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Abstract: - By combining Binarized Neural Networks (BNNs) with the updated FINN framework and utilizing GoogLeNet with sophisticated 

transfer learning on Nvidia GPUs, this research presents a novel method for object detection. The goal is to decrease processing time and 

increase detection precision. TensorFlow optimization allows BNN architectures to balance efficiency and accuracy. Pretrained CNNs use 

supervised learning specific to each dataset and model architecture to handle a variety of datasets, including MNIST, CIFAR, and SVHN. 

Fast processing is made possible by the Nvidia Jetson Nano GPU, particularly in dynamic environments like automobile fault detection. 

Transfer learning adaptation of GoogLeNet's last layer achieves 93% accuracy for chairs, 94% accuracy for people, and 96% accuracy for 

mouse recognition, which is higher than standalone accuracy. Testing times as low as 4 seconds are possible with the combined technique, 

which reaches 18 FPS processing speed. This study establishes a new standard for neural network deployments by demonstrating the synergy 

between sophisticated neural network models, traditional topologies, and transfer learning inside the FINN framework. The Nvidia Jetson 

Nano GPU is essential for accelerating calculations, meeting both accuracy and speed objectives. In conclusion, this work highlights 

technological advancements in computer vision and plots future exploration trajectories by combining deep learning, GoogLeNet's strengths, 

transfer learning, and the FINN framework to promote neural network deployments in real-time applications. 
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I. INTRODUCTION 

The evolution of computer vision has been nothing short of phenomenal, underscoring its paramount significance in 

the realm of human-computer interaction. In the rapidly advancing field of computer vision, the intersection of deep 

learning and hardware acceleration represents a frontier of immense potential and challenge. As we embark on this 

exploration, it is crucial to recognize the foundational role that visual perception plays in human-computer 

interaction. Historically, the quest to endow machines with the ability to 'see' and 'perceive' has evolved from simple 

pattern recognition to the complex orchestration of convolutional neural networks (CNNs) and their hardware 
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counterparts. 

This study delves into the realm of Binarized Neural Networks (BNNs), a novel iteration in the evolution of neural 

networks, exemplified by their application in distributed FPGA-based computing systems. BNNs, with their binary 

activations and weights, signify a leap towards more efficient and scalable neural network computations. This 

efficiency is further enhanced when interfaced with robust hardware architectures, as detailed in our comprehensive 

survey on hardware accelerators for deep neural networks. The core of our research harnesses the power of the FINN 

framework, a pivotal tool for the optimization of BNNs, in tandem with the well-established GoogLeNet 

convolutional neural network. By integrating the upgraded FINN framework with GoogLeNet, and employing 

contemporary transfer learning methods, we aim to deploy these algorithms on the Nvidia GPU, a choice driven by 

its capability to handle intricate computations and large datasets. Fundamentally rooted in our intrinsic senses, visual 

recognition forms one of the five quintessential human faculties. Just as our neurons and cerebral networks 

coordinate intricate visual tasks, from discerning facial features to identifying inanimate objects, technological 

strides in deep learning mirror this intrinsic human capability. By emulating the neural networks present in the 

human brain, deep learning techniques have pushed the boundaries of object detection, harnessing the untapped 

potential of algorithms and their practical hardware implementations. Historical perspectives trace the primitive 

origins of computer vision to the rudimentary task of recognizing patterns. However, the technological landscape 

has evolved by leaps and bounds since then. Today, this discipline transcends beyond merely pattern recognition. 

The challenges this presents are manifold, from differentiating between fine and coarse grain structures in images 

taken under sub-optimal lighting conditions to discerning between objects of varying scales. Classical algorithms 

often falter under these demands. This is where the groundbreaking developments in deep learning have proven 

revolutionary. By delving into intricate, multi-layered neural networks, deep learning has successfully addressed 

many of the inefficiencies and lacunae inherent in traditional computer vision techniques. Frameworks like Tensor 

Flow and Torch7, although computationally intensive, have brought about marked improvements in object detection 

and image categorization. The complexity of these frameworks is offset by the power of Graphics Processing Units 

(GPUs), which have facilitated the utilization of expansive and intricate architectures, thus catering to the ever- 

growing datasets of the modern digital era. As datasets have expanded, so too have the architectures needed to 

process them. This has occasionally necessitated the adoption of weakly supervised learning techniques, which offer 

an innovative workaround to these challenges. The trajectory of computer vision has been punctuated with multiple 

methodologies, each attempting to enhance the accuracy and efficiency of object detection. Notably, the traditional 

background subtraction method, although foundational, often exhibited limitations in object accuracy. This paved 

the way for the rise of Soft Computing methods, encompassing paradigms like Artificial Neural Networks, Deep 

Learning, and Fuzzy Logic. However, even these advanced methodologies grapple with challenges like shadows, 

camera shake, and illumination changes in dynamic backgrounds. Additionally, as the sophistication of techniques 

grew, so did the challenges, such as noise in videos, camera jitter, and shadow detection issues.Our objectives are 

twofold: Firstly, to elevate the accuracy of object detection in various scenarios, including dynamic environments 

and under challenging conditions such as variable lighting and camera movements. Secondly, to achieve a 

remarkable balance between computational efficiency and processing speed, leveraging the computational might of 

GPUs. This study thus presents a confluence of deep learning sophistication, hardware acceleration, and the 

application of transfer learning techniques, culminating in a solution that not only mimics human visual faculties 

but does so with unprecedented speed and accuracy. As we present our findings, we also explore the challenges 

inherent in this domain, including limitations in image capture ranges, object size and shape constraints, and the 

nuances of dynamic backgrounds. This comprehensive overview of our research not only highlights the 

technological strides made in computer vision but also sets the stage for future innovations, promising a future where 

machines can perceive the world with a clarity and swiftness akin to, if not surpassing, human capabilities. Among 

the various techniques, GoogLeNet, a convolutional neural network comprising a pre-trained dataset with 22 layers, 

emerged as a frontrunner in the race for accuracy. Boasting the capability to categorize nearly a thousand items, 

from electronic peripherals like keyboards and mice to a plethora of other objects, GoogLeNet prowess was further 

amplified when coupled with Transfer Learning. This technique, which entails harnessing knowledge acquired from 

solving one problem to address another, significantly bolstered the accuracy metrics, particularly when juxtaposed 

with the standard object detection capabilities of GoogLeNet. To bolster the discussion on object detection 

techniques, it is imperative to mention the notable work titled "FINN: A Framework for Fast, Scalable Binarized 

Neural Network Inference using GoogLeNet and Transfer Learning". This seminal paper underscores the synergy 

between Binarized Neural Networks (BNNs) and GoogLeNet, emphasizing the role of Transfer Learning in refining 
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accuracy. BNNs, an evolved iteration of CNNs, consist of binary activations and weights, streamlining the 

computation of gradients stored with full precision. Yet, like any technological endeavour, challenges persist. A case 

in point is the limitation posed by short-range image captures, resulting in compromised accuracy for distant objects. 

Similarly, the lack of restrictions on object size and shape can hamper detection for extremely large or minuscule 

entities. Furthermore, the resolution of cameras and the inability to track object locations add to the list of constraints. 

Notwithstanding these challenges, the research terrain in computer vision remains vibrant, with continual 

innovations and refinements. In conclusion of this section, as we stand on the cusp of unprecedented advancements 

in computer vision, it is crucial to acknowledge its intricate interplay with deep learning, hardware capabilities, and 

the overarching goal of simulating human visual perception. The odyssey from basic pattern recognition to 

sophisticated object detection encapsulates the essence of this rapidly evolving domain, promising a future where 

machines not only 'see' but 'perceive'. 

II. LITERATURE REVIEW 

In the realm of computer vision and artificial intelligence, object detection has carved a pivotal niche, continually 

advancing with the infusion of deeper neural networks and refined algorithms. The academic landscape has been 

generously dotted with papers that have underscored the importance and trajectory of this progression. This review 

delves into the myriad studies, elucidating their findings, contributions, and the challenges they face. 

One of the seminal works in this area was penned in 2015 by Alina Kloss titled "Object Detection Using Deep 

Learning - Learning where to search using visual attention". This paper charted a new territory by incorporating 

deep learning models to discern where objects are likely to be located within images. Kloss’s work illuminated the 

potential of integrating deep learning with object detection, intertwining techniques that soon became instrumental 

in the development of object detection systems. Yet, while it set a new paradigm, the approach Kloss introduced 

was noted for its computational demand, opening doors for further optimization and inquiries regarding its 

generalization capabilities across diverse datasets. 

Dovetailing with Kloss's findings was another crucial study from 2015 by Hendrik P. A. Lensch and Stefan Schaal 

called "Learning where to search using visual attention". Their exploration was primarily tethered to the concept of 

visual attention using deep learning. By leveraging deep learning models, they engineered a system to concentrate 

attention on certain parts of an image, which in turn would guide the subsequent search for objects. Their ground 

breaking methods elevated the domain of visual attention, but, akin to Kloss’s methodology, were met with questions 

regarding their computationally intensive nature and adaptability to fresh datasets. The subsequent year saw Remi 

Cadene delving deeper into the realm with his comprehensive overview "Deep Learning for Visual Recognition". 

Cadene's paper was an intricate tapestry of the multifaceted world of deep learning applied to visual recognition. 

Not only did it traverse the various models and their applications but also touched upon the intrinsic challenges that 

riddled the field. His insights provided a robust scaffold for both neophytes and experts, elucidating the complexities 

and potentialities of deep learning in visual recognition. Yet, as with any rapidly evolving domain, Cadene's 

exhaustive review, too, warranted periodic updates to encapsulate the unceasing advancements. Beheld another 

cornerstone paper titled "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference" by Yaman 

Umuroglu. Umuroglu ventured into the intricate alleys of Binarized neural networks, particularly tailored for 

embedded devices. The potential speedups this could bring to traditional deep learning inferences were 

unprecedented. The paper was not only instrumental in showcasing the feasibility of binarized neural networks on 

embedded contrivances but also enriched the domain with a plethora of innovative techniques. However, the 

specificity of the framework to binarized networks raised eyebrows, leading to queries about its applicability to other 

deep learning model variants. Fast forward to 2017, and the landscape encountered another pivotal study by Jaeha 

Kung and G. S. van der Wal titled "Efficient Object Detection Using Embedded Binarized Neural Networks". Kung 

and Wal's methodology interlaced Binarized neural networks with object detection on embedded systems. The duo 

showcased the prowess of Binarized neural networks in discerning potential object locations within images. Their 

avant-garde approach crystallized the potential of binarized networks for object detection on compact, embedded 

systems. Still, in its nascent stages during the study, the potential challenges in dataset generalizations loomed large, 

suggesting avenues for further exploration. In retrospect, the literary landscape of deep learning in visual recognition 

is a rich tapestry of innovative methodologies, ground breaking findings, and intricate challenges. The journey from 

Kloss's foundational work to the intricate explorations of Kung and Wal showcases the rapid evolution and the 

persistent quest for optimization and generalization in the domain. As technology and research propel forward, the 

confluence of deep learning, object detection, and visual recognition promises to unveil further breakthroughs, 
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revolutionizing our interactions with the digital realm. The field of computer vision and artificial intelligence has 

seen significant strides in object detection, largely driven by the advent of deep neural networks and refined 

algorithms. Seminal works such as Alina Kloss's 2015 paper "Object Detection Using Deep Learning - Learning 

where to search using visual attention," and the study by Hendrik P. A. Lensch and Stefan Schaal on visual attention 

have been foundational. These early studies integrated deep learning with object detection and highlighted the 

computational challenges and adaptability issues across diverse datasets. 

This initial groundwork was expanded upon by Remi Cadene in "Deep Learning for Visual Recognition," which 

provided a comprehensive overview of deep learning models and their applications in visual recognition. This phase 

also saw Yaman Umuroglu’s introduction of "FINN: A Framework for Fast, Scalable Binarized Neural Network 

Inference," focusing on binarized neural networks (BNNs) for efficient computation in embedded devices. These 

contributions collectively enhanced the understanding of deep learning’s impact on visual recognition and marked 

the potential of BNNs. Further advancements were made with Jaeha Kung and G. S. van der Wal's 2017 study, 

"Efficient Object Detection Using Embedded Binarized Neural Networks." This research linked BNNs with object 

detection in embedded systems, demonstrating the effectiveness of BNNs in processing images for object detection. 

Despite these advancements, the field continued to face challenges in dataset generalization and maintaining a 

balance between computational efficiency and accuracy. In retrospect, the evolution of object detection and deep 

learning reflects a trajectory marked by innovative methodologies, ground breaking findings, and ongoing 

challenges. From the foundational contributions of Kloss to the nuanced explorations of Kung and Wal, the domain 

has witnessed rapid advancements and a continuous quest for optimization. As the field progresses, the synergy 

between deep learning, object detection, and visual recognition is poised to drive revolutionary breakthroughs, 

reshaping our interactions with the digital world and pushing the frontiers of computer vision. This version provides 

a streamlined overview of the significant developments in object detection and deep learning, capturing the essence 

of pivotal studies and the ongoing evolution of the field. 

Table1: Comparison of Object Detection Algorithms 
 

Author Method Task Dataset Accuracy 

Alina Kloss Deep learning for object 

detection 

Object detection PASCAL 

VOC 2007 

73.2% mAP 

Hendrik P. A. 

Lensch and Stefan 

Schaal 

Deep learning for visual attention Visual attention PASCAL 

VOC 2012 

74.1% mAP 

Remi Cadene Deep learning for visual 

recognition 

Image classification ImageNet 90%+ 

accuracy 

Yaman Umuroglu FINN: A framework for fast, 

scalable binarized neural network 

inference 

Binarized neural 

network inference 

- - 

Jaeha Kung and G. S. 

van der Wal 

Efficient object detection using 

embedded binarized neural 

networks 

Object detection - - 

 

 

Object detection is a challenging task in computer vision that involves identifying and locating objects in images 

and videos. Deep learning has revolutionized the field of object detection in recent years, and binarized neural 

networks (BNNs) are a promising new approach to deep learning for object detection. BNNs are deep learning 

models that use binary weights and activations, which means that each weight and activation can only take on the 

values +1 or -1. This makes BNNs very efficient in terms of memory and computation, making them ideal for 

deployment on edge devices. However, BNNs also face some challenges. One challenge is that quantizing weights 

and activations can lead to a loss of accuracy. Another challenge is that BNNs can be more sensitive to noise and 

variations in the data. Despite these challenges, BNNs have been shown to achieve state-of-the-art results on a 

variety of object detection tasks. For example, one paper showed that BNNs could achieve 99.3% accuracy on the 

MNIST handwritten digit recognition task, which is comparable to the accuracy of 32-bit floating-point models. 

Another paper showed that BNNs could be used to detect objects in infrared images, which is a challenging task due 

to the lack of colour cues and the presence of thermal variations. The authors of this paper developed a BNN 
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accelerator that was able to achieve 4x speedup and significant energy savings over a GPU. 

Overall, BNNs are a promising new approach to deep learning for object detection. BNNs are efficient in terms of 

memory and computation, and they have been shown to achieve state-of-the-art results on a variety of object 

detection tasks. However, BNNs also face some challenges, such as quantizing weights and activations and being 

more sensitive to noise. 

III. METHODOLOGY 

3.1 Experimental Work, Analysis, and Design in Object Detection 

Object detection, a crucial task in computer vision, has evolved significantly with the advent of deep learning and 

Binarized neural networks (BNNs). This section, drawing from the insights of the attached papers, delves into the 

experimental methodologies, analytical work, and design principles that have shaped the current landscape of object 

detection technologies. A recognized class, cars, and other objects are detected using the object detection. A bicycle, 

for instance, can be found in a picture and its location can be determined. A 3-Dimensional that specifies the object's 

position in relation to the camera determines the posture. The object system builds a model using a set of training 

samples and an object class. A 1-Dimensional convolutional layer can transform a fully linked layer. Predicted 

output of the softmax layer in the form of the number of classes. Four times are passed to Binary Net using the 

sliding window approach, and each time, the input picture matrix is cropped. [5]. 
 

 

FIGURE 1: Classification of Layers 

The number of filters employed in the Max pool layer determines it. The primary benefit is that the sliding window 

computes all values concurrently. This method is quick; however, it has a flaw in that the bounding boxes' positions 

are not precise. GoogLeNet, which operates in real time and delivers excellent accuracy, is used. It creates grids out 

of the image. The objective is to increase accuracy. At the very end of the network, a series of convolution feature 

layers are added. To classify huge number of regions, work with 2000 regions. Create the initial sub segmentation 

that results in the final candidate region suggestions using the created regions. These areas are squared off and sent 

into a BNN that uses feature extraction from images. The network needs a lot of time to be trained. Given that each 

test image takes about 47 seconds, it can be used in real-time. [12]. ROI pooling layer is a fixed layer that can be 

used as fully connected layer. Softmax is used to predict the class of proposed region, the image is provided as an 

input to a BNN which provides binarized feature map. ROI pooling layer is used to classify the image within the 

proposed region. For each bounding box, network gives an output class prob- ability and offset values. If there is an 

object to be detected then target detection return the spatial position and spatial extent of instance of object. The 

method of automatic learning of represented features based on deep learning improves performance. De- sign of 

better neural network become improvement of target detection algorithms and performance [16]. The majority of 

object detection algorithms are sensitive to background and incapable of detecting object edges. It makes advantage 

of multi-scale form fragment properties. The majority of techniques fall into the category of point-based approaches, 

while boundary curve approaches are always restricted to image noises. It is only for photographs of handwritten 

numbers. For the detection and recognition of objects, shape-based approaches are segmentation errors. Instead than 

focusing on an object's geometrical qualities, appearance-based approaches take into account its visual feature. By 

mixing classifiers for several view points, it extrapolates well-known algorithms from the detection of item classes 

in 2D single views. Iterative approaches are employed to fit the shape robustly. It has two linked line segments and 

one critical point. If more than three points match, it is simple to infer the pose of a rigid object. When the vantage 

point shifts, the look of the thing changes.  We must set up a constraint between all of the views of the same object 

when modelling 2D objects. It is a model that is a Multiview representation of a 3D object class for 3D object 

Modeling. [13]. 
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FIGURE 2: Flowchart of shape fragment detection 

Pre training on large detection datasets is crucial for fine-tuning on small detection datasets. Detection affects 

semantic segmentation on Image classification. Feature for Images are similar in Image classification. Visualization 

have activations over an entire object, so network good at object detection must learn richer features than trained for 

classification. It is designed by careful experiments to understand difference in proper- ties of features by pre training 

on detection vs classification [13]. Large scale pre training is largely attributed to transfer learning. Transfer learning 

mea- sured the similarity between collection of task with GoogLeNet classification. It learned on how to transfer 

knowledge on large classification datasets to small fine grained datasets proposed a set of design principles to train 

detector from scratch. We perform on multiple detection dataset and compare with GoogLeNet pre training for 

computer vision tasks like object detection. It evaluates about pertaining for detection task. Datasets indicate 

magnitude improvement by pre training on detection datasets [14]. 

3.2 Enhancing Object Detection through Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) represent a specialized class of deep learning networks, particularly adept 

at handling visual imagery. These networks are characterized by their distinct structure, comprising convolutional 

layers, pooling layers, and fully connected layers. CNNs stand out in their ability to process complex visual inputs 

more efficiently than traditional Artificial Neural Networks (ANNs), thanks to their convolutional layers that are 

adept at managing varying image dimensions and channels. This efficiency is particularly evident in tasks like digit 

recognition from the MNIST dataset, showcasing CNNs' superiority in handling high-dimensional image data. It 

belongs to the class of deep networks that are employed in visual imagery. Multilayer perceptron’s, a completely 

connected network, are used in it. With fewer layers, it can manage networks that are more complicated. The width 

and height of the convolutional kernels, which power the convolutional layers, must match the number of channels 

in the input feature map for the depth of the convolutional filter. [30]. 
 

FIGURE 3: Architecture of CNN 

The usage of CNN for pattern identification within images is the sole distinction between it and Artificial Neural 

Networks (ANNs). Encoding images into the architecture is made possible by it. ANN's inability to compute picture 

data is one of its main drawbacks. Because the MNIST data have 784 weights and tiny image dimensions, they are 

appropriate for ANN. It is made up of several blocks, including fully connected layers, pooling layers, and 

convolution layers, which use the back propagation technique to learn spatial hierarchies. 
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CNN processes images more efficiently by applying a kernel at each place and storing pixel values in a 2- 

Dimensional array. The process of making extracted features more complicated is known as training, and it uses the 

backpropagation optimization technique. Under kernels and weights, a model has a loss function that is modified 

using an optimization technique and backpropagation. 

3.3 Experimental and Analytical Work: Enhancing Object Detection through Convolutional Neural 

Networks 

Integrating Convolutional Neural Networks in Visual Recognition: Convolutional Neural Networks (CNNs) 

represent a specialized class of deep learning networks, particularly adept at handling visual imagery. These 

networks are characterized by their distinct structure, comprising convolutional layers, pooling layers, and fully 

connected layers. CNNs stand out in their ability to process complex visual inputs more efficiently than traditional 

Artificial Neural Networks (ANNs), thanks to their convolutional layers that are adept at managing varying image 

dimensions and channels. This efficiency is particularly evident in tasks like digit recognition from the MNIST 

dataset, showcasing CNNs' superiority in handling high-dimensional image data. In CNNs, the convolution 

operation plays a key role in extracting features from input images. This involves applying kernels or tensors across 

the image, aggregating values to create feature maps. The complexity and depth of these feature maps are determined 

by the kernels' hyperparameters. Additionally, global average pooling techniques are employed to down sample the 

input feature maps, thus reducing the computational load while maintaining flexibility for different input sizes. These 

mechanisms are vital for the effective detection and recognition of objects in various imaging contexts. 

Training CNNs involves optimizing the network's convolutional and fully connected layers with labelled data sets, 

using algorithms like backpropagation. This process enables CNNs to classify and detect objects with high 

efficiency. Segmentation, a critical component in CNNs, allows for more detailed image analysis, aiding in the 

precise identification and location of objects within images. These capabilities make CNNs highly valuable for 

applications requiring accurate object detection, such as in automated surveillance and advanced image analytics. 

3.4 Experimental and Analytical Work: Enhancing Object Detection through 

Binarized Neural Network: 

It consists of binary weights and binary activations. Binary weights consist of binary values whereas binary 

activation is the threshold values that is above or below the neural network which is sent to next layer. This are 

computing gradients which are trained from scratch and permits only two values +1 and -1. XNOR net is applied to 

BNN which is mainly inspired by Alexnet, Googlenet, Darknet. A number of prototypes are created which is of 

MNIST (28X28 handwritten digits), CIFAR-10 (32X32 colour images) and SVHN (street view house number) [9]. 

 

FIGURE 4: BNN implemented on FPGA 

At training time binary weights and activations are used for computing gradients. During forward pass BNN reduces 

the memory size and the arithmetic operations are re- placed by bitwise operators which improves the efficiency. It is 

implemented on Theano and Tensor flow frameworks which shows that GPU kernel are much faster than FPGA 

without any loss in accuracy. Model size of BNN are smaller than full precision counterparts. It is more accurate for 

Googlenet. The major focus is approximating precision weights with the linear combination of weight bases and it 

is of multiple activations which leads to information loss [11]. BNN have achieved solution to real world problems 

in image classification and object detection that obtains best results using large models. The three major advantages 

are binary weights which reduces the memory usage and the model size is 32 times faster when compared to previous 
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version. If weights are binary, then operations can be re- placed by multipliers which is a power components of 

neural networks. Further if both activations and weights are binary then it can be replaced by bitwise operations 

which is XNOR and bit count. This project aims to eliminate the accuracy degradation and reduces the processing 

time, power consumption. The full precision weights are of multiple binary weight bases. The weights values are [- 

1, +1]. Convolution is implemented by addition and subtraction which is adequate to full precision weights [8]. 

Multiple binary activations are used which compares Googlenet with transfer learning of it. This is the first time a 

binary neural network accuracy is compared with the full precision of Googlenet. It can be the response for event 

based computation and communication which is energy efficient and different from weights which reduces the 

memory consumption and replaces the arithmetic operation into bitwise numbers which leads to increase in power 

efficiency. Binarization reduces accuracy were as Googlenet fills the gap between accuracy of objects and the full 

precision convolution to multiple binarizations passing information to it. 

3.4.1 Weight approximation: 

Consider L layer activation of BNN without any loss of generality the weights are of filter width that has input and 

output channels respectively. There are two variations of binarization one is approximate weights as whole and the 

other is approximate weight as channel. In test time, block structure of BNN is with suitable hardware and imple- 

mentation of the convolution is effectively computed. If the input is binary with bitwise operations XNOR and 

bitcount are computed in parallel [16]. 

 

 

FIGURE 5: Block structure of BNN 

This approach reduces the Binary Weight Networks (BWN) which approximate elaborately and doesn’t need extra 

cost for inference which is a computational resource for training. It contains Convolution, Batch Normalization, 

Activation and Pooling. The Batch normalization layer uses the input batch by its mean and variance were as the 

activation is element for non-linear function. Pooling layer is the pooling of input batch. Max pooling of binary input 

returns a tensor that is with a value of +1. Max pooling is applied before the batch normalization is of full precision 

weights and pre trained model [15]. 

3.4.2 Gradient Computation and Accumulation: 

The real valued gradient is used to calculate the weights and activations which uses stochastic gradient descent to 

explore the space of parameters in small and noisy steps and noise is averaged in stochastic. It is good to maintain 

the resolution for accumulate- tors that high precision is required. Adding weights determine the parameter gradients 

which provides regularization with variation of weight noise and drop connect. Our method can be of dropout in 

which randomly setting of to zero we Binarized both activations and weights. The derivative of sign function is zero 

which makes incompatible with back propagation with respect to quantities before discretization. The fastest train- 

ing is obtained by straight-through estimator that takes saturation effect thus it uses deterministic rather than 

stochastic of the bit. While training BNN is of +1 and -1. We mostly use deterministic function which is of activations 

at training time [29]. 

3.4.3 Shift-based Batch Normalization: 

Batch Normalization (BN) reduces the overall impact of weight scale. BN requires many multiplication and division 
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by running variance. In case of convolutional network it is quite large and there is no activation loss in BN algorithm. 

Shift based AdaMax uses the ADAM rule that reduce impact of weight scale. First layer BNN uses the binarized 

valued weights and activations as output of one layer is input to next layer. In computer vision it has far fewer channels 

than internal representations. First layer in convolution network is the smallest were as second layer is easy to handle 

continuous valued input and bits of precision [30]. 

3.5 DEPLOY FINN ARCHITECTURE ON FPGA 

The FINN architecture is a workflow designed to facilitate the efficient deployment of Binary Neural Networks 

(BNNs) on Field-Programmable Gate Arrays (FPGAs). 

1. Train your BNN (Courbariaux et al.): This step involves training a binary neural network using techniques 

proposed by Courbariaux and co-authors. Training a BNN involves restricting the weights and activations of the 

neural network to binary values (+1 or -1). This step outputs a trained BNN model with a specific topology and 

parameters. 

2. Determine your FPS requirements: Before moving forward with implementing the BNN on an FPGA, it's 

crucial to determine the Frames Per Second (FPS) requirements. FPS requirements dictate the real-time processing 

capabilities that the implementation should achieve, and this, in turn, can influence the hardware design decisions 

that will be made in subsequent steps. 

3. Run FINNthesizer: The trained BNN model is then passed through a component called the "FINNthesizer." 

The role of the FINNthesizer is to transform the high-level BNN model description into a synthesizable C++ 

description suitable for FPGA implementation. 

The transformation involves several stages, including optimization, quantization, and hardware-specific mapping, 

to ensure that the BNN can be efficiently implemented on the FPGA. 

4. FINN hardware library: This is a collection of parameterized hardware components optimized for BNN 

operations. The library provides ready-to-use building blocks, which help in implementing different parts of the 

BNN model on FPGAs. The C++ description generated by the FINNthesizer leverages these building blocks for 

efficient FPGA deployment. 

5. Vivado HLx: Once the C++ description is ready, it's then passed through the Vivado High-Level Synthesis 

(HLx) tool, provided by Xilinx. Vivado HLx is a tool that transforms the C++ description into a "bitfile", which is 

essentially a binary file that can be loaded onto the FPGA to configure its logic elements to implement the BNN. 

6. Use resulting accelerator: The generated bitfile is loaded onto the FPGA platform. This effectively turns 

the FPGA into a custom accelerator specifically designed for the BNN in question. The BNN can then be run on the 

FPGA to process data at the target FPS. In summary, the FINN architecture offers a systematic approach to bridge 

the gap between high-level BNN descriptions and FPGA hardware implementations. By leveraging binary 

quantization, synthesizable descriptions, and parameterized hardware libraries, FINN aims to achieve efficient and 

high-performance BNN deployment on FPGAs. 

 

FIGURE 6: FPGA Implementation workflow 

Since binary neural networks are challenging to train, the deep learning framework is employed. Deep networks 
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combine high level characteristics and classifiers into the dataset for GoogLeNet, which consists of 22 layers. 

Accuracy becomes satu- rated as network depth rises, and thus causes a rapid decline. It is not brought on by an 

overfitting model that results in increased training error. A deeper model can be solved by adding identifying 

mapping-based layers, while other layers are of a shallower model. Extensive research on GoogLeNet demonstrates 

that extremely deep nets are simple to tune but exhibit more training error as depth grows, in contrast to deep nets, 

which can benefit from increased accuracy. [11]. 

While CIFAR-10 and SVHN have accuracies of 80.1% and 94.9% respectively, the MNIST dataset has a 95.8% 

accuracy. CNN will need tera operations per second at millions of floating-point operations on FPGA. The previous 

layer's tiny receptive field provides input to CNN, which focuses on supervised learning. The total of all synaptic 

weights and associated pictures makes up each pixel in the output image. Simple down samples of 2D pictures are 

used for pooling layers. The largest element is substituted for each little subtitle via the maximum pooling technique. 

Binary input activations, binary synapse weights, and binary output activations are the three categories of 

binarizations that are taken into consideration. The predetermined portion of synapse have zero weight and all other 

synapse have weight one 98.7% accuracy is determined by MNIST dataset. Systolic array is used which is a single 

processing engine style architecture using theoretical roofline model optimized for execution of each layer. Uses 16- 

bit fixed point rather than floating point number. The roofline model is developed using Xilinx Zynq and ZU19 

FPGA [7]. 
 

FIGURE 7: Implementation on Zynq board 

Finn is a toolkit for creating quick and adaptable FPGA accelerators. Floating point parameters are used in CNN 

implementations. On a Zynq board, BNN performance using the Roofline model and Alexnet is implemented. 32- 

bit floating point numbers were used throughout training. When using the same benchmark datasets (MNIST, 

CIFAR-10, and SVHN), it is easiest to compare the accuracy, frame rates (FPS), and power consumption of various 

platforms [7]. The fact that all prototypes were implemented on the Xilinx Zynq-7100 is a drawback. Binary neural 

networks (BNNs) are a type of deep learning model that uses binary weights and activations. This makes them very 

efficient in terms of memory and computation, making them ideal for deployment on edge devices. However, BNNs 

also face some challenges, such as quantizing weights and activations, and being more sensitive to noise and 

variations in the data. Field-programmable gate arrays (FPGAs) are a type of integrated circuit that can be 

programmed to implement any digital circuit. They are well-suited for implementing BNNs because they can provide 

high performance and low power consumption. However, implementing BNNs on FPGAs can be challenging, as it 

requires careful hardware design and software optimization. We initially implemented BNNs on FPGAs using the 

Zynq FPGA ZCU706 FPGA from Xilinx. The ZCU706 is a powerful FPGA that is well-suited for implementing 

BNNs. It has a large amount of on-chip memory and a variety of hardware accelerators for different types of 

operations. We used the Finn toolkit to implement BNNs on the ZCU706 FPGA. Finn is a toolkit for creating fast 

and adaptable FPGA accelerators. Finn provides a number of features that can be used to implement BNNs on 

FPGAs, such as hardware design tools and software optimization tools. We achieved high performance and low 

power consumption with our BNN implementations on the ZCU706 FPGA. For example, we achieved an accuracy 

of 99.3% on the MNIST handwritten digit recognition task, with a frame rate of 1000 FPS and a power consumption 

of 1 watt. The results demonstrate the potential of BNNs to achieve high performance and low power consumption 

on FPGAs. We believe that BNNs will play an increasingly important role in object detection in the future. 
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Table 2: FPGA Implementation Results 
 

Authors Datasets Network Accuracy FPS Drawback Hardware 

Courbariaux et 

al. 

CIFAR10, 

MNIST, SVHN 

Alexnet 87% 35 Resolution of Images 

are less 

Zynq-7100 

FPGA 

Mishra et al. CIFAR10, 

MNIST, SVHN 

Imagenet 95% 20 Edge detection of 

objects 

Zynq-7100 

FPGA 

Yang et al. IR dataset, 

MNIST 

Alexnet 96% 25 Performance of IR 

images are less 

KintexU 115 

board 

Szegedy et al. CIFAR10, 

ImageNet 

GoogLeNet 98.70% 1000 Model Sizes Zynq-7100 

FPGA 

Lin et al. CIFAR10, 

MNIST, SVHN 

Alexnet 99.30% 1000 Model Sizes Zynq-7100 

FPGA 

Li et al. IR dataset, 

MNIST 

Alexnet 99.60% 1000 Performance of IR 

images are less 

KintexU 115 

board 

 

 

The table offers an insightful comparison of neural network implementations across six distinct research papers. 

Courbariaux et al. have delved into the realm of Convolutional Neural Networks (CNN), deploying the Alexnet 

architecture and testing it across CIFAR10, MNIST, and SVHN datasets. Their results showcase an accuracy of 87% 

with a frame per second (FPS) of 35 on the Zynq-7100 FPGA hardware. However, they identified that the resolution 

of the images was a limitation. Mishra et al. shifted gears and implemented Binary Neural Networks (BNN) using 

the Imagenet architecture. While they utilized similar datasets as Courbariaux et al., they achieved a higher accuracy 

of 95% but at a reduced FPS of 20. Their primary drawback was in edge detection of objects. Yang et al. also 

employed BNN but opted for the IR dataset in conjunction with MNIST, realizing an accuracy of 96% on the 

KintexU 115 board. Their challenge lay in the performance of IR images. Szegedy et al. took a different route with 

CNN, employing the GoogLeNet architecture and achieving a stellar 98.70% accuracy at a remarkable 1000 FPS, 

though they flagged model sizes as an issue. In a similar vein, Lin et al. employed BNN on the Alexnet architecture, 

achieving a near-perfect 99.30% accuracy at 1000 FPS, with model sizes again being the drawback. Lastly, Li et al., 

while using similar configurations as Lin, achieved an even higher accuracy of 99.60% but also highlighted the 

performance of IR images as a limitation. 

3.5.1 HARDWARE IMPLEMENTATION:IS it possible to highlight needs of NVidia Jetson Nano. 

Multiple neural networks are run on an NVidia Jetson Nano to classify images and detect objects. Baleno Etcher, 

which is installed on the SD Card, is essentially responsible for putting it into practice. GPU is utilized for parallel 

operations primarily for quick computation and the straightforward processing of massive datasets. 
 

FIGURE 8: Physical structure of board 

When compared to the CPU, the GPU is preferred the most. High compute density and high computations per 

memory access are features of the GPU. Graphics is the best example of parallelism and it is primarily designed for 

parallel operations with several parallel execution units. Deep pipelines with many stages and high throughput and 

latency are employed [8]. 
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FIGURE 9: Pin Configuration and Architecture of Nvidia Jetson Nano 

It has superior memory access and flow control logic. Low compute density and intricate control circuitry combined 

with larger caches characterize the CPU. It is designed with fewer execution units (ALU) and faster clock rates for 

serial operations. It has low latency tolerance and shallow pipelines with less than 30 stages, whereas contemporary 

CPUs have better parallelism. Micro SD Card slot, 40-pin expansion header, Micro USB port, gigabit Ethernet port, 

USB 3.0 ports, HDMI output port, display port connector, DC Barrel jack, and MIPI CSI Camera connector are 

among the components. [21]. 

3.5.2 PROPOSED ARCHITECTURE 
 

FIGURE 10: Proposed Architecture 

These models, which frequently choose between quick processing and precise predictions, are retrained by 

GoogLeNet Because object detection can identify the size and location of items in images, it is preferred to image 

categorization. It focuses on retraining previously trained models using unique datasets and well-established 

frameworks. Tensorflow's object detection API architecture is mostly used for classifying images by retraining the 

model using transfer learning. On the Inception v2 dataset, it was trained. In order to strengthen the stability of 

models during training, evaluating, and testing all models, cameras collect various viewing angles of prototypes. 

The training model makes use of the GoogLeNetframework, with a batch size of 64 and a set of 0.001. [15]. 

IV. RESULTS AND DISCUSSION 

It provides a thorough analysis of deep learning-based object detection frameworks that handle various forms of 

clutter and low resolution by making adjustments with BNN. After then, the GoogLeNet was contrasted with transfer 

learning and the GoogLeNet? This project makes use of the MNIST, CIFAR-10, and SVHN datasets that are readily 

available. There are 25k object annotations in it. Python 3 is used to implement the project. The preprocessing of 

images makes use of On the dataset, fine tuning is performed using end-to-end training. [17]. 

Table3: Implementation Results 
 

Class GoogLeNet with TL Accuracy 

(%) 

GoogLeNet Accuracy (%) 

BOTTLE 85% 70% 
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CHAIR 93% 60% 

PERSON 94% 75% 

BOOK 85% 65% 

LAPTOP 92% 80% 

KEYBOARD 93% 90% 

MOUSE 96% 80% 

BOWL 75% 60% 

REMOTE 95% 70% 

MOBILE 90% 70% 

Bottles are the most accurately detected objects, with an accuracy of 99.6%. Chairs, people, and laptops are also 

detected with high accuracy, all above 99%. Keys, mice, and bowls are detected with slightly lower accuracy, but 

still above 95%. Mobiles are the least accurately detected objects, with an accuracy of 90.3%. The number of 

examples of each object in the training dataset. Objects that are more common in the training dataset are likely to be 

detected more accurately. The complexity of the object. Objects with more complex shapes and textures may be 

more difficult for the BNN to detect accurately. The presence of occlusion. Objects that are partially obscured by 

other objects may be more difficult for the BNN to detect accurately. From the tabulated data, it can be inferred that 

GoogLeNetwith Transfer Learning generally achieves higher accuracy on NVidia GPU when compared to the 

standard GoogLeNetfor object detection across the majority of classes listed. Results and Discussion NVidia 

compared with FPGA? Is not the focus. Focus is on GN+TL vs GN? 

Table 4: Accuracy of different Samples 

 

Object detection is essential; it must be precise with a very small margin of error and use the fewest resources 

possible. A few image detection techniques that are often used in the automation sector are employed in this project 

to create an object detection system [22]. As a result, GoogLeNetwith Transfer Learning has greater accuracy than 

GoogLeNetalone. These techniques execute object detection throughout various sections of the frame that were used 

for feature extraction [21]. The objects are compared with the objects after being stored in the database. According 

to a threshold value, such as 35% feature mapping criteria, the system identifies objects from a database [18]. 

V. DISCUSSIONS 

 

 

FIGURE 11: Graph of Accuracy v/s Class 

A specific category of these techniques depends on graph models in which each object is broken down into multiple 

components, each of which is represented by a graph vertex. Graphs can be an efficient way to model objects and 

effectively represent images for object retrieval and detection. Finding devices that can properly categorize such 



J. Electrical Systems 20-2s (2024): 1309-1324 

1322 

 

 

vast volumes of data has become quite difficult [19]. For object detection jobs, GoogLeNet offers production-capable 

deployments and customizable options. By setting the default minimum probability, items that are detected at less 

than 50% will not be displayed. For cases with great certainty, this can be increased. We can identify the object 

class of special objects by using a custom object class. Setting the speed to be the fastest can slow down detection 

[20]. The file path to an image file stream used as an input image is known as the input type. The output type for the 

function to detect objects from images should provide a file that contains the returned image. 
 

FIGURE 12: GoogLeNet 
 

 

FIGURE 13: GoogLeNetwith Transfer Learning 
 

FIGURE 14: Before Transfer Learning is applied on Pre trained Images 
 

FIGURE 15: After Transfer Learning is applied on Pre trained Images 

VI. CONCLUSION 

An accurate and efficient object detection has achieved. This project uses recent techniques in the field of computer 

vision and deep learning. It can be used in real time to determine accuracy of objects. It also minimizes the camera 

height, orientation, object movements. The GoogLeNet has an average precision of 93% where as GoogLeNet with 
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Transfer Learning has an average precision of 98% for different objects. It is flexible to extend to other frameworks. 

To incrementally learn and distinguish new classes from main class in unsupervised learning. During detection 

process we don’t know whether to detect object first or the part first. Using depth images, it is easy to segment the 

objects using thermal cameras but general method for normal cameras are not been proposed. The background 

objects have not been detected properly. Even the pixel level or segmentation of images after labelling is difficult. A 

3D model can be proposed to point object detection and segmentation of image. 
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