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Abstract: - The Industrial Internet of Things (IIoT) is a rapidly evolving features with multiple applications, including critical infrastructure. 

Privacy policies are required to preserve the protection of user data in the threat intelligence community. Blockchain is a modern technology 

which used recently to provide more secure storage and efficiency.  In this research, Blockchain Assisted Deep Federated Learning (BC_DFL) 

system is used to detect intruders. The three key processes used in the proposed intrusion detection architecture are data collection, pre-

processing and intrusion detection. Data normalization, reduction, cleaning and transformation are used in pre-processing to remove 

extraneous information and improve data quality. This pre-processed data is sent to the Blockchain Assisted Deep Federated Learning 

(BC_DFL) system for intrusion detection. To detect intruders, the federated learning-based Capsule Auto-Encoder (FL_CAE) architecture 

first learns the properties from the inputs. Blockchain technology (BCTech) is not only used for storage but also improves security by 

eliminating the possibility of threatening node and individual server failure. The ToN_IoT and UNSW-NB15 data sets are used in the 

implementation and performance evaluation study. The proposed model is evaluated using existing in the Results section. In the UNSW-

NB15 dataset, proposed model achieved an accuracy, precision, recall and F1 score of 97.26%, 97.28%, 96.89% and 96.96% respectively as 

well as in ToN_IoT data set proposed model achieved an accuracy, precision, recall and F1 score of 95.74%, 99.54 %, 99.49% and 99.24%, 

respectively. The execution of the proposed approach takes 2.31 seconds in the UNSW-NB15 dataset and 1.66 seconds in the ToN_IoT 

dataset. Blockchain offers a transparent and impenetrable ledger for transaction recording and verification. Within the framework of 

cooperative intrusion detection, it guarantees a secure and reliable exchange of threat intelligence and detection models between various users 

of IIoT ecosystem. 

Keywords: Data authentication, Industrial Internet of Things, Intrusion Detection, Capsule Network, Federated Learning, 

Stochastic Gradient Decent method, Data Fusion Vector. 

 

 

I.  INTRODUCTION  

The Internet of Things (IoT) is a network of organized devices using computing tools such as processors or sensors 

to store, transmit and collect data over the Internet [1]. The general function or goal of the IoT environment, for 

example healthcare, industrial or smart homes processes, is fulfilled by each device fulfilling a specific role. IoT 

allows remotely managed devices to work together and achieve common goals [2, 3]. In the year 2025, it is anticipated 

that the quantity of Internet of Things (IoT) devices will escalate to 41.6 billion and need for IoT networks based on 

data collected by International Data Corporation (IDC). Based on infrastructure and artificial intellect abilities, the 

IoT ecosystem has much to offer customers and enterprises, such as increasing operational agility and effectiveness 

[4, 5]. However, one of the biggest obstacles to the development of such networks is their security. 

IoT devices gather as well as store highly complex information, such as medical and financial records, which are 

often the target of cybercriminals [6]. In light of the prevailing security posture of IoT networks, organizations and 

consumers encounter heightened challenges in upholding the security and integrity of their digital resources. This 

predicament is primarily attributed to the intricate, vast, and decentralized attack surface created by the placement of 

IoT devices predominantly at the network periphery, facilitating their role as potential entry points to an organization's 

central network. [7]. An IoT ecosystem is created by these often networked and constantly communicating gadgets. 
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Therefore, any intrusion into any of these networks poses significant problems for the security and confidentiality of 

the entire network. Furthermore, since the Internet of Things links the physical and digital worlds, hacking IoT devices 

can have serious consequences [8]. 

Most network participants, especially end devices, can now provide services due to the developments in wireless 

communication and devices for the IoT [9]. Through collaboration and cooperation, such devices can offer storage 

and computing capacities to other network entities in increasingly diverse ways. In addition, a large proportion of 

these devices are suitable for distributed and decentralized learning and have artificial intelligence (AI) functions [10, 

11]. FL can be leveraged to tackle the challenges associated with data centralization, representing a decentralized 

learning approach aimed at enhancing AI-driven computing Various sectors, including healthcare and e-commerce, 

have embraced the FL methodology. 

The integration of blockchain technology has facilitated the emergence of distributed and decentralized solutions, 

enabling endpoints to collaborate on tasks that previously necessitated centralized organization oversight. By merging 

blockchain with FL, activities can now be delegated to IoT devices, thereby enhancing computing capabilities and 

surpassing traditional centralized systems. Furthermore, the cryptographic features of blockchain technology ensure 

data integrity, leading to secure data storage and transmission. Moreover, blockchain mechanisms can monitor the 

addition of new devices to the network through transaction records, thereby ensuring data authenticity and 

authorization.[14]. Furthermore, storing locally learned data of performing transaction validation and multiple 

transactions for each device enables secure communication between end devices [15]. 

A. Motivation 

The security of private and sensitive information while transferring data has become critical with the fast development 

in the amount of data created by various industrial devices in the IoT. At the moment, federated learning for data 

security has evolved, and it can handle data interchange security challenges via model exchange on the Internet of 

mutual mistrust. However, hackers continue to build attacks that exploit compound learning flaws (for example, 

model extraction and model reversal attacks). Many methods are proposed to resist these attacks, but most of them 

do not provide an effective solution, which motivates us to propose blockchain-based federated learning. This concept 

has the dual security of federated learning and blockchain, making it harder for an adversary to attack. The major 

contribution of this work is: 

•  To enhance the protection of user data within the threat intelligence sharing community, the 

Blockchain Assisted Deep Federated Learning (BC_DFL) system is proposed. 

•  To acquire the input data, publically available sources are used 

•  To pre-process the input data, Data Normalization, Reduction, Cleaning and Transformation are 

used to decrease the irrelevant information and improve the accuracy 

•  To detect the intrusions from the provided inputs, the Federated Learning based Capsule Auto-

Encoder (FL_CAE) is used to learn the features. 

•  For enhancing security, Blockchain technology (BCTech) is used for storage purposes, which 

eliminates the risks of threatening nodes and a single server failure. 

The remaining part of the structure delineates as follows: Section 2 delineates the relevant literature. Section 3 

elucidates the suggested approach, while Section 4 expounds upon the outcomes and discourse; the final remarks and 

sources are explicated in Section 5. 

II. RELATED WORKS 

An integrated framework that advances security, confidentiality, and trust using Deep Learning and BC technologies 

has been formulated by Kumar et al. [16]. The architecture of the Deep Blockchain-Based Trustworthy Privacy-

Preserving Secured Framework (DBTP2SF) utilizes a BC-based reputation system for trust establishment, a two-tier 

privacy-preserving strategy merging ePoW for data integration preservation and AE for generating novel data 

dimensions, alongside a privacy-preserving algorithm. Through the adoption of a two-step technique, the 

vulnerabilities of data poisoning and inference attacks can be circumvented. Subsequently, a deployment framework 

named BlockCloud-BlockFog was introduced to tackle the challenges within the current Cloud-Fog architecture. 
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Nevertheless, certain issues surfaced, resulting in prolonged block mining duration and manual pre-processing 

requirements with the proliferation of IIoT network nodes.In the context of an intelligent industrial setting, Auther et 

al. [17] have introduced a blockchain-based framework. This approach facilitates the establishment of a decentralized, 

private IIoT network based on blockchain technology,lightweight and secure, capable of performing a number of 

critical tasks, including trusted machine operation, data storage and user and device registration. However, this 

strategy is more difficult to implement.   

The traditional blockchain system was developed by Wang et al. [18] using the incremental aggregator subvector 

commitment (IASVC) and the IIoT and data security were protected by the advanced blockchain system. In traditional 

blockchain architecture, data is stored in Merkle trees. Verifying the accuracy and completeness of the data requires 

a considerable amount of proof. The model can dynamically combine multiple encryption techniques to ensure the 

confidentiality of IIoT data while reducing the size of evidence and increasing transmission efficiency. To reduce 

node storage requirements, the IASVC model uses the IIoT node data upload skill. To meet the above application 

requirements, an IASVC based on bilinear mapping was created. However, this approach only assessed the evidence 

aggregation of a single commitment.  

For IIoT networks, Zhang et al. [19] offered a smart and secure 5G that goes beyond the frame. Using the recently 

described cross-domain sharing strategy and deep reinforcement learning (DRL) technique, an effective edge resource 

planning approach was created. A novel credit-differentiated transaction approval system was developed to secure 

IIoT network edge service transactions. However, the performance of this model is not particularly strong.  

Khan et al. [20] presented a revolutionary collaborative federated learning system for smart industries. A 

decomposition and relaxation-based approach was used to solve a presented integer linear programming problem. 

Convex optimization solvers were used to solve the subproblems when their convexity was demonstrated.   

Sater et al. [21] presented a federated stacked Long Short-Term Memory (LSTM) structure designed for anomaly 

detection in intelligent buildings through the use of federated learning for IoT sensor data. The FSLSTM network 

consists of two models: a local LSTM model that acquires data from individual sensors, and a global model that 

aggregates weights, adjusts parameters, and disseminates sensor results for each computation. Nevertheless, there are 

deficiencies in security and the overall performance is deemed unsatisfactory. 

He et al. [22] integrate long short-term memory (LSTM) into CGAN training to enhance the performance of 

generative networks. Leveraging LSTM networks' ability for feature extraction, CGAN-generated data is employed 

as augmented data and utilized in malware detection and classification. Furthermore, distributed federated learning 

with differential privacy ensures data security and privacy by allowing collaborative training of CGAN models across 

multiple distributed datasets. To maintain security during the aggregation and updating of the global algorithm, 

blockchain is utilized for storing and disseminating the training models. Nevertheless, LSTMs may demand 

significant processing power, especially when handling large-scale IIoT datasets or deep architectures, which could 

hinder their deployment on IIoT devices with limited resources. 

Hamouda et al. [23] propose a unique privacy-preserving secure architecture named PPSS, which is founded on 

blockchain-enabled FL providing enhanced transparency, reliability, and confidentiality. The PPSS architecture 

utilizes a permissioned-blockchain network to ensure multi-party computation and promote cross-silo FL through a 

lightweight and energy-efficient consensus mechanism called Proof-of-Federated Deep-Learning (PoFDL). Initially, 

client modifications are safeguarded from unauthorized access through the utilization of new model-containing blocks 

and differentially private training of stochastic gradient descent (DP-SGD) are verified and added to the blockchain 

using the PoFDL protocol in the second stage.  Blockchain, while offering immutability and transparency, may 

jeopardize participants' privacy in federated learning. The blockchain's transaction logs can provide details on the 

contributions and model updates provided by certain IIoTs. 

Yazdinejad et al. [24] have devised a threat hunting framework named Block Hunter utilizing federated learning to 

automatically seek out attacks within blockchain-based IIoT networks. The Block Hunter operates within a federated 

environment and integrates various machine learning algorithms within a cluster-oriented architecture to detect 

anomalies. It represents the primary endeavor in federated threat hunting within IIoT networks, ensuring privacy 

preservation while pinpointing aberrant activities. Nonetheless, due to the necessity of effective cross-device training 

and communication, lightweight models are commonly employed in federated learning, posing challenges in 

developing highly intricate models for advanced threat detection. 
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Friha et al. [25] introduce a secure, decentralized, Differentially Private (DP) Federated Learning (FL)-based intrusion 

detection system (2DF-IDS) designed to enhance the security of intelligent industrial structures. The 2DF-IDS 

consists of three fundamental elements: a decentralized FL strategy (which mitigates risks associated with assaults or 

single points of failure linked to a conventional FL analysis aggregation server), a key exchange protocol (ensuring 

the secure transmission of weights among all peers within the system), and a differentially private gradient exchange 

mechanism (enhancing the FL approach's privacy level).However with Federated Learning, updates to the models are 

exchanged through interaction between nearby devices and a central server. Enhanced communication overhead can 

affect real-time operations in smart industrial facilities with constrained network bandwidth. 

A. Problem statement 

A network of networked devices called the Internet of Things (IoT) uses computer resources like processors or sensors 

to store, gather, and transfer data through the Internet. The general objective or aim of the IoT ecosystem, such as 

smart homes, industry, or healthcare operations, is served by each device that carries out a particular activity. Most 

IoT models are associated with cloud devices, which are less secure and more vulnerable to attacks. Researchers 

around the world are conducting studies to improve security and identify intruders. However, most are incorrect and 

have difficulty preserving the collected data. Attackers are becoming more sophisticated and a traditional adversary 

model cannot prevent or detect them. As more IIoT devices and people engage in collaborative learning, there may 

be concerns about the scalability of blockchain networks. Performance difficulties can be caused by large transaction 

volumes and the requirement for consensus techniques. Proof-of-Work (PoW) is one of the blockchain's energy-

intensive consensus algorithms. The energy consumption of blockchain processes could be a major disadvantage in 

IIoT scenarios where devices have limited resources. Furthermore, the combination of federated learning and 

blockchain technology presents novel possibilities for attacks. Potential security vulnerabilities could arise from 

adversarial attacks directed towards the consensus method, federated learning process or connectivity among IIoT 

devices. These issues inspire this research to start with the security of federated learning models and blockchain 

security. 

III. PROPOSED METHODOLOGY 

Data acquisition, pre-processing and intrusion detection are the three main methods used in the proposed intrusion 

detection architecture. The input data is initially collected from publicly accessible sources. The initial pre-processing 

is performed to reduce the irrelevant information through data normalization, reduction, cleaning and transformation. 

The Blockchain Assisted Deep Federated Learning (BC_DFL) intrusion detection system uses this pre-processed data 

as input. The federated learning-based Capsule Auto-Encoder (FL_CAE) in this framework learns the characteristics 

from the inputs and then uses them to identify intruders. For storage purposes, blockchain technology (BCTech) is 

used to increase security as it eliminates the dangers associated with rogue nodes and the failure of individual servers. 

The proposed strategy will reduce intrusion as it leverages the best security, privacy and storage paradigm. 

Consequently, the proposed detection model is able to identify dangerous behaviours based on the input data. Figure 

1 shows the basic block diagram of the proposed model. 

Dataset

Data Normalization

Reduction

Cleaning 

Transformation

Federated Learning 

based Capsule Auto-

Encoder (FL_CAE)

Block chain technology 

(BCTech) 

Block chain Assisted Deep Federated 

Learning (BC_DFL) 

Normal ThreatPre-processing

Intrusion detection system

 

Figure 1: Basic block diagram of the proposed model 
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A. Pre-processing  

Data pre-processing is crucial as it cleans, reduces and normalizes the data to prepare it for processing in the next 

phase. Pre-processing in this research includes data normalization, cleaning, reduction and transformation. These 

steps help reduce the risk of error and increase the accuracy of subsequent algorithms. 

Data cleaning- Data preparation that involves changing missing, inaccurate, irrelevant, redundant, or incorrectly 

provided data is known as data cleaning. In data analysis, the data is not strictly necessary as it would make it difficult 

to provide correct results. Data cleaning is not just limited to deleting errors, this includes the elimination of 

information. The process of data cleaning includes removing unwanted information, correcting inaccurate 

information and deleting unwanted information without losing important data. The main goal was to clean the data 

in datasets that standardized data analysis and were easily accessible to find the appropriate data for the query. 

Data transformation - All category data has been summarized in this numeric format. The UNSW-NB15 and ToN_IoT 

dataset spans a variety of data types and ranges. Therefore, data normalization is a part of data transformation. Data 

normalization reduces the value range of the attribute data to an acceptable level.  

Min-Max normalization- Due to missing or unclear data, the missing data needs to be modified by removing 

unnecessary data to improve quality. Both integration and data normalization benefit from the min-max normalization 

technique. Any feature value that has a minimum value is converted to 0, and any feature value that has a maximum 

value is converted to 1. Each value is translated from decimal values between 0 and 1. The normalization procedure 

is described in equation (1), 

                                                                

xX

xX

X
MinMax

MinD
Norm

−

−
=                                                     (1) 

Where   represents the data point, represents the data point's minimum value and   indicates the data point's maximum 

value or the batch instances. Using structured data, these variables calculate a normalized value to fill the gaps. Once 

the unstructured information has undergone min-max normalization, traffic data contamination will further increase 

the level of uncertainty in the data.  

Data reduction- Reduction of dimensions is the method used in data reduction. The risk of detecting false data patterns 

is to be reduced and the chosen features require the removal of all unnecessary elements and features of the fraud 

domain. The well-known PCA or principal component analysis is a common transformation technique. The problem 

of feature selection is solved with this approach from the point of view of numerical analysis. PCA effectively 

performed feature selection by determining the appropriate number of key components. 

B.  System model 

The proposed approach is based on a blockchain-based federated learning technique that leverages capsule 

autoencoder support to build various learning models to enable accurate and timely support for critical infrastructure 

at the edge. This approach will enable a trustworthy cooperative network to deliver services precisely and quickly. 

Most distributed and decentralized learning systems are assumed to be either erroneous or raise security issues. 

Accuracy and trustworthiness are ensured by integrating the capsule autoencoder with blockchain-assisted composite 

learning. 

The proposed strategy considers the fact that all distributed learning or federated learning, is carried out assistance of 

a capsule network. Without using the central server, data collection and training occur exclusively on the end device. 

A global model is then built on the central server using the federated averaging technique. To ensure a secure and 

reliable discussion of device model updates, nodes that score above a certain threshold are included in the offered 

public blockchain. The blockchain stores the information with high security while the information is being received. 

The answer implies that sensitive data nodes must use blockchain to validate the locally trained models. Normally 

there are no time restrictions in such situations. While non-critical infrastructure applications may bypass the 

blockchain certification process, meeting the applications' deadline requirements. Figure 2 represents the system 

model of the proposed model. 
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Figure 2: System model of the proposed model 

C. Block chain Assisted Deep Federated Learning (BC_DFL) 

The proposed framework consists of three algorithms: blockchain structure, federated learning model and capsule 

auto-encoder, each described below.  

D. 3.3.1 Federated Learning based Capsule Auto-Encoder (FL_CAE) 

The federated learning-based Capsule Auto-Encoder (FL_CAE) in this framework learns the characteristics from the 

inputs and then uses them to identify intruders. The Capsule Auto-Encoder is used as a component of several privacy 

and security systems, including Intrusion Prevention Systems (IPS) and Intrusion Detection Systems (IDS). The 

location and orientation of a feature can be precisely described by the vectors that the capsule network uses to transmit 

information. The capsule-based network design has a particular advantage over other deep learning structures in that 

it uses a local feature for classification that is ideally suited to the NIDS position. The encoder is used with input 

variables 
,jI

in conjunction with the capsule network to enhance the learning procedure. 

Input is provided by the low-level capsule iC
which represents the initial data fusion vector and iterates to create the 

output jO
 of the high-level capsule. It repeats the calculation of linear weights but additionally includes a weight 

coefficient ijE
, which stands for the low-level capsule. The input jI

 for the capsule auto encoder is obtained using 

equation (2). 

iijij
i

jijijj CwCCwhereOCEI === ˆ,ˆ

                                    (2) 

Softmax is employed to ensure that all the weights are ijE
 where the expression is given as: 

( ) jijij IvSoftE = max
                                                     (3) 

Where ijv
 is a transient variable having a value of 0 and ijE

changes its value throughout the process of iteration. 
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The basic structure of a capsule network consists of an encoder indicated XEN
, a decoder is denoted as XDE

 and 

a detection layer. One of the aims of finding a program for each input attribute is to minimize the loss between input 

and result across all information characteristics. Equation (4) yields the following results for the reconstruction loss: 

( )( )
2

21

1
min 

=

−=
A

a

aaXXloss FFENDE
A

REC

                                   (4) 

In equations (5) and (6), the 
( )1aEN X and 

( )2aDEX are represented by  

( ) ( )11 WFaEN X = 
                                                         (5) 

( ) ( )22 WGaDEX = 
                                                        (6) 

The weight criteria of both the decoder and the encoder are 1W and 2W , while 1a
and 2a

are the input criteria. The 

convolutional operator is represented by the   and 
( )

 stands for convolution and activation function, respectively. 

The CAE's detection layer can be achieved by equation (7): 

( )
( )

−

−

−+

−+
=

j

ji

ji

ij

Ou

Ou
P

12

12

1

1

                                                         (7) 

Where jO
 denotes the output criteria. The ijP

is the expected probability that iu
 will occur when the given 

characteristic 
j

. The detection loss is specified by equation (8) as follows: 

=
i j ij

ij

ijloss
P

D
DDET log

                                                 (8) 

Where ijD
 is the pre-determined target in this case, and data intrusion is identified by applying equation (7). In 

equations (5) and (6), the loss criteria lossDET
 and the weight criterion 1W and 2W are optimized.Detection layer 

in equation (8) is minimized by employing an adaptive transient search optimization approach. A capsule auto-

encoder can be used to identify the intrusion.  

Data is gathered locally and delivered to the end devices in a collaborative learning system known as federated 

learning (FL). A global model is then developed by combining the training models. End devices only exchange the 

parameters of their local models with the server and do not pass on the local training/test data sets. In the proposed 

method, the FL-Averaging algorithm ( FLAvg
) is used to control how the end-device training architecture are handled 

on the centralized server, resulting in the creation of a common global model.  

The capsule auto-encoder training on the terminals is done using the SGD (Stochastic Gradient Decent) method and 

the gradient descent optimization approximation. After randomly selecting a portion of the main dataset, swap the 

dataset features for the estimated values. FLAvg
 takes into account three variables: the volume of the mini-batch, 

the amount of training performed on the dataset’s end-devices and the percentage of end-device computations. These 

elements make it easier for end devices to share the gradient decrease. The server then receipts the average of the 

trained models produced, makes a broadcasts and adjustment chosen FLAvg
 device is given in Algorithm 1. 
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Algorithm 1: FLAvg
 

Input: Pre-processed data 

Process: FLAvg
 (End device side) 

Output: Gets pn
from main server 

Initialization: If p

l

p nn =0, :                                     0n
 is the initialization of the server model 

                       For 
,2,1,0=k

 do 

                       Sample 


 is selected from inH
:          inH

 is the local end device 

                       Dataset Update 
( ),,,1,

l

kp

l

kp

l

kp nnn −=+  

                       End for 

Set 

l

Kkp

l

p nn ,1 =+   

Transmit 

l

pn 1+  to main server 

Process: FLAvg
 (main server) 

Initialize 0n
 (initializing the server model) 

                          For each iteration 
,2,1,0=p

do 

                          
;1= LZZ p
 

                                             For each user 
pzl

  do 

l

pn 1+                         end device update 

                                             

l

p

zl

l
p n

m

m
n

p

11 +



+ =
                                           where 




=
pzl

lmm

 

                                              End for  

                           End for         

 

Initially the input is obtained by the output of the pre-processing stage. Both the edge devices and the server are 

targeted by the FLAvg
. The server's GM is designated as 0n

, which is randomly adjusted. The first round then starts 

with the central server chooses a subsection of the end devices ( pz
such that 

;1= LZz p
) and dispersing its 

present global model pn
 among all of the end devices in pz

. When the server's shared model pn
is updated, the end 

devices update their models (

l

pn
). After grouping their local datasets according to size, the end devices execute SGD 

iterations. After receiving the individually trained models from all end devices (

l

pn 1+ ) and uploading them, the 

centralized server then generates the newly updated global model 1+pn
.In terms 

iterandZ ,,, 
 stand for 

iterations before updating the global model. The term 
 anditer ,,

are accepted by SGD for employing in 

training. The data of the proposed Federated Learning based Capsule Auto-Encoder is stored in Blockchain 

technology. 

E. Blockchain technology 

Blockchain technology enables federated learning to ensure the validity of locally derived data and learned models. 

Since decentralized tasks often rely on untrusted endpoints to work together, a consensus method must be considered 

to ensure the accuracy and reliability of the service, task, or data provided. Blockchain technology creates a 
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decentralized, impenetrable record to build trust without a central authority. To confirm blockchain content, sequence, 

and hash pointers, users compare locally stored versions of the blockchain using a consensus process. Numerous 

consensus algorithms, including Practical Byzantine Fault Tolerance (pBFT), Proof-of-Stake (PoS), Proof-of-Work 

(PoW), and others, are proposed in research. Each protocol can work well under specific circumstances and in a 

specific network environment. 

In terms of crucial IoT structures, blockchain technology has the potential to provide helpful solutions to a wide range 

of problems, especially in terms of security and reliability. For example, blockchain technology can instantly provide 

IoT end devices with a unique identifier without needing a central server. Furthermore, the end devices, possessing a 

unique identity and specific key, cryptographically sign the directed communication between the end devices to 

blockchain. It enables a protected and reliable exchange of device model updates by merging blockchain technology 

with the crucial infrastructure provided by federated learning. This proposed strategy incorporates blockchain 

technology as an additional layer of security to guarantee devices reliability. Untrusted devices can be removed from 

the blockchain as it is expanded to include trusted devices. Any consensus algorithm can be used with the proposed 

blockchain-backed FL model. However, the pBFT is very effective against defects since terminals can be portable. 

The system is not affected by terminals that do not provide a consensus response or do so in a flawed or erroneous 

manner, and unanimity can be guaranteed. Miners, which can be trusted endpoints or edge devices, perform the model 

verification process. 

The locally learnt model is sent from each end device to the linked miner that the fog has selected. Miners do cross-

check by comparing and exchanging local model changes with the global model. A block is then created that keeps 

track of all modifications once the local model changes are verified using a consensus mechanism (pBFT) used to 

determine the overall value. Figure 3 shows the structure of the proposed model.  
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Figure 3: proposed model 

IV. RESULTS AND DISCUSSION 

The PYTHON platform has been utilized for the execution, incorporating system specifications featuring an Intel(R) 

Core (TM) i7-3770 CPU @ 3.40GHz, along with 16 GB of installed memory. The operating system employed is 64-

bit, devoid of pen or touch input. The assessment of effectiveness encompasses parameters such as accuracy, f1-score, 
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recall, precision, and execution time, evaluating established methods like Integrated CNN with Long Short Term 

Memory (LSTM)-based Fog Computing Intrusion Detection (ICNN-FCID), Cholesky Factorization based Online 

Sequential Extreme Learning Machines with Persistent Regularization (CF-OSELM-PRFF), Enhanced Hybrid 

Intrusion Detection System (EHIDS), and Anomaly Behaviour Analysis Intrusion Detection System (ABA-IDS), 

using the UNSW-NB15 and ToN_IoT dataset. 

The renowned UNSW-NB15 dataset, made available in 2015 by the Cyber Range Lab of the Australian Centre for 

Cyber Security (ACCS), comprises artificial attack scenarios and benign network activity. These were created using 

the IXIA PerfectStorm tool, with 100 GB of pcap files recorded via the tcpdump utility. Initial dataset characteristics, 

extracted using Argus and Bro-IDS (now Zeek), as well as twelve additional SQL techniques, resulted in a total of 

2,540,044 flows. Among these, 2,218,761 (87.35%) are benign flows, while 321,283 (12.65%) represent attack 

streams. 

The ToN-IoT dataset, a recently published heterogeneous compilation from 2019, integrates operating system logs, 

IoT network traffic, and telemetry data from IoT services. This article focuses on the segment displaying network 

traffic flows within the dataset. It includes various attack scenarios executed by ACCS at the Cyber Range Lab, 

simulating a real large-scale network environment. The dataset encompasses attacks such as DoS, DDoS, 

ransomware, etc., comprising a total of 22,339,021 flows. Within these flows, there are 796,380 (3.56%) benign 

instances and 21,542,641 (96.44%) attack samples. 

A. Performance evaluation 

For the evaluation, the proposed model is compared to existing models in terms of accuracy, precision, recall, and f1-

score with a basic evaluation matrix such as true negative 
( )tn

, true positive 
( )tp

, false negative 
( )fn

 , and false 

positive 
( )fp

. More details of the evaluation matrix is given below: 

True Positive 
( )tp

- The proportion of samples that are properly identified as normal in the normal portion and as a 

threat in the threat portion. 

True Negative 
( )tn

- The proportion of samples that are properly identified as posing a threat to the normal portion 

or the threat to the normal portion. 

False positive 
( )fp

- The number of samples incorrectly identified as threats in the threat portion and as normal in 

the normal portion. 

False Negative 
( )fn

- The percentage of samples incorrectly identified as normal in the threat and threat in the normal 

portions.  

Using the evaluation matrix, the performance of the proposed model can be defined by: 

Accuracy- The percentage of samples that can be successfully located in the entire data set is referred to as accuracy. 

This statistic is not useful for comparing methods because the data set used is imbalanced. The accuracy can be 

represented as follows: 

                                                 
fnfptptn

tptn
Accuracy

+++

+
=

                                                                       (9) 

Precision- Precision is the ratio of the number of samples correctly identified as normal in the normal portion or as a 

threat in the threat portion compared to the total number of samples correctly identified as normal/threatening. 

                                                                
fptp

tp
precision

+
=

                                                                        (10) 
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Recall- Recall is the proportion of samples properly identified as normal in the normal component or as a threat in 

the threat portion relative to the total number of samples that are correctly classified as normal/threat in the dataset. 

                                                                   
fntp

tp
recall

+
=

                                                                             (11) 

F1-score- F1-Score represents the harmonic mean of precision and recall. 

 

                                           
precisionrecall

precisionrecall
scoreF

+


=−

2
1

                                                                 (12) 

B. Performance evaluation using UNSW-NB15 dataset 

The performance evaluation of the proposed and existing model in terms of accuracy is shown in Figure 4. The 

accuracy is taken by varying the data size from 10000 to 60000. The existing models like EHIDS, ABA-IDS, CF-

OSELM-PRFF and ICNN-FCID are used to compare with the proposed model. EHIDS model achieved an average 

accuracy of 96.45%, while CF-OSELM-PRFF achieved an average accuracy of 92.27%. ABA-IDS and ICNN-FCID 

models achieved an average accuracy of 90.74% and 94.61%, respectively. The proposed model achieved an average 

accuracy of 97.26% which is the best among all other existing methods. Table 1 represents the accuracy values of the 

proposed and existing models.  

Table 1: Accuracy of proposed and existing models 

Methods 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 92.08 94.48 94.68 99.03 98.57 99.87 

CF-OSELM-PRFF 92.34 92.73 91.69 91.75 93.25 91.88 

ABA-IDS 90.71 90.58 90.71 90.78 90.84 90.84 

ICNN-FCID 91.88 94.16 93.9 95.45 96.04 96.23 

PROPOSED 93.38 95.45 95.78 99.61 99.42 99.97 

 

 

Figure 4: performance evaluation using the UNSW-NB15 dataset in terms of accuracy. 

 Figure 5 represents the precision of the proposed and existing models using the UNSW-NB15 dataset. The EHIDS     

model has a precision of 96.45%, and CF-OSELM-PRFF has a precision of 94.94%. The ABA-IDS model has a 

precision  of 82.42%, while the ICNN-FCID model has a precision value of 94.42%, respectively. The suggested 
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model  demonstrates.  a precision value of 97.28%, surpassing all other current models. In Table 2, the precision 

values of both   the    proposed model and the current models are depicted across various data sizes. 

 

Table 2: Precision value of existing and proposed model 

Models 

Data size 

 

10000 20000 30000 40000 50000 60000 

EHIDS 92.33 94.56 94.8 98.67 98.61 99.76 

CF-OSELM-PRFF 93.47 93.53 94.74 95.29 95.83 96.8 

ABA-IDS 80.97 82.9 82.05 82.78 82.9 82.96 

ICNN-FCID 93.6 95.23 94.44 94.14 94.5 94.62 

PROPOSED 94.02 95.77 95.65 99.21 99.21 99.82 

 

 

Figure 5: Precision of the proposed and existing models 

Figure 6 represents the recall value of the existing and proposed model while using the UNSW-NB15 dataset.EHIDS 

model have an average recall value of 92.17%, and CF-OSELM-PRFF have a recall value of 90.52%. TheABA-IDS 

model has a recall value of 90.15%, while the ICNN-FCID model have a recall value of 89.11%,respectively. 

The proposed model has a   precision value of 92.97% which have a clear edge over all other models. Table 3 

represents    the recall value of the existing and proposed model.  

Table 3: Recall value of existing and proposed models 

Model 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 92.17 94.43 94.56 98.47 98.41 99.57 

CF-OSELM-PRFF 90.52 91.25 92.48 93.09 94.86 95.84 

ABA-IDS 90.15 90.76 91.31 91.44 91.74 91.74 

ICNN-FCID 89.11 88.26 87.16 87.4 90.03 87.95 

PROPOSED 92.97 95.11 95.35 99.08 98.96 99.88 
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Figure 6: Recall of existing and proposed model 

Figure 7 represents the F1-score of the proposed and existing model using the UNSW-NB15 dataset. The F1-score       

of the EHIDS model is 96.26%, and the CF-OSELM-PRFF model has an F1-score of 93%. The ABA-IDS model has 

the F1-score of 86.69%, while the ICNN-FCID model have a value of 90.56%, respectively. The proposed model has 

an F1-score of 96.96% which is the best compared to other existing models. Table 4 represents the F1-score of the 

proposed and existing models. 

Table 4: F1-score of the proposed and existing model 

Model 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 92.16 94.35 94.63 98.8 98.45 99.79 

CF-OSELM-PRFF 91.59 92.23 93 93.85 94.7 95.12 

ABA-IDS 86.78 85.65 86.86 86.86 86.86 87.14 

ICNN-FCID 90.88 91.1 89.75 89.89 91.8 89.96 

PROPOSED 92.93 95.27 95.41 99.15 99.15 99.86 

 

 

Figure 7: F1-score of proposed and existing model 

C. Performance evaluation using ToN_IoT dataset 

Figure 8 represents an evaluation of the accuracy of the proposed and existing designs. Variations in data size between 

10000 and 60000 are used to determine accuracy. To compare the proposed model with existing methods, the models 
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like EHIDS, CF-OSELM-PRFF, ABA-IDS, and ICNN-FCID are employed. The EHIDS model has an accuracy of 

95.24%, while the CF-OSELM-PRFF model have an accuracy of 91.23%. The accuracy rates for the ABA-IDS and 

ICNN-FCID models have the value of 89.84% and 92.03%, respectively. The proposed approach surpassed all other 

existing methods in terms of accuracy, with an average of 95.74%. The values for the proposed and previous models' 

accuracy are shown in Table 5. 

Table 5: Accuracy value of the proposed and existing model 

Model 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 88.01 91.8 94.84 98.01 99.25 99.57 

CF-OSELM-PRFF 82.86 87.39 90.68 94.22 95.71 96.52 

ABA-IDS 81.74 84.91 90.25 93.11 94.04 95.03 

ICNN-FCID 84.91 87.95 91.43 94.29 96.65 96.96 

PROPOSED 88.45 92.48 95.53 98.57 99.63 99.81 

 

 

Figure 8: Accuracy of the proposed and existing model 

The precision of the proposed and existing ones utilizing the ToN_IoT dataset is shown in Figure 9. The precision of 

the EHIDS model is 98.99%, whereas the CF-OSELM-PRFF model has a precision of 95.27%. The precision for the 

ABA-IDS model is 94%, whereas the precision for the ICNN-FCID model is 95.48%. The proposed approach has 

the highest precision among the existing model at 99.54%. The precision value for the proposed and existing models 

for each data size is shown in Table 6. 

Table 6: precision of the proposed and existing models 

Models 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 98.08 98.65 99.22 99.29 99.15 99.57 

CF-OSELM-PRFF 94.38 94.16 94.8 95.44 95.94 96.94 

ABA-IDS 88.54 91.96 94.52 95.8 96.01 97.22 

ICNN-FCID 94.66 95.02 95.37 95.66 96.65 95.52 

PROPOSED 98.65 99.43 99.72 99.72 99.79 99.93 

 



J. Electrical Systems 20-2s (2024): 1345-1363 

1359 

 

Figure 9: precision of the proposed and existing models 

Using the ToN_IoT dataset, Figure 10 shows the recall value of the existing and proposed models. The recall rate for 

the EHIDS model is 98.97%, whereas the recall rate for the CF-OSELM-PRFF is 93.08%. The recall for the ABA-

IDS model is 94.01%, whereas the recall for the ICNN-FCID model is 94.44%. The proposed model outperforms all 

other models with a recall value of 99.49%. The recall value of the existing and proposed models is shown in Table 

7. 

Table 7: Recall of the proposed and existing model 

Model 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 98.01 98.91 98.99 98.95 99.53 99.43 

CF-OSELM-PRFF 90.57 91.27 92.72 93.24 95.07 95.65 

ABA-IDS 88.77 91.9 94.4 95.85 96.25 96.89 

ICNN-FCID 93.31 93.64 94.22 94.37 95.32 95.78 

PROPOSED 98.45 99.47 99.55 99.57 99.91 99.99 

 

 

Figure 10: Recall of the proposed and existing model 

On the basis of the ToN_IoT dataset, Figure 11 shows the F1-score for the proposed and existing models. The F1-

score of the CF-OSELM-PRFF model is 93.4%, and 98.75% for the EHIDS model. The F1-score for the ICNN-FCID 

model is 91.73%, whereas the ABA-IDS model has a value of 93.91%. The proposed model has the highest F1-score 

of 99.24% compared to other existing models. The F1-score of the proposed and existing models is shown in Table 

8.  
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Table 8: F1-score of the proposed and existing model 

Model 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 97.6 98.77 98.89 98.83 99.42 99.02 

CF-OSELM-PRFF 91.7 92.34 93.16 93.68 94.68 94.84 

ABA-IDS 88.89 92.16 94.27 95.44 96.08 96.67 

ICNN-FCID 91.17 91.11 91.81 91.93 92.34 92.03 

PROPOSED 98.13 99.53 99.36 99.36 99.59 99.48 

 

 

Figure11: F1-score of the proposed and existing model 

Figure 12 represents the execution time of the proposed and existing models in terms of the UNSW-NB15 and 

ToN_IoT datasets. Figure 12 (a) represents the execution time in the UNSW-NB15 dataset. The EHIDS model has 

an execution time of 2.39 seconds, and the CF-OSELM-PRFF model has a time of 2.91 seconds. The models like 

ABA-IDS and ICNN-FCID have an execution time of 2.9 and 3.28 seconds, respectively. Figure 12 (b) denotes the 

execution time in the ToN_IoT dataset. The CF-OSELM-PRFF model has an execution time of 2.91 seconds, and the 

EHIDS model has a time of 1.87 seconds. The ABA-IDS model has a time of 2.94 seconds, while ICNN-FCID has 

an execution time of 3.24 seconds. The proposed model has an execution time of 2.31 seconds in the UNSW-NB15 

dataset and 1.66 seconds for the ToN_IoT dataset, respectively. Table 9 represents the execution time of the proposed 

and existing model in both datasets.  

Table 9: Execution time (Time in seconds) in UNSW-NB15 and ToN_IoT dataset 

UNSW-NB15 

 Data size 

Models 10000 20000 30000 40000 50000 60000 

EHIDS 0.63 1.43 2 2.96 3.17 4.15 

CF-OSELM-PRFF 0.8 1.94 3.16 3.45 3.91 4.24 

ABA-IDS 0.91 3.01 2.51 3.58 3.44 4 

ICNN-FCID 0.87 2.12 3.67 4.11 4.13 4.78 
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PROPOSED 0.45 1.24 2.29 2.78 3.58 3.57 

TON-IOT dataset 

Models 

Data size 

10000 20000 30000 40000 50000 60000 

EHIDS 0.73 1.05 1.65 2 2.57 3.25 

CF-OSELM-PRFF 0.86 2.01 3.18 3.5 3.95 4 

ABA-IDS 0.97 2.53 3.07 3.51 3.6 3.96 

ICNN-FCID 0.97 2.15 3.66 4.02 4.14 4.54 

PROPOSED 0.59 0.81 1.46 1.82 2.34 2.99 

 

 

(a) 

 

(b) 

Figure 12: Execution time comparison in UNSW-NB15 and ToN_IoT dataset 

In terms of accuracy, precision, recall, F1-score, and execution time, the proposed model has a clear advantage over 

existing models in both UNSW-NB15 and ToN_IoT datasets.  

V. CONCLUSION 

In the proposed intrusion detection architecture of this study, the three primary techniques are collecting data, pre-

processing and intrusion detection. Pre-processing is performed to reduce unnecessary information and improve 

quality through data normalization, reduction, cleaning and transformation. The Blockchain Assisted Deep Federated 

Learning (BC_DFL) intrusion detection system uses this pre-processed data as input. The federated learning-based 

Capsule Auto-Encoder (FL_CAE) framework learns the characteristics from the inputs and then uses them to identify 

intruders. Blockchain technology (BCTech) is used for storage purposes and also increases security as it eliminates 

the risk of adversarial nodes and individual server failure. This research uses UNSW-NB15 and ToN_IoT datasets 

for implementation and performance evaluation. In the results section, the proposed model is juxtaposed with existing 

models regarding metrics such as accuracy, precision, recall, F1 score, and execution time. The proposed model 

demonstrated an F1 score, recall, accuracy, and precision of 96.96%, 96.89%, 97.26%, and 97.28% respectively in 

the UNSW-NB15 dataset, and 95.74%, 99.54%, 99.49%, and 99.24% in the ToN_IoT dataset. The execution time of 

the proposed model amounts to 2.31 seconds in the UNSW-NB15 dataset and 1.66 seconds in the UNSW-NB15 

dataset. 

However, this research requires more storage space and hence the computational complexity issue is slightly 

enhanced. Thus, in the future, lightweight approaches will be used to solve the complexity issues. In addition, the 

research aims to develop an effective intrusion detection model to support compound learning models as well as a 

trust model to improve blockchain algorithms. Subsequent advancements may focus on combining BDFL with self-

governing security reaction methods. This could lessen the need for human participation in cyber-security incident 
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response by enabling systems to react automatically and in real-time to threats that are detected. Furthermore, there 

will be additional security issues when 5G networks are implemented in industrial environments. With its ability to 

adjust to the unique needs of 5G networks, BDFL can solve problems with edge computing, low-latency 

communication and a large number of linked devices. 
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