274 0.2331 0.2948 

ROUGE_2 score 0.1811 0.0904 0.1172 

ROUGE_L score 0.3655 0.1993 0.2520 

BERT Score 0.79 0.74 0.76 

    

 

We have obtained 0.43 recall, 0.23 precision, and 0.29 F-score values of  ROUGE_1; 0.18 

recall, 0.09 precision, and 0.11 F-score values of the ROUGE_2 score; 0.36 recall, 0.20 

precision, and 0.25 F-score values of ROUGE_L score; and 0.79 recall, 0.74 precision, and 

0.76 F-score value of BERT score. 

 

While calculating semantic similarity, we found following:  

Number of rows for which cosine score is greater than 0.50  -  16956 

Number of rows for which cosine score is less than 0.50  -  309 

After replacing the cosine score greater than 0.50 with 1 and the cosine score less than 0.50 

with 0, we calculated classification accuracy and found following classification matrix. 

 Precision Recall F1-Score Support 

0 0.00  0.00 0.00   0 

1 1.00  0.95 0.98  17265 

Accuracy    0.95  17265 

Macro average 0.50  0.48 0.49  17265 

Weighted average 1.00  0.95 0.98  17265 

The similarity score obtained between pairs of reference headlines and predicted headlines is 

0.95. Table 7 and Table 8 show samples of generated summaries and Headlines. 

 

Table 7. Reference summary and predicted summaries. 

 

Original 

Summary 

Transliterated 

Summary 

Predicted 

Transliterated 

Summary 

Predicted Hindi 

Summary 

दजमऩाक्सिक में 

क्व़ालीफ़ाई 

jimanastika me 

kvaliphai karane 

vali pehali 

 olimpika ke lie 

kvaliphai kara itihasa 

ka pahala adhyaya 

ओलक्सिक के दलए 

क्व़ालीफ़ाई कर इदिह़ास 
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करने व़ाली 

पहली भ़ारिीय 

मदहल़ा हैं िीप़ा 

ररय  में ही 

ओदलोंदपक के 

दलए दिपुऱा की 

इस लडकी ने 

दकय़ा थ़ा 

क्‍व़ादलफ़ाई 

क च ने कह़ा-

कभी भी 

आस़ानी से ह़ार 

नही ों म़ानिी है 

िीप़ा 

bharatiya mahila 

hai dipa 

riyo me hi 

olimpika ke liye 

tripura ki is ladaki 

ne kiya tha 

kvaliphai 

kocha ne kaha-

kabhi bhi asani se 

haar nahim manati 

hai dipa 

likha chuki dipa 

karmakara ravivara ko 

jaba riyo khelom mem 

utaremgi. khela mem 

padaka jitane vali 

pahali bharatiya mahila 

jimanasta haim.  

maharata haasil karane 

ke lie unhomne apana 

saba kucha jhomka 

diya aura vaha apane 

pradarshana ke lie usa 

para vishvasa kara rahi 

haim 

क़ा पहल़ा अध्य़ाय दलख़ा 

चुकी िीप़ा कममक़ार 

रदवव़ार क  जब ररय  

खेल  में उिरेंगी। 

खेल में पिक जीिेने व़ाली 

पहली भ़ारिीय मदहल़ा 

दजमऩास्त़ा है। 

मह़ारि ह़ादसल करने के 

दलए उन्हें अपऩा सब 

कुछ झ ोंक़ा दिय़ा और 

वह़ा अपने प्रिर्मन के 

दलए हम पर दवश्व़ास कर 

रही है 

लखनऊ से 

लेकर दिल्ली 

िक ह ग़ा र्क्सि 

प्रिर्मन  

जन्मदिन क़ा 

दनमोंिण 

सहय गी िल ों 

क  भी भेज़ा गय़ा 

अक्सखलेर् के 

स़ाथ सीट 

बोंटव़ारे पर ह  

सकि़ा है एल़ान 

lakhanau se lekara 

dilli taka hoga 

shakti pradarshana 

janmadina ka 

nimamtrana 

sahayogi dalom ko 

bhi bheja gaya 

akhilesha ke satha 

sita bamtavare 

para ho sakata hai 

elana 

 basapa pramukha 

mayavati ki railiyom ka 

karyakrama bhi taya ho 

chuka hai. 

karyakartao ne kai 

jagaha para unake 

hordimga aura postar 

lagaye haim jisamem 

unake janmadina ki 

badhaiyom ke 

samdesha diye gaye 

haim 

janmadina lakhanau ke 

satha-satha dilli mem 

bhi manane ka phaisala 

liya gaya hai 

बसप़ा प्रमुख म़ाय़ाविी की 

रेदलय ों क़ा क़ायमक्रम भी 

िय ह  चूक़ा है। 

क़ायमकि़ामओों ने क़ाई जगह 

पर उनेक ह दडममग़ा औऱा 

प िर लग़ाये हैं उसी िरह 

उनके जन्म़ादिन की 

बढ़ाइय ों के समिेर् दिए 

गए हैं 

जन्मिीऩा लखनौ के स़ाथ-

स़ाथ दिल्ली में भी मऩाने 

क़ा फैसल़ा दलय़ा गय़ा है 

 

Table 8. Reference headlines and predicted headlines. 

Original Headline 
Transliterated 

Headline 

Predicted Transliterated 

Headline 

Generated 

Headline 

पवन दसोंह से 

आम्रप़ाली िुबे ने की 

दर्क़ायि 'दर्व 

म़ानि नही ों', Video 

हुआ व़ायरल 

pavana simha se 

amrapali dube ne 

ki shikayata 'shiva 

manata nahim', 

video hua 

vayarala 

amrapali dube ne pavana 

simha ke satha milakara 

yutyuba para machaya 

dhamal, bar-bar dekha ja 

raha hai video, jane kya 

hai vajaha... 

आम्रप़ाली िुबे ने 

पवन दसन्ह़ा के स़ाथ 

दमलकर युतु्यब पर 

मच़ाय़ा धम़ाल, ब़ार-

ब़ार िेख़ा ज़ा रह़ा है 

वीदडय  ज़ाने क्य़ा है 

वजह... 

ररय  ओदलोंदपक : 

यही ों पर ओदलोंदपक 

में स्‍थ़ान बऩाय़ा थ़ा, 

इसी जगह पर क्‍य़ा 

riyo olimpika : 

yahim para 

olimpika mem 

sthana banaya tha, 

isi jagaha para 

jimanastika me olimpika 

ke lie kvaliphai kara 

itihasa ka pahala adhyaya 

likha chuki dipa 

karmakara ravivara ko 

jaba riyo khelom mem 

दजमऩाक्सस्तक़ा में 

ओलक्सिक़ा के दलए 

क्व़ालीफ़ाई कर 

इदिह़ास क़ा पहल़ा  

अध्य़ाय दलख़ा चूकी 
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पिक जीि प़ाएों गी 

िीप़ा...  

kiya padaka jita 

paemgi dipa...  

utaremgi to nigahem nai 

umchai ko chhune para 

lagi hongi 

िीप़ा कममक़ार 

रदवव़ार क  जब 

ररय  खेल ों मे 

उिरेगी ि  दनग़ाहे 

नई ऊों च़ाई क  छूने 

पर लगी ह ोंगी 

 

4.3. Human Evaluation of Generated Summaries 

 Human assessment of summaries is an essential part of NLP and automated 

summarization. It entails having human assessors read and grade the quality of machine-

generated summaries to assess their correctness, readability, coherence, and general usefulness. 

Human review can take many forms, such as evaluating summaries on a scale of 1 to 5, offering 

input on specific features of the summary, or comparing several summaries to determine which 

one is best. Human assessment is used to gain a reliable and accurate gauge of the summary's 

quality and to suggest areas for improvement. In the proposed work, summaries have been 

rated in terms of consistency, fluency, coherence, and relevance(Fabbri et al., 2021). 

Consistency refers to the uniformity and coherence of the text in terms of style, tone, grammar, 

punctuation, and spelling. Inconsistent use of these elements can lead to confusion and distract 

the reader from the message being conveyed. Fluency, on the other hand, refers to the ease with 

which the text can be read and understood by the reader. Coherence refers to the overall 

organization and structure of the text, including the logical flow of ideas and the use of 

transitional phrases and other devices to link sentences and paragraphs. Relevance refers to the 

extent to which text content is appropriate and useful to its intended audience. In the proposed 

work, human evaluation of predicted summaries is also done. For human evaluation, we have 

selected twelve independent experts. All these experts were highly educated (having 

postgraduate or Ph.D. degrees) and belonged to different subjects. For evaluation, eighty pairs 

of articles, generated summaries, and generated headlines are selected randomly. Each article, 

summary, and headline pair is evaluated by three independent experts. All experts rated the 

generated headline and summaries in terms of consistency, fluency, coherence, and relevance. 

All these parameters were ranked on a scale of 1 to 5 (1-lowest rating, 5 – Highest rating). 

While evaluating generated summaries, few incorrect matras were ignored as a limitation of 

the reverse transliteration. The average ranking of generated summaries and generated 

headlines in terms of consistency, fluency, coherence, and relevance is shown in Table 9. We 

have also calculated the number of generated summaries and headlines in different ranges of 

ranking as shown in Table 10. 

 

Table 9. Average ranking by human experts. 

Case Consistency Fluency Coherence Relevance Overall 

Score 

Summaries Generation 3.7070 3.4783 3.6804 3.7612 3.6567 

Headlines Generation 3.4375 3.3733 3.4629 3.4837 3.4393 

 

Table 10. Number and percentage of summaries and headlines in different ranges of 

rating. 

Case Rating 

range 

Consistency 

No.(%) 

Fluency 

No.(%) 

Coherence 

No.(%) 

Relevance 

No.(%) 

Overall 

No.(%) 
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Generation 

of 

Summaries 

from 

Articles 

2 or 

below 3 (4%) 3(4%) 2 (3%) 2 (3%) 

2 (3%) 

2< and 

<=3 9 (11%) 19 (24%) 14 (18%) 14 (18%) 

7 (9%) 

3< and 

<=4 51 (64%) 50 (63%) 46 (58%) 44 (55%) 

53 

(65%) 

 Above 

4 17 (21%) 8 (10%) 18 (23%) 20 (25%) 

18 

(23%) 

Generation 

of Headlines 

from 

Articles 

2 or 

below 3 (4%) 3 (4%) 3 (4%) 3 (4%) 

2 (3%) 

2< and 

<=3 22 (28%) 30 (38%) 19 (24%) 22 (28%) 

20 

(25%) 

3< and 

<=4 46 (58%) 36 (45%) 50 (63%) 42 (53%) 

49 

(61%) 

 Above 

4 9 (11%) 11 (14%)  8 (10%) 13 (16%) 

9 

(11%) 

 

 
Fig 5. Summaries and Headlines in different ranges of rating. 

 

 From above Table 9, it can be seen that in the case of summary generation from articles, 

achieved average ratings in terms of consistency, fluency, coherence, and relevance are 3.7070, 

3.4783, 3.6804, and 3.7612, respectively, and overall rating is 3.6567. In the case of headline 

generation from articles, achieved average ratings in terms of consistency, fluency, coherence, 

and relevance are 3.4375, 3.3733, 3.4629, and 3.4837, respectively, and the overall rating is 

3.4393. Table 10 and Fig. 5 show that in the case of summary generation from articles, 65% of 

summaries are rated in the range 3< and <=4, 23% of summaries are rated above 4, 9% of 

summaries are rated in the range 2< and <=3 and 3% of summaries are rated in the range 2 or 

below. In the case of headline generation from articles, 61% of headlines are rated in the range 

3< and <=4, 25% of headlines are rated in the range 2< and <=3, 11% of headlines are rated 

above 4, and 3% of headlines are rated in the range 2 or below. 

 

5. Discussion 

 In this section, we will discuss the results of our experiment to assess the performance 

and limitations of the proposed system. At first, we will discuss the cases in which our proposed 

method performs better and after that, we will compare our proposed model with other state-

of-the-art models. 

 In this paper, two cases are considered. In the first case, headlines are generated from 

articles, and in the second case, short summaries are generated from articles. From Table 5 and 

Table 6 and Fig. 6, it can be seen that higher ROUGE score, BERT score, and semantic 
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similarity score have been obtained with summary generation from articles. The reason for 

obtaining lower scores with headline generation could be the very short length of headlines in 

the data. In Table 1, it is mentioned that the maximum number of words in headlines is 13. It 

is too short to convey key points of news articles. Sometimes headlines are created by news 

agencies to create hype among readers. To create hype among readers, headlines are created in 

such a way that their exact meaning doesn’t represent the article's essence, and after reading 

the article, the exact meaning is realized. But in the case of summaries, most of the summaries 

are aligned with the article context. In this paper, the average length of summaries is 29 words 

as shown in Table 1 and Table 2.  These summaries are of sufficient length to incorporate most 

of the key points of the articles. 

 

 
Fig 6. Performance measures in summary vs headline generation. 

 

 Human evaluation of randomly selected samples of generated summaries and headlines 

was also done. From Table 9, it can be seen that the average rating of all evaluation parameters 

i.e. consistency, fluency, coherence, and relevance is higher with summaries generated from 

articles than the average rating of headlines generated from articles. The overall rating of 

summary generation is 3.6567 and the overall rating of headline generation is 3.4394. The 

reason for achieving higher scores with summary generation is the same reason mentioned in 

the previous paragraph i.e., most of the time headlines are created by news agencies for 

publicity among readers and sometimes the exact meaning of headlines also differs from the 

intended meaning. But in the case of short summaries, publicity is not the agenda, so summaries 

contain the exact gist of the article. From Table 10, it can be seen that the maximum number 

of summaries and headlines are rated in the range 3< and <=4 out of 5. It shows that our 

proposed system generates headlines and summaries at human-acceptable levels. 

 In the third section of the discussion, we will compare the results of the proposed method 

with other state-of-the-art methods. Even for Hindi text summarization, no specific standard 

models are available. But some models, like BART and T5, that are fine-tuned on a large 

amount of Hindi text can be considered state-of-the-art models. Table 11 shows the comparison 

of the proposed method with other state-of-the-art methods. 
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Table 11. Comparison with state-of-the-art methods on Hindi text summarization. 

Model/Method used Dataset Number 

of 

Articles 

Number of 

Articles  

(Hindi)  

Results 

mT5_multilingual_XL

Sum (Hasan et al., 

2021a) 

XL_Sum 1 M 51K 38.5882 ROUGE-1  

16.8802 ROUGE-2   

32.0132 ROUGE-L  

indicBART  

(Dabre et al., 2022) 

XL_Sum 1 M 51K 31.71 ROUGE_L  

mT5_m2m_crossSum 

(Bhattacharjee et al., 

2022) 

Cross_Su

m 

1.7 M 88K 0.967 pearson correlation 

between ROUGE-2 and  

Language-agnostic 

Summary Evaluation 

(LaSE) for Hindi to other 

language summarization 

Facebook/BART-

large-cnn 

Proposed Method 

Hindi text 

summariza

tion long 

and short 

dataset 

179K  

 

179K 

(articles and 

headlines) 

86K (article 

and 

summary)  

0.5510 ROUGE-1 Score 

  

For comparison, we have selected three state-of-the-art models. Although text summarization 

models specific to Hindi text are not available, some authors have worked on Hindi text 

summarization. These models can be considered state-of-the-art models. One of the reasons for 

not having state-of-the-art models for Hindi text summarization can be the non-availability of 

benchmark data. Research work 1 is proposed by (Hasan et al., 2021) and they proposed a 

model mT5_multilingual_XLSum for the Hindi text summarization XL-Sum dataset. XL-Sum 

is a very big dataset containing data from 40 languages. It contains 51,715 samples of Hindi 

data. Using the proposed method they achieved a 38.58 ROUGE-1, 16.88 ROUGE-2, and 32.01 

ROUGE_L. In 2022, (Dabre et al., 2022) proposed second research work based on the model 

indicBART for Hindi text summarization on the same XL-Sum dataset. The indicBART model 

is specially trained on Indian languages but they achieved 31.71 ROUGE_L score which is less 

than the ROUGE score obtained in research work 1. The third research work is proposed by 

(Bhattacharjee et al., 2022). They performed cross-lingual summarization on the Cross-sum 

dataset. Even though the Cross_Sum dataset is very big and contains 88,472 instances of Hindi 

language text but all instances were for cross-lingual summarization. None of the data instances 

was for Hindi-to-Hindi summarization.  In the proposed work, we have used a publicly 

available dataset that 143867 records for training and 35268 records for testing. This dataset 

can be considered large enough for Hindi text summarization. We have achieved the highest 

55.10 ROUGE score using the proposed method based on transliteration. One other work was 

proposed by  (Urlana et al., 2023) for Hindi, English, and Gujarati text summarization. But we 

have not included this work under comparison of state-of-the-art models because even though 

they claimed a higher ROUGE score for Hindi text summarization, their model was trained on 

a very small dataset containing only 7958 records for training and 2842 records for testing. 

Whereas the proposed work model is trained and tested on large data (approximately 188K 

instances), we can say that even though the ROUGE score of research work proposed by 

(Urlana et al., 2023) is higher than the proposed work but our proposed model is more robust 

because it is trained and tested on a large Hindi dataset containing data from various domains 

like health, sport, medicine, nation, politics, etc. 
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6. CONCLUSION 

Text summarization is the process of reducing a long piece of text to its essence while 

retaining the most important information and meaning. The goal of text summarization is to 

condense a large amount of information into a concise and readable summary that is easy to 

understand. In the proposed work, Hindi text summarization is done through transliteration and 

fine-tuning of the pre-trained model. A new semantic similarity-based score is also proposed 

in this work. Using the proposed method, 55.16 ROUGE score, 0.80 BERT score, and 0.98 

similarity score have been obtained. Some randomly selected samples of generated summaries 

and headlines are also evaluated by experts and it is found that the proposed system generates 

headlines and summaries at human-acceptable levels. We have also compared the performance 

of the proposed work with other recent research work on Hindi text summarization and found 

that the proposed model performed better than others.  

 

Statements and Declarations: 

Acknowledgment- None 

Funding – None 

Conflict of Interests/Competing Interests- None 

 

REFERENCES 

[1] Ali, S. M., Noorian, Z., Bagheri, E., Ding, C., & Al-Obeidat, F. (2020). Topic and sentiment 

aware microblog summarization for twitter. Journal of Intelligent Information Systems, 

54(1), 129–156. https://doi.org/10.1007/S10844-018-0521-8/TABLES/13 

[2] Alsaqer, A. F., & Sasi, S. (2017). Movie review summarization and sentiment analysis using 

rapidminer. 2017 International Conference on Networks & Advances in Computational 

Technologies (NetACT), 329–335. https://doi.org/10.1109/NETACT.2017.8076790 

[3] Aote, S. S., Pimpalshende, A., Potnurwar, A., & Lohi, S. (2023). Binary particle swarm 

optimization with an improved genetic algorithm to solve multi-document text 

summarization problem of Hindi documents. Engineering Applications of Artificial 

Intelligence, 117, 105575. https://doi.org/https://doi.org/10.1016/j.engappai.2022.105575 

[4] Arora, G. (2020). inltk: Natural language toolkit for indic languages. ArXiv Preprint 

ArXiv:2009.12534. 

[5] Babu, G. L. A., & Badugu, S. (2023). Deep learning based sequence to sequence model for 

abstractive Telugu text summarization. Multimedia Tools and Applications, 82(11), 17075–

17096. https://doi.org/10.1007/s11042-022-14099-x 

[6] Bafna, P. B., & Saini, J. R. (2019). Hindi multi-document word cloud based summarization 

through unsupervised learning. 2009 9th International Conference on Emerging Trends in 

Engineering and Technology - Signal and Information Processing (ICETET-SIP-19), 1–7. 

https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092259 

[7] Bandari, S., & Bulusu, V. V. (2023). Feature extraction based deep long short term memory 

for Hindi document summarization using political elephant herding optimization. 

International Journal of Intelligent Robotics and Applications, 7(1), 103–118. 

https://doi.org/10.1007/s41315-022-00237-z 

[8] Bani-Almarjeh, M., & Kurdy, M. B. (2023). Arabic abstractive text summarization using 

RNN-based and transformer-based architectures. Information Processing & Management, 

60(2), 103227. https://doi.org/10.1016/J.IPM.2022.103227 

[9] Bhattacharjee, A., Hasan, T., Ahmad, W. U., Li, Y.-F., Kang, Y.-B., & Shahriyar, R. (2022). 

CrossSum: beyond English-centric cross-lingual abstractive text summarization for 1500+ 

language pairs. https://arxiv.org/abs/2112.08804v2 

[10] Dabre, R., Shrotriya, H., Kunchukuttan, A., Puduppully, R., Khapra, M. M., & Kumar, P. 

(2022). IndicBART: A pre-trained model for indic natural language generation. Proceedings 

https://doi.org/10.1007/S10844-018-0521-8/TABLES/13


J. Electrical Systems 20-3s (2024): 2089-2110 

2108 

of the Annual Meeting of the Association for Computational Linguistics, 2, 1849–1863. 

https://doi.org/10.18653/v1/2022.FINDINGS-ACL.145 

[11] Dhankhar, S., & Gupta, M. K. (2022). A statistically based sentence scoring method using 

mathematical combination for extractive Hindi text summarization. Journal of 

Interdisciplinary Mathematics, 25(3), 773–790. 

https://doi.org/10.1080/09720502.2021.2015096 

[12] Dhivyaa, C. R., Nithya, K., Janani, T., Kumar, K. S., & Prashanth, N. (2022). Transliteration 

based generative pre-trained transformer 2 model for tamil text summarization. 2022 

International Conference on Computer Communication and Informatics (ICCCI), 1–6. 

https://doi.org/10.1109/ICCCI54379.2022.9740991 

[13] Durga, C. B. V., & BABU, D. (2022). Telugu text summarization using histo fuzzy c-means 

and median support based grasshopper optimization algorithm (MSGOA). Journal of 

Theoretical and Applied Information Technology, 100(17), 5418–5432. 

[14] El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text 

summarization: A comprehensive survey. Expert Systems with Applications, 165, 113679. 

https://doi.org/10.1016/J.ESWA.2020.113679 

[15] Fabbri, A. R., Kryściński, W., McCann, B., Xiong, C., Socher, R., & Radev, D. (2021). 

Summeval: Re-evaluating summarization evaluation. Transactions of the Association for 

Computational Linguistics, 9, 391–409. 

https://doi.org/10.1162/TACL_A_00373/100686/SUMMEVAL-RE-EVALUATING-

SUMMARIZATION-EVALUATION 

[16] Garg, K. D., Khullar, V., & Agarwal, A. K. (2021). Unsupervised machine learning approach 

for extractive Punjabi text summarization. Proceedings of the 8th International Conference 

on Signal Processing and Integrated Networks, SPIN 2021, 750–754. 

https://doi.org/10.1109/SPIN52536.2021.9566038 

[17] Hasan, T., Bhattacharjee, A., Islam, M. S., Samin, K., Li, Y. F., Kang, Y. Bin, Rahman, M. 

S., & Shahriyar, R. (2021). XL-Sum: Large-scale multilingual abstractive summarization for 

44 languages. Findings of the Association for Computational Linguistics: ACL-IJCNLP 

2021, 4693–4703. https://doi.org/10.18653/V1/2021.FINDINGS-ACL.413 

[18] Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (GeLUs). ArXiv Preprint 

ArXiv:1606.08415.  

https://doi.org/10.48550/arXiv.1606.08415 

[19] Hindi Text Short and Large Summarization Corpus | Kaggle. (n.d.). Retrieved March 12, 

2023, from https://www.kaggle.com/datasets/disisbig/hindi-text-short-and-large-

summarization-corpus 

[20] Howard, J., & Gugger, S. (2020). Fastai: A layered API for deep learning. Information, 

11(2). https://doi.org/10.3390/info11020108 

[21] Jain, A., Arora, A., Morato, J., Yadav, D., & Kumar, K. V. (2022). Automatic text 

summarization for Hindi using real coded genetic algorithm. Applied Sciences, 12(13). 

https://doi.org/10.3390/app12136584 

[22] Jain, A., Arora, A., Yadav, D., Morato, J., & Kaur, A. (2021). Text summarization technique 

for Punjabi language using neural networks. International Arab Journal of Information 

Technology, 18(6), 807–818. https://doi.org/10.34028/IAJIT/18/6/8 

[23] Jain, A., Yadav, D., & Arora, A. (2021). Particle swarm optimization for Punjabi text 

summarization. International Journal of Operations Research and Information Systems 

(IJORIS), 12(3), 1–17. https://doi.org/10.4018/IJORIS.20210701.oa1 

[24] Jaya, A., Ganesh, A., & Rahman, Bsa. (2019). Automatic summarization of Malayalam 

documents using clause identification method. International Journal of Electrical and 

Computer Engineering (IJECE), 9(6), 4929–4938. 

https://doi.org/10.11591/ijece.v9i6.pp4929-4938 

https://doi.org/10.18653/V1/2021.FINDINGS-ACL.413
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1606.08415


J. Electrical Systems 20-3s (2024): 2089-2110 

2109 

[25] Joshi, M. L., Joshi, N., & Mittal, N. (2021). SGATS: semantic graph-based automatic text 

summarization from Hindi text documents. ACM Trans. Asian Low-Resour. Lang. Inf. 

Process., 20(6). https://doi.org/10.1145/3464381 

[26] K. Nambiar, S., Peter S., D., & Mary Idicula, S. (2023). Abstractive summarization of text 

document in Malayalam language: enhancing attention model using pos tagging feature. 

ACM Trans. Asian Low-Resour. Lang. Inf. Process., 22(2). https://doi.org/10.1145/3561819 

[27] Karmakar, R., Nirantar, K., Kurunkar, P., Hiremath, P., & Chaudhari, D. (2021). Indian 

regional language abstractive text summarization using attention-based LSTM neural 

network. 2021 International Conference on Intelligent Technologies (CONIT), 1–8. 

https://doi.org/10.1109/CONIT51480.2021.9498309 

[28] Kumari, N., & Singh, P. (2022). Hindi Text Summarization using Sequence to Sequence 

Neural Network. https://doi.org/10.21203/RS.3.RS-2036546/V1 

[29] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & 

Zettlemoyer, L. (2019). BART: Denoising sequence-to-sequence pre-training for  natural 

language generation, translation, and comprehension. ArXiv Preprint ArXiv:1910.13461.  

https://doi.org/10.48550/arXiv.1910.13461 

[30] Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. Text 

Summarization Branches Out, 74–81. https://aclanthology.org/W04-1013 

[31] Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research 

and Development, 2(2), 159–165. https://doi.org/10.1147/rd.22.0159 

[32] Mamidala, K. K., & Sanampudi, S. K. (2021). A heuristic approach for Telugu text 

summarization with improved sentence ranking. Turkish Journal of Computer and 

Mathematics Education (TURCOMAT), 12(3), 4238–4243. 

https://doi.org/https://doi.org/10.17762/turcomat.v12i3.1714 

[33] Manjari, K. U. (2020). Extractive summarization of Telugu documents using textrank 

algorithm. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, 

Analytics and Cloud) (I-SMAC), 678–683. https://doi.org/10.1109/I-

SMAC49090.2020.9243568 

[34] Nambiar, S. K., Peter S, D., & Idicula, S. M. (2021). Attention based abstractive 

summarization of malayalam document. Procedia Computer Science, 189, 250–257. 

https://doi.org/https://doi.org/10.1016/j.procs.2021.05.088 

[35] Nawaz, A., Bakhtyar, M., Baber, J., Ullah, I., Noor, W., & Basit, A. (2020). Extractive text 

summarization models for Urdu language. Information Processing & Management, 57(6), 

102383. https://doi.org/10.1016/J.IPM.2020.102383 

[36] ohmeow-blurr · PyPI. (n.d.). Retrieved March 12, 2023, from 

https://pypi.org/project/ohmeow-blurr/ 

[37] Rani, R., & Lobiyal, D. K. (2021). An extractive text summarization approach using tagged-

LDA based topic modeling. Multimedia Tools and Applications, 80(3), 3275–3305. 

https://doi.org/10.1007/S11042-020-09549-3/METRICS 

[38] Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using siamese 

BERT-networks. EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in 

Natural Language Processing and 9th International Joint Conference on Natural Language 

Processing, Proceedings of the Conference, 3982–3992. 

https://doi.org/10.48550/arxiv.1908.10084 

[39] Shafiq, N., Hamid, I., Asif, M., Nawaz, Q., Aljuaid, H., & Ali, H. (2023). Abstractive text 

summarization of low-resourced languages using deep learning. PeerJ Computer Science, 9, 

e1176. https://doi.org/10.7717/PEERJ-CS.1176 

[40] Supreet, M., Goel, K., & Gupta, M. (2020). Automatic hindi text summarization using 

selection and elimination approach. International Journal of Engineering Applied Sciences 

and Technology, 5(4), 259–266. https://doi.org/10.33564/IJEAST.2020.V05I04.039 

https://doi.org/10.21203/RS.3.RS-2036546/V1
https://doi.org/10.48550/arXiv.1910.13461
https://doi.org/10.48550/arXiv.1910.13461
https://doi.org/10.48550/arXiv.1910.13461
https://doi.org/10.33564/IJEAST.2020.V05I04.039


J. Electrical Systems 20-3s (2024): 2089-2110 

2110 

[41] Tangsali, R., Pingle, A., Vyawahare, A., Joshi, I., & Joshi, R. (2022). Implementing Deep 

Learning-Based Approaches for Article Summarization in Indian Languages. ArXiv Preprint 

ArXiv:2212.05702.  

https://doi.org/10.48550/arXiv.2212.05702 

[42] Tawatia, K., Jain, N., & Kundu, S. (2022). Hindi document extractive summarization: neural 

method on a new data set. 2022 5th International Conference on Computational Intelligence 

and Networks (CINE), 1–6. https://doi.org/10.1109/CINE56307.2022.10037327 

[43] Top 10 Most Spoken FIRST Languages in the World in 2023 | TranslateDay. (n.d.). 

Retrieved April 4, 2023, from https://www.translateday.com/most-spoken-languages-in-the-

world/ 

[44] Urlana, A., Bhatt, S. M., Surange, N., & Shrivastava, M. (2023). Indian language 

summarization using pretrained sequence-to-sequence models. arXiv preprint 

arXiv:2303.14461. https://arxiv.org/abs/2303.14461v1 

[45] Wijayanti, R., Khodra, M. L., Surendro, K., & Widyantoro, D. H. (2023). Learning bilingual 

word embedding for automatic text summarization in low resource language. Journal of 

King Saud University - Computer and Information Sciences, 35(4), 224–235. 

https://doi.org/10.1016/J.JKSUCI.2023.03.015 

[46] Žagar, A., & Robnik-Šikonja, M. (2022). Cross-lingual transfer of abstractive summarizer 

to less-resource language. Journal of Intelligent Information Systems, 58(1), 153–173. 

https://doi.org/10.1007/S10844-021-00663-8/METRICS 

[47] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). BERTscore: 

Evaluating text generation with BERT. ArXiv Preprint ArXiv:1904.09675.  

https://doi.org/10.48550/arXiv.1904.09675 

 

https://doi.org/10.48550/arXiv.2212.05702
https://doi.org/10.48550/arXiv.2212.05702
https://doi.org/10.48550/arXiv.2212.05702
https://doi.org/10.1007/S10844-021-00663-8/METRICS
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.48550/arXiv.1904.09675
https://doi.org/10.48550/arXiv.1904.09675

