
J. Electrical Systems 20-3s (2024): 2022-2029 

 

2022 

1 B N V Narasimha 

Raju 

2 K. V. V. 

Satyanarayana 

2 M. S. V. S. Bhadri 

Raju 

BiLSTMs and BPE for English to 

Telugu CLIR 

 

Abstract: - A crucial component of Cross Lingual Information Retrieval (CLIR) is Neural Machine Translation (NMT). NMT performs a 

good job of transforming queries in the English language into Indian languages. This study focuses on the translation of English queries into 

Telugu. For translations, the NMT will make use of a parallel corpus. Due to a lack of resources in the Telugu language, it is exceedingly 

challenging to provide NMT with sizable parallel corpora. Thus, the NMT will encounter an issue known as Out of Vocabulary (OOV). Long 

Short-Term Memory (LSTM) with Byte Pair Encoding (BPE), which breaks up rare words into subwords and attempts to translate them to 

solve the OOV issue. Issues such as Named Entity Recognition (NER) continue to plague it. In sequence-to-sequence models, bidirectional 

LSTMs can solve certain NER challenges. Systems that need to be trained in both directions to recognize named entities can benefit from the 

use of Bidirectional LSTMs (BiLSTMs). The translation efficiency of NMT with BiLSTMs is significantly higher than normal LSTMs, as 

indicated by the accuracy metrics and Bilingual Evaluation Understudy (BLEU) score. 

Keywords: Machine Translation, Bidirectional LSTMs, Cross-lingual IR, BPE, LSTMs, Neural Machine Translation, Beam 
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I.  INTRODUCTION 

CLIR utilizes a database that stores data in languages distinct from the user query language. If a user needs data in 

more than one language, it assists them in retrieving pertinent information in those languages. In this, the English 

queries are converted to Telugu queries. Machine Translation (MT) approaches are utilized to create these kinds of 

translations. The CLIR is crucial in nations resembling India since a sizable portion of the population still does not 

speak English fluently and is becoming more interested in learning their native languages. Based on a report published 

by KPMG in 2017 [1], it is projected that there will be a yearly growth rate of 18% in the number of native-language 

users of the internet in India. Therefore, MT is required to translate the query so that users can access more online 

content that was originally written in their native languages. 

MT is mostly carried out in corpus-based translation. Corpus-based methods have demonstrated more improvement 

than direct translations. The most applied category in corpus-based translation is NMT. For training this model needs 

a parallel corpus. The NMT employs both machine learning and neural network models. Performance-wise, the NMT 

has outperformed the other models. This NMT approach will make use of BiLSTMs, which necessitate a sizable 

parallel corpus [2]. The parallel corpus is what determines how accurate is RNN translation [3]. Therefore, for 

improved translations, the standards of the parallel corpus should be preserved. In NMT, preprocessing is the first 

step which involves enhancing the quality of the data, encoding is the second step which involves training the model 

for use and decoding is the third step which involves translating the data. There aren't many parallel corpora available 

for languages like English-Telugu. The reason for the presence of inconsistencies and noise in these types of data sets 

is Telugu's rich morphology. Replications can also be present in the dataset. Preprocessing aids in the elimination of 

these issues. 

Although NMT performs better, there are still issues with OOV [4] and NER in the translations. OOV issues leading 

to poor translations will be driven by small datasets with a high frequency of words [5]. If there are more often 

occurring terms in the original sentence when translating, the translation will be of higher quality. Otherwise, the 
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translation will be of poor quality. These problems are common for morphologically rich and resource-poor 

languages. Although dictionaries have been used in the past to address OOV difficulties, there are still words that are 

not included in them [6, 7]. The BPE mechanism was employed to solve the OOV difficulties. Unknown words in 

BPE are broken down into smaller terms using word segmentation techniques, and these smaller words are then 

attempted to be translated. The BPE approach will effectively address certain out-of-specification (OOV) concerns 

in this manner. 

The subsequent stages of NMT involve the utilization of encoding and decoding methodologies. The NMT 

architecture is comprised of a neural network with two distinct layers, specifically an encoding layer and a decoding 

layer [8]. According to the NMT encoder, the input consists of the source text, whereas the decoder yields the target 

text as the output. Another issue with NMT is NER, which is significant since it helps locate the specified things like 

named entities. It is beneficial to ascertain if a word in a sentence is a named entity or not. BiLSTMs are useful for 

identifying the named entities since they train models both forward and backward. Unidirectional LSTMs train in a 

forward direction; nevertheless, depending on the context that precedes a word, it may be possible to determine 

whether the word is a named object. Therefore, BiLSTMs will be more beneficial in achieving improved recognition 

performance for the named entities. 

II. RELATED WORK 

In previous instances, statistical machine translation approaches have been utilized as a valuable mechanism for the 

translation of sentences. P. F. Brown et al., [9] have used statistical machine translation techniques that incorporate 

both the language and translation modelling as well as the decoding to carry out translations. The translation produced 

by NMT surpasses that of Statistical MT. In order to translate from English to Arabic, Mai Oudah et al. [8] merged 

the NMT and Statistical MT. Although it still has issues translating shorter sentences. This problem has been solved 

by statistical MT and NMT together, yet tokenization presents some difficulties. Issues with tokenization are resolved 

at the preprocessing stage of the dataset. Preprocessing enhances the translation's quality and is a crucial step in NMT. 

Tokenization and the elimination of noisy content are two aspects of preprocessing data, the use of these techniques 

varies depending on the circumstances. Duygu Ataman et al. have utilized [10] a fixed-sized vocabulary. Semantic 

and syntactic losses are associated with conventional approaches. The acquisition of unsupervised morphological 

skills will result in a reduction of such losses. Anoop Kunchukuttan et al. [11] suggested using tokenization together 

with text normalization for the Hindi-English parallel dataset.  

Kyunghyun Cho et al. [12] introduced the RNN encoder-decoder, which features a gated recursive convolutional 

neural network. The input is variable length, and the encoder extracts fixed-length representations from it. 

Translations are produced by decoding these representations. When sentences are shorter and contain fewer 

unfamiliar terms, these algorithms have better outcomes. However, in the context of the OOV problem, the efficiency 

of NMT may fall as the quantity of unfamiliar phrases grows. Despite the utilization of a BPE technique by B N V 

Narasimha Raju et al. [13] to tackle certain OOV concerns, there are still hurdles in translation production. BPE has 

been used for parallel corpora by Mattia A. Di Gangi et al. [14], especially for languages like English and German. 

They rely on the sentence's leftward context to determine the following word. It is insufficient in certain cases, and 

the efficiency is declining as well.  

In previous times, the process of decoding was plagued by particular challenges due to the inadequate focus on 

decoders. The focus of Jiatao Gu et al. [15] has been on the challenge of decoding. They made use of a trainable 

decoding algorithm. To find a translation, this training is done on a decoding algorithm. They took advantage of a 

greedy decoder, which produced better translations with less overhead. During greedy decoding, the symbol with the 

largest conditional probability is selected at every node by following a path that is dependent on the conditional 

probability. Its performance has outperformed that of previous decoding methods. 

III. BIDIRECTIONAL LSTMS 

The method of Bidirectional LSTMs and BPE involves multiple phases, namely preprocess, BPE, encoder, and 

decoder, as depicted in Fig. 1. The encoding phase will employ BiLSTM network architectures, whereas the decoding 

phase will employ unidirectional LSTM architectures. In general, NMT relies on parallel data. More data is essential 

to produce more accurate translations. The parallel corpus of English and Telugu contains instances of replications, 

inconsistencies, and noise that are prevalent in languages with limited linguistic resources. The parallel corpus issues 

cause the performance of NMT to decrease. Preprocessing is used to fix these problems. 
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First, all characters are converted to lowercase during the preprocessing stage. Next, unwanted characters are 

eliminated, and so on. In order to eliminate duplication of information from the parallel corpus, it is important to 

transform it to the Unicode format, hence facilitating the effective elimination of duplicate entries within the corpus. 

In order to train the BiLSTMs, it is necessary to have a parallel dataset that includes pairs of English and Telugu 

languages. Sentences with a high frequency of words may result in OOV issues if resources are limited [16]–[18]. As 

a method of data compression, BPE [7], [13] is useful for merging byte pairs that appear frequently. The BPE 

mechanism may be helpful in word segmentation. Delimiters are employed to denote the termination of character 

sequences, while character vocabularies are utilized to populate symbol vocabularies. In order to return the original 

token, delimiters will be very important. It is crucial to count the symbol pairs in the corpus. An n-gram character is 

used to replace the most common symbol pairs found in the corpus. A singular symbol is generated through the 

amalgamation of frequently occurring n-grams. The initial and final sizes of BPE's vocabulary are identical. Fig. 2 

presents the BPE Algorithm. 

 

 

 

For NMT, input data is provided to the encoder following the use of BPE. The lengths of the input as well as the 

output in a conventional NMT have the potential to vary. The preceding tokens in the sequence aid in predicting the 

subsequent token. Since the next token in this scenario depends on the leftward context, an NMT with a single 

unidirectional LSTM encoder is enough. The subsequent token in the other sequence learning task can be anticipated 

by considering both the preceding and succeeding context. Use the BiLSTMs [19] in the encoder in this case as the 

unidirectional LSTMs are insufficient for the function. Take the next two statements, for instance 

• I intend to procure an orange from a shop due to its place as my preferred fruit. 

• I intend to acquire an orange doll from the store as it is my preferred color for a toy. 

Preprocess 

Byte Pair Encoding 

Encoder (BiLSTMs) 

Decoder (LSTMs) 

  

Figure 1. BPE and BiLSTMs in NMT 

BPE Algorithm  

Input: C – group of strings, v - magnitude of the 

vocabulary that is being targeted. 

BPE (C, v) 

• Q - distinct characters ϵ C 

• The process should be repeated when the 

variable |Q| < v 

o Bigrams a and b are commonly found 

ϵ C 

o z = a + b 

o Q = Q + [z] 

o In C, every occurrence of a and b is 

substituted with z. 

• Return Q 

 

Figure 2. BPE Algorithm 
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Both sentences contain a token referred to as orange. The identification of the next token in a unidirectional LSTM 

model is based on the leftward context. Because of this, it might not be able to tell if the word orange will refer to a 

toy or a fruit. By utilizing both the contexts present in the leftward and rightward directions, a BiLSTM can accurately 

identify the following token. 

Two unidirectional LSTM layers coupled in opposite directions serve as the encoder in BiLSTMs. The initial layer 

of LSTM receives input values a1, a2,..., an while the subsequent LSTM layer receives input values an, an-1,... a1. The 

output can be generated by combining the outputs of both LSTM models. Fig. 3 illustrates the architectural design of 

BiLTSMs. 

LSTM assesses the interpretation (𝑑𝑦
⃗⃗ ⃗⃗ ) of each word y in the left reference of a sentence. The equations (1)-(4) provide 

the assessment of (𝑑𝑦
⃗⃗ ⃗⃗ ). 

𝑙𝑦 = 𝜎(𝑊𝑎𝑙𝑎𝑦 + 𝑊𝑑𝑙𝑑𝑦−1 + 𝑊𝑠𝑙𝑠𝑦−1 + 𝑏𝑙)     (1) 

𝑠𝑦 = (1 − 𝑙𝑦)⊙𝑠𝑦−1 + 𝑙𝑦 ⊙ 𝑡𝑎𝑛ℎ(𝑊𝑎𝑠𝑎𝑦 + 𝑊𝑑𝑠𝑑𝑦−1 + 𝑏𝑠)  (2) 

𝑒𝑦 =  𝜎(𝑊𝑎𝑒𝑎𝑦 + 𝑊𝑑𝑒𝑑𝑦−1 + 𝑊𝑠𝑒𝑠𝑦−1 + 𝑏𝑒)   (3) 

𝑑𝑦 = 𝑒𝑦 ⊙ 𝑡𝑎𝑛ℎ(𝑠𝑦)      (4) 

The symbol σ denotes a function known as sigmoid, which carries out element-wise operations, while ⊙ symbolizes 

element-wise multiplication. 

 

Let us consider a sentence including n words, denoted as (a1, a2,..., an). In the given sequence, each input step (d1, 

d2,..., dn) corresponds to a specific data point. The LSTM model assesses the interpretation (𝑑𝑦
⃗⃗ ⃗⃗ ) of each word y in the 

left reference of a sentence. Typically, the second LSTM achieves the representation with the right context (𝑑𝑦
⃖⃗ ⃗⃗⃗) by 

reading the same sequence in a reverse manner. In essence, the forward LSTM is the first LSTM, and the backward 

LSTM is a second LSTM. The notation for the words in this model is  𝑑𝑦 = [(𝑑𝑦
⃗⃗ ⃗⃗ , 𝑑𝑦

⃖⃗ ⃗⃗⃗)]. The aforementioned 

representations are advantageous in identifying the named entities within the provided context. 

LSTMs are also employed as the decoder in NMT, and they produce translations for the input pattern [20]. 

Translations occur throughout the decoding process using beam search in combination with a unidirectional LSTM 

model. In beam search [21], the number of beams is controlled, the user-defined b-steps are maintained, and the 

system attempts to extend all feasible future steps. The beam search is in Fig. 4. 

𝑠1 

𝑏1 

𝑙1 

𝑠2 𝑠3 𝑠4 

𝑏2 𝑏3 𝑏4 

𝑙2 𝑙3 𝑙4 

I was 𝑎𝑡 Home 

Figure 3. Architectural design of 

BiLTSMs 
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The model is evaluated using measures such as the BLEU score, cross-entropy perplexity and accuracy. Accuracy 

serves as an indicator of the level of correct classifications. On the other hand, the degree of perplexity indicates how 

well the probability model predicts a sample. In cross-entropy, the objective is to determine the loss function. The 

assessment of prediction accuracy is conducted by the utilization of the BLEU score. 

IV. RESULTS AND DISCUSSIONS 

There are no replications in the English-Telugu parallel dataset since the replications would involve translating a 

single source sentence more than once. Hence, the algorithm can generate precise translations for the original sentence 

by removing all instances of duplicate sentences from the corpus. In the process of acquiring new features from the 

replicated corpus, the system may experience confusion, perhaps resulting in overfitting of the model and suboptimal 

translation performance. Translations of higher quality will be produced from the parallel corpus if all these issues in 

the parallel datasets have been addressed. 

Preprocessing eliminates duplicates, noisy data, and inconsistent data from the parallel corpus. The performance of 

NMT using BiLSTM and Unidirectional LSTM along with BPE is compared. Both models take their input from the 

English-Telugu parallel corpus. Unidirectional LSTM model is characterized by just one layer, in contrast to the dual-

layer architecture observed in BiLSTMs. BiLSTMs will still feature an encoding process with two layers and a 

decoding mechanism with one layer. The LSTM layer in both models will be 500 in size, employ Adam as optimizer, 

and have a learning rate of 0.01. With the model decay and dropout rates set at 0.5 and 0.3, respectively, a total of 

35000 training steps will be completed. 

NMT's performance is assessed by contrasting it with BPE and other methods like BiLSTM and Unidirectional 

LSTM. Cross-entropy, perplexity, and accuracy are some of the metrics used to assess both the training and validation 

performance of BiLSTMs and unidirectional LSTMs. The values of these parameters are shown in Table 1. The 

performance of the NMT using BiLSTMs with BPE is improved. 

Table 1. A Comparative Evaluation of Parameters for BiLSTM and Unidirectional LSTM 

Parameters BiLSTM 
Unidirectional 

LSTM 

Train 

accuracy 95.37 90.46 

perplexity 1.16 1.43 

cross-

entropy 
0.15 0.36 

Validatio

n 

accuracy  50.39 49.74 

perplexity  102.5 113.2 

cross-

entropy 
4.62 4.76 

 

 

Beam search Algorithm 

IS = Initial State 

While IS is not equivalent to empty do 

• Remove the most optimal node from the IS, 

denoted as c. 

• If c represents the desired state, backtrack until 

the desired state is achieved and send the path. 

• Produce and evaluate c successors, incorporate 

into IS, and list their parents.  

• The value of | IS | is greater than b, where b 

represents the width of the beam, then select the 

best b nodes and exclude the rest from IS. 

 End 

 

Figure 4. Algorithm for Beam Search 
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The graphs in Fig. 5 show the training graphs for BiLSTM and Unidirectional LSTM. The graph presented in Fig. 

5(a) illustrates the comparison of training accuracy, the graph in Fig. 5(b) illustrates the perplexity, and the graph in 

Fig. 5(c) illustrates the cross-entropy comparisons between BiLSTM and Unidirectional LSTM. The unidirectional 

LSTM training accuracy is 90.46, whereas for BiLSTMS it is 95.37. The accuracy rates exhibit greater values is 

preferable. These findings indicate that BiLSTMS has superior performance. The training perplexity score of 

BiLSTM is 1.16, but the unidirectional LSTM has a value of 1.43. The model with a lower perplexity score is 

considered preferable. These findings indicate that BiLSTMS has superior performance. The training cross-entropy 

score of BiLSTM is 0.15, but the unidirectional LSTM has a value of 0.36. The model with a lower cross-entropy 

score is considered preferable. These findings indicate that BiLSTMS has superior performance.

 

The graphs in Fig. 6 show the validation graphs for BiLSTMs and Unidirectional LSTM. The graph presented in Fig. 

6(a) illustrates the validation accuracy, the graph in Fig. 6(b) illustrates the perplexity, and the graph in Fig. 6(c) 

illustrates the cross-entropy comparisons between BiLSTM and Unidirectional LSTM along BPE. In the 

unidirectional LSTM, the training accuracy is 49.74, whereas for BiLSTMS it is 50.39. The accuracy rates exhibit 

greater values is preferable. These indicate that BiLSTMS has superior performance. The validation perplexity score 

of BiLSTM is 102.5, but the unidirectional LSTM has a value of 113.2. The model with a lower perplexity score is 

considered preferable. These findings indicate that BiLSTMS with BPE has superior performance. The validation 

cross-entropy score of BiLSTM is 4.62, but the unidirectional LSTM has a value of 4.76. The model with a lower 

cross-entropy score is considered preferable. These findings indicate that BiLSTMS with BPE has superior 

performance. 

 

The efficiency of both models is evaluated using a statistic known as the BLEU score. Table 2 displays the BLEU 

values. In the comparison of BiLSTMs  and Unidirectional LSTMs, it is observed that the BLEU score indicates that 

the utilization of BiLSTMs with BPE in NMT results in translations that exhibit higher levels of accuracy. 

Preprocessing and BPE models are beneficial for solving OOV difficulties and enhancing the quality of parallel 

corpus, both of which assist NMT produce translations that are more accurate. 

BiLSTM Unidirectional LSTM 

(a) (b) (c) 

Figure 5. The training graphs for BiLSTMs and Unidirectional LSTM along with the BPE. They 

are: (a) Accuracy (b) Perplexity  (c) Cross-entropy. 

(a) (b) (c) 

BiLSTM Unidirectional LSTM 

Figure 6. The validation graphs for BiLSTMs and Unidirectional LSTM along with the BPE. They 

are: (a) Accuracy (b) Perplexity (c) Cross-entropy. 
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Table 2. A Comparative Evaluation using BLEU 

Model BLEU Score 

BiLSTMs  19.58 

Unidirectional LSTMs 18.76 

The BLEU ratings of BiLSTM and Unidirectional LSTM along BPE are compared in Fig. 7. BiLSTM model has a 

value of 19.58, whereas the unidirectional LSTM model has a value of 18.76. Both models have BLEU scores. The 

model with a greater BLEU score is superior. These findings indicate that BiLSTM and BPE have superior 

performance. 

 

V. CONCLUSION 

In NMT, better translations can be produced if replications, noisy data, and inconsistencies are removed. Using BPE, 

OOV difficulties such as unfamiliar terms are resolved. The preprocessing stage of this work uses the English-Telugu 

parallel corpus, and the output of this method is used as input for the encoding stage. The model is tested using 

language pairs between Telugu and English. The metrics used to determine translation quality are cross-entropy, 

accuracy, perplexity and BLUE scores. When comparing the accuracy and translations of BiLSTMs models to 

Unidirectional LSTMs along with BPE, it was demonstrated through performance analysis that the former performs 

better. Thus, some OOV difficulties can be resolved by incorporating BPE into the model.  Improved translations in 

languages with limited resources are the result of solving OOV issues. Some of the NER recognition issues have been 

resolved by the BiLSTMs in the NMT as opposed to employing Unidirectional LSTMs. Unidirectional LSTMs only 

rely on leftward context, whereas BiLSTMs use both leftward and rightward context in the sentence to identify NER. 

So, BiLSTMs outperform unidirectional LSTMs in terms of translation accuracy. Beam search will produce a higher-

quality translation during the decoding phase. Because of this, the NMT that uses BiLSTMs and BPE produces better 

translations for the parallel corpus of English and Telugu. Considering this, NMT made up of BiLSTMs and BPE is 

recommended for the parallel corpus of English and Telugu. Therefore, BiLSTMs with BPE are useful for improving 

CLIR's translation accuracy. 
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