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Abstract: - Federated learning has emerged as a promising paradigm for collaborative machine learning while preserving data privacy. 

However, concerns about data privacy remain significant, particularly in scenarios where sensitive information is involved. This paper reviews 

recent advancements in privacy-preserving techniques for federated learning from a machine learning perspective. It categorizes and analyses 

state-of-the-art approaches within a unified framework, highlighting their strengths, limitations, and potential applications. By providing 

insights into the landscape of privacy-preserving federated learning, this review aims to guide researchers and practitioners in developing 

robust and privacy-conscious machine learning solutions for collaborative environments. The paper concludes with future research directions 

to address ongoing challenges and further enhance the effectiveness and scalability of privacy-preserving federated learning. 

Keywords: Federated Learning, Privacy-Preserving Techniques, Machine Learning, Collaborative Learning, Data Privacy, 

Privacy Preservation. 

I. INTRODUCTION 

Federated learning has emerged as a promising paradigm for collaborative model training across decentralized data 

sources while preserving privacy. As data privacy becomes increasingly critical in the era of big data and machine 

learning, researchers have focused on advancing privacy-preserving techniques within the federated learning 

framework. In this paper, we review recent developments in privacy-preserving techniques for federated learning 

from a machine learning perspective. We explore methods such as differential privacy, secure multi-party 

computation (MPC), homomorphic encryption, and federated learning with encrypted data, highlighting their 

strengths and limitations. By addressing privacy concerns, these techniques pave the way for wider adoption of 

federated learning across diverse domains and applications. 

1.1 Overview of Federated Learning 

Federated learning is a decentralized machine learning paradigm where models are trained collaboratively across 

multiple devices or servers holding local data[1]. Federated learning preserves user privacy by enabling model 

training without sharing raw data, in contrast to typical centralised systems. Federated learning allows global model 

creation while maintaining data localization through iterative rounds of model distribution, local training, and 

parameter aggregation[2]. This strategy has gained popularity because it works well in industries where data 

confidentiality is crucial, including healthcare and finance, and where privacy is a concern. Federated learning is a 

potential approach for collaborative model training in dispersed environments, driven by ongoing developments in 

privacy-preserving methodologies, communication efficiency, and scalability. 

1.2 Importance of Privacy in Federated Learning 
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Privacy is paramount in federated learning due to its decentralized nature, where models are trained on distributed 

data sources without centralizing them. This strategy lessens worries about unauthorised access to private data and 

data privacy violations[3][4]. Federated learning protects privacy so that different parties can collaborate without 

risking the privacy of their data. This is especially important in sectors with strict data privacy laws, such healthcare, 

finance, and telecommunications. Additionally, maintaining privacy in federated learning builds participant 

confidence, which promotes wider adoption and collaboration in federated learning ecosystems[5][6]. In the end, 

federated learning that prioritises privacy makes sure that the advantages of cooperative model training are realised 

while upholding the rights of individuals to privacy and data sovereignty. 

1.3 Motivation for Privacy-Preserving Techniques 

In the era of big data, the proliferation of sensitive information across decentralized data sources has raised 

significant privacy concerns. Although federated learning has encouraging prospects for cooperative model training, 

it necessitates the exchange of model updates among dispersed devices by nature. Nevertheless, there is a chance 

that private data stored in local databases will be made public due to this update sharing. Privacy-preserving 

approaches in federated learning have attracted more interest as a reaction to this difficulty. These methods enable 

productive cooperation without jeopardising the privacy of individual data, thus resolving the competing objectives 

of model improvement & data privacy. Through the integration of differential privacy mechanisms, cryptographic 

protocols, and secure computation approaches, researchers endeavour to create resilient frameworks that preserve 

privacy guarantees without compromising model performance. These developments are driven by the need to protect 

sensitive data, build trust between stakeholders, and fulfil privacy rules. Additionally, they aim to fully realise the 

benefits of federated learning across several domains. 

II. BACKGROUND AND FUNDAMENTALS 

Privacy-preserving techniques in federated learning aim to reconcile the need for model improvement with the 

imperative of safeguarding sensitive data. In this endeavour, homomorphic encryption, differential privacy, and 

secure multi-party computation (MPC) are essential because they allow for cooperative model training while 

protecting the private of individual data[7]. Federated learning algorithms combine insights without disclosing raw 

data by operating on decentralised data sources. The combination of these methods with machine learning 

frameworks creates opportunities for the building of safe, scalable, and private models. To fully realise the benefits 

of federated learning across a wide range of application domains, it is imperative to comprehend the foundations of 

these methodologies. 

2.1 Overview of Machine Learning in Federated Learning 

In federated learning, machine learning takes a decentralised approach, training models on several devices or servers 

independently of one another's raw data. With its own data, each device or server trains a local model on its own; 

only model changes are sent to a central server for aggregation. This procedure protects data privacy and allows for 

cooperative model training[8]. Model initialization, distributed training algorithms, aggregation approaches, and 

privacy-preserving strategies including differential privacy, safe multi-party computation, and federated learning 

with encrypted data are examples of machine learning techniques used in federated learning. Federated learning 

faces difficulties due to data source heterogeneity and dispersal, communication limitations, and privacy 

issues[9][10]. Research focuses on developing efficient algorithms, privacy-enhancing techniques, and robust 

federated learning frameworks to address these challenges and unlock the potential of decentralized machine 

learning at scale. 

2.2 Privacy Threats in Federated Learning 

Privacy threats in federated learning arise primarily due to the decentralized nature of the process, where sensitive 

data remains on local devices. These threats include: 

• Data Leakage: Adversaries may deduce private information from gradients during model changes, 

resulting in unintentional data leakage. 

• Membership Inference Attacks: To compromise user privacy, malicious groups may try to ascertain 

whether a specific data sample was used during the training process. 
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• Model Inversion: By using model changes, attackers can reconstitute specific data samples and expose 

private user information. 

• Model Poisoning: When adversaries modify the global model by injecting malicious data or gradients, 

they may jeopardise its functionality or expose private patterns. 

• Model Stealing: By using information leaked via model updates, attackers can copy or reverse-engineer 

the global model, jeopardising user privacy and intellectual property. 

• Communication Privacy: Model changes may be exposed over unencrypted communication channels, 

making it possible for adversaries to intercept and alter them. 

• Violations of Differential Privacy: When aggregating model updates, insufficient methods for differential 

privacy may cause inadvertent information leaks. 

• Sybil Attacks: To affect the federated learning process, malicious entities may fabricate numerous false 

identities, jeopardising the model's confidentiality and integrity. 

2.3 Legal and Ethical Considerations 

Legal and ethical considerations play a pivotal role in the development and deployment of privacy-preserving 

techniques in federated learning. Securing user privacy and upholding confidence in federated learning systems 

require adherence to data protection laws including GDPR, CCPA, and HIPAA. Concerns of permission, openness, 

and justice in data gathering, model training, and inference are all included in the ethical framework[11][12]. It's 

critical to strike a balance between data utility and privacy preservation, which calls for rigorous federated learning 

algorithm design and implementation. Crucial ethical problems also include resolving any biases in decentralised 

data sources and reducing the possibility of inadvertently disclosing sensitive information. To encourage the ethical 

and responsible use of federated learning technologies, it is imperative to establish explicit criteria for data sharing, 

access management, and accountability measures. Collaboration between legal experts, ethicists, and machine 

learning practitioners is essential to navigate the complex landscape of legal and ethical challenges in federated 

learning effectively. 

III. LITERATURE SURVEY 

The study[13] proposed privacy-preserving Federated Learning (FL) framework integrates bitwise quantization, 

local differential privacy (LDP), and feature hashing to address privacy concerns when training machine learning 

models on sensitive local data. The approach uses randomized-response algorithms and quantizes local model 

updates to maintain privacy while enabling collaborative model training across edge devices. The system, which 

places special emphasis on natural language data, balances resource needs and privacy issues by using rolling-hash-

based representation for client-side text input. The framework's viability for private language processing on edge 

devices is demonstrated by evaluation on sentiment analysis and rating prediction tasks using the MovieLens and 

IMDB Movie Reviews datasets, respectively. This is achieved without requiring resource-intensive language models 

or jeopardising client data privacy. 

The study[14] offers promising innovations for various fields, including healthcare. Nonetheless, managing 

substantial volumes of private medical data presents several security and privacy issues. Federated learning presents 

itself as a viable remedy, allowing machine learning models to be trained without requiring the exchange of raw 

data. With this distributed learning strategy, data privacy is maintained while allowing various devices or servers to 

participate in the model training process. Prototypes utilising federated learning techniques have demonstrated 

encouraging outcomes, maintaining data secrecy while delivering dependable performance. An overview of the 

literature on federated learning in healthcare is given in this study, with a focus on the technology's uses, difficulties, 

consequences, and opportunities for improving healthcare analytics and decision-making while protecting patient 

privacy. 

The study[15] investigate Federated Learning, a burgeoning field aimed at training complex models while 

preserving data privacy. They recognise the potential benefits of combining data from various sources for model 

training, but they also stress the significance of safeguarding sensitive data, such as medical information. This 

problem is addressed by federated learning, which preserves data privacy by enabling model training among 

decentralised entities without requiring the sharing of raw data. Six major global areas of focus within the Federated 

Learning research field are identified by the study through an analysis of co-words networks derived from a 

comprehensive corpus of 2444 documents obtained from Web of Science: telecommunications, privacy and security, 
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computer architecture and data modelling, machine learning, and applications. This analysis offers insightful 

information about the main ideas and areas of interest guiding federated learning research. 

The study[16] presents recent advancements in privacy-preserving AI techniques applied to biomedicine, aiming to 

address concerns regarding the privacy of individual participants when training AI models on sensitive data. It offers 

a structured overview that assesses the advantages, drawbacks, and unresolved issues of cutting-edge methods by 

classifying them under a single taxonomy. The goal is to provide researchers and practitioners with the tools they 

need to successfully navigate the terrain of privacy-preserving AI techniques, promoting cooperative research and 

scientific advancement in the field of biomedicine while protecting individuals' privacy. The paper adds to the 

continuing attempts to create reliable and privacy-aware AI solutions in the biomedical area with this thorough 

analysis. 

The study[17] focused in recent years, with the rise of Machine Learning (ML) applications, ensuring data privacy 

and security has become imperative. Federated Learning (FL), which enables distributed learning without requiring 

raw data exchange, has come to light as a potential remedy for privacy issues. However, because model parameters 

are exchanged, traditional FL techniques still carry the danger of privacy breaches. This essay examines the most 

recent FL privacy-preserving methods and how well they comply with GDPR laws. It examines obstacles and 

potential solutions for FL systems to fully comply with GDPR, highlighting the necessity of strong privacy 

protections in machine learning-based applications. 

IV. PRIVACY-PRESERVING TECHNIQUES OVERVIEW 

Privacy-preserving techniques in federated learning aim to protect sensitive data while enabling collaborative model 

training across decentralized sources. Diverse methods, including homomorphic encryption, secure multi-party 

computation (MPC), federated learning with encrypted data, and federated learning with trusted execution 

environments (TEEs), are included in this category. Differential privacy makes sure that each participant's privacy 

is protected when they contribute data, while MPC allows for secure computing without disclosing raw data. 

Computations can be done on encrypted data without having to first decrypt it thanks to homomorphic encryption. 

By encrypting data or carrying out calculations in secure settings, federated learning with encrypted data and TEEs 

adds extra security layers. All these methods work together to guarantee the confidentiality of sensitive data during 

the federated learning process. 

4.1 Differential Privacy- 

Differential privacy is a privacy-preserving concept that ensures that the presence or absence of any single data 

point in a dataset does not significantly affect the outcome of queries or computations. It provides a strong 

mathematical guarantee of privacy by adding carefully calibrated noise to query responses or statistical 

computations. 

The working principle of differential privacy involves the following key concepts: 

Sensitivity: Sensitivity is the highest degree to which the addition or deletion of a single data point from the dataset 

can alter the result of a function or query. Stated differently, it quantifies the extent to which an individual's data can 

impact the outcome. Sensitive information regarding specific data points is less likely to be leaked by functions with 

limited sensitivity. 

Randomised Response: Before processing the data, noise is added using the randomised response approach. To 

maintain privacy and enable the extraction of valuable information, it entails carefully introducing randomization 

to the data. Due to the randomization procedure, individual dataset contributions are hidden, aiding in the 

achievement of differential privacy guarantees. 

Epsilon (ε)-Differential Privacy: A formal definition of epsilon (ε)-differential privacy measures the degree of 

privacy protection offered by a differentially private algorithm. The maximum permitted difference between the 

probabilities of two outputs (or outcomes) when one data point is added or removed from the dataset is measured 

by this technique. A lower value of ε denotes more robust privacy protection, but the data analysis's usefulness or 

accuracy may suffer as a result. 
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Composition Principle: According to the composition theorem, total privacy protection can be achieved by 

combining the privacy guarantees of several differentially private operations. It permits the creation of privacy 

budgets, allowing several privacy-preserving actions to be carried out one after the other while guaranteeing that 

the total amount of privacy loss stays within reasonable limitations. 

Differential privacy can be used in federated learning to safeguard the privacy of individual data contributions made 

by clients or devices that are involved. Federated learning systems can offer robust privacy assurances and 

facilitating efficient model training across decentralised data sources by incorporating precisely calibrated noise into 

the model updates or aggregated outcomes. In federated learning contexts, differential privacy strategies are 

essential for protecting the integrity, privacy, and confidentiality of sensitive data. This helps to ensure that privacy-

preserving machine learning technologies are widely adopted. 

4.2 Secure Multi-Party Computation (MPC)- 

Secure Multi-Party Computation (MPC) is a cryptographic technique that allows multiple parties to jointly compute 

a function over their inputs while keeping those inputs private. In the context of federated learning, MPC enables 

participants to collaborate on model training without revealing their raw data to each other or to a central server. 

The following steps are included in the MPC operating principle: 

Setup: To begin, all involved parties decide on a shared security parameter and carry out a setup stage to set up the 

required cryptographic keys and protocols. 

Input Sharing: Using cryptographic techniques like secret sharing, each participant encrypts their input data in 

private. By doing this step, you can make sure that nobody has access to all the input data. 

Computation: Using their encrypted data sharing, parties cooperatively carry out computations. To be more precise, 

they carry out cryptographic methods that allow them to calculate the required function across their shares without 

disclosing the raw data. 

Output Reconstruction: Following computing, participants collaboratively recreate the function's output while 

keeping their individual inputs a secret. 

Since no party ever learns anything about other parties' inputs other than what can be deduced from the result, MPC 

guarantees privacy by design. Because of this, it is an effective method for protecting privacy in federated learning 

environments where maintaining data secrecy is crucial. 

MPC can be used to securely carry out tasks across several parties in the context of federated learning, such as 

model aggregation, gradient calculation, and parameter changes. Federated learning systems can reduce the danger 

of data breaches or privacy violations by using MPC to guarantee that sensitive data is encrypted during the training 

process. 

4.3 Homomorphic Encryption- 

Using homomorphic encryption, calculations on encrypted data can be carried out in a way that ensures the 

outcomes match those of similar calculations done on unencrypted data. Put otherwise, it makes it possible to do 

operations like addition and multiplication on ciphertexts, or encrypted data, resulting in ciphertexts that, upon 

decryption, produce the same outcome as if the operations had been carried out on the plaintext, or unencrypted 

data. 

Three key elements are involved in the operation of homomorphic encryption: decryption, computation, and 

encryption. 

Encryption: Before sending their data to a server for processing, the data owner encrypts it at this phase using a 

homomorphic encryption algorithm. Using a public encryption key, the encryption process transforms plaintext data 

into ciphertext. 

Computation: The server can carry out calculations on the ciphertext without being aware of the plaintext once the 

data has been encrypted. The anonymity of the data is preserved during these computations thanks to the 



J. Electrical Systems 20-2s (2024): 1075-1088 

1080 

homomorphic encryption approach. The server can work directly on the ciphertext, for instance, if it must do 

addition or multiplication. 

Decryption: The encrypted results are sent back to the data owner by the server after the calculations are finished. 

The final output can then be obtained by the data owner by employing a secret decryption key to decrypt the results. 

Based on the kinds of operations they allow, homomorphic encryption schemes can be divided into two groups: 

fully homomorphic encryption, which supports both addition and multiplication operations, and partially 

homomorphic encryption, which supports only addition operations. Although very strong, fully homomorphic 

encryption frequently has more computing cost. 

Homomorphic encryption can be used in federated learning to preserve the privacy of individual data samples while 

enabling model updates or aggregations on the encrypted data at the central server. This improves privacy-

preserving capabilities by guaranteeing the confidentiality of sensitive data throughout the federated learning 

process. 

4.4 Federated Learning with Encrypted Data- 

An enhancement of conventional federated learning, Federated Learning with Encrypted Data (FLED) concentrates 

on protecting privacy by encrypting the data before it leaves the local device. This method guarantees that sensitive 

data is always safeguarded by enabling model training on encrypted data. 

Federated Learning with Encrypted Data operates on the following fundamental principles: 

Encryption: Each device uses cryptographic techniques like homomorphic encryption or secure multi-party 

computation to encrypt its local data before engaging in federated learning. The confidentiality of the data is 

guaranteed by this encryption, even when it is shared with other devices or the central server. 

Model Distribution: In a manner akin to conventional federated learning, the global model is dispersed between 

participating devices. To protect the privacy of the model parameters, FLED distributes the model in an encrypted 

format. 

Local Training: Using the distributed global model, each device trains its model on its encrypted data. Techniques 

like homomorphic encryption and safe computing protocols allow computations to be done on encrypted data even 

if it is encrypted. 

Aggregation: Each device transmits its encrypted model updates to the central server, also known as the aggregator, 

following local training. The privacy of the individual model updates is preserved since the central server can 

combine these updates without decrypting them. 

Decryption and Update: Using cryptographic keys, the central server decrypts the aggregated update after the 

aggregation is finished. After that, the decrypted update is applied to the global model, and the procedure is repeated 

for more training rounds. 

Because the data is protected during the training phase, federated learning with encrypted data provides a high level 

of privacy protection. This methodology allows for joint model training on sensitive data while maintaining 

individual privacy, which makes it appropriate for use in the healthcare, financial, and other sectors where 

maintaining data confidentiality is critical. Due to the additional encryption and decryption processes, it also 

increases computational overhead, a problem that researchers are currently working to solve through improvements 

in optimisation algorithms and cryptographic techniques. 

4.5 Zero-Knowledge Proofs- 

Cryptographic techniques known as Zero-Knowledge Proofs (ZKPs) enable one person, known as the prover, to 

persuade another, known as the verifier, that a given assertion is true while withholding any further information 

beyond the veracity of the statement. ZKPs can be used in federated learning to protect privacy and maintain the 

ability to validate model updates. 

Working Principle: 
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Statement Representation: Without disclosing any underlying facts, the prover seeks to prove a statement to the 

verifier. This claim may apply to the validity of a gradient or model update in federated learning. 

Phase of Commitment: Without disclosing the information they want to prove; the prover creates a commitment 

to it. Usually, a cryptographic hash of the data makes up this commitment. 

Challenge Phase: To query the commitment, the verifier chooses a challenge, which is a random value. 

Phase of Response: The prover answers the challenge by providing the details required to persuade the verifier that 

the statement is true, all the while keeping the underlying data hidden. 

Verification: The response is compared to the challenge and commitment by the verifier. The verifier accepts the 

proof if the response is valid; if not, it rejects it. 

ZKPs can be used in federated learning to demonstrate the correctness and adherence to training protocols of model 

changes, for example, without disclosing the updates themselves. This preserves anonymity while enabling the 

central server or aggregator to validate model updates. ZKPs offer a potent means of augmenting privacy in 

federated learning systems, thereby permitting decentralised individuals to collaborate in a secure and privacy-

preserving manner. 

Table 1: Summary of Privacy-Preserving Techniques for Federated Learning 

Technique Description Use Cases Advantages Disadvantages 

Differential Privacy 

Adds noise to data 

to prevent 

individual identity. 

Statistical 

databases, data 

mining. 

Strong privacy 

guarantees, can be 

applied to various 

data types. 

May reduce data 

utility, complex 

noise calibration. 

Secure Multi-Party 

Computation 

(MPC) 

Enables parties to 

compute a joint 

function while 

keeping inputs 

private. 

Collaborative 

analytics, private 

set intersection. 

Preserves data 

privacy without 

sharing raw data. 

Supports complex 

computations. 

High computational 

and communication 

costs. 

Homomorphic 

Encryption 

Allows 

computations on 

encrypted data 

without decryption. 

Secure data 

processing, cloud 

computing. 

Preserves data 

privacy during 

computation. 

Supports various 

operations. 

High computational 

overhead, limited 

operations. 

Federated Learning 

with Encrypted 

Data 

Trains models on 

encrypted data 

without exposing it. 

Healthcare, 

financial data 

analysis. 

Protects data 

privacy during 

model training. 

Enables 

collaboration on 

sensitive data. 

Limited support for 

complex models, 

requires specialized 

encryption 

schemes. 

Zero-Knowledge 

Proofs 

Prove the validity 

of a statement 

without revealing 

any information 

about it. 

Authentication, 

verification, digital 

signatures. 

Provides 

cryptographic 

proofs without data 

disclosure. 

Supports privacy-

preserving 

authentication. 

High computational 

complexity, limited 

applications. 

This table provides a comparative overview of each technique's description, common use cases, advantages, and 

disadvantages. Depending on the specific requirements and constraints of a given scenario, one technique may be 

more suitable than others in terms of balancing privacy, utility, and computational efficiency. 

Selecting the "best" method from the list of options is contingent upon the application, its constraints, and its 

requirements. Every technique has its own set of benefits and drawbacks, which makes it appropriate for various 

situations. However, homomorphic encryption stands out as a top choice in a situation when maintaining data 
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privacy is crucial but still permits useful calculations or model training. Because homomorphic encryption does not 

require decryption, it can be used to perform computations on encrypted data while maintaining data privacy. When 

processing or analysing sensitive data while reducing the danger of exposure, this capacity is especially helpful. 

Although homomorphic encryption may have a higher computational overhead and less support for some operations 

than other methods, it is more versatile and potent due to its ability to execute a wide range of computations on 

encrypted data. Furthermore, homomorphic encryption is a good fit for applications like cloud computing or 

distributed analytics where safe data processing is necessary. Organisations can carry out intricate calculations on 

private data while protecting confidentiality, guaranteeing adherence to privacy laws, and building stakeholder trust 

by utilising homomorphic encryption. Therefore, among the approaches mentioned, homomorphic encryption 

stands out as a strong option in situations where maintaining data privacy without compromising usefulness or 

computing performance is highly important. 

4.6 Proposed architecture 

Client devices, local model trainers, a central server or aggregator, privacy-preserving methods, model assessment 

and deployment components, privacy governance and compliance procedures are all part of the suggested 

architecture for privacy-preserving federated learning. To preserve data privacy, client devices use methods like 

encrypted federated learning and differential privacy when they generate data and train local models. The central 

server uses homomorphic encryption and secure multi-party computation to securely aggregate encrypted model 

updates. After aggregation, model deployment and evaluation take place while preserving privacy through 

comparable methods. Privacy governance makes sure that rules are followed, which includes getting user permission 

and checking that procedures correspond to moral and legal requirements. All in all, this architecture strikes a 

balance between strict privacy constraints and the advantages of federated learning. An architecture for federated 

learning with a focus on privacy-preserving techniques: 

 

Figure 1: architecture for federated learning with a focus on privacy-preserving techniques 
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Figure 2: Components for federated learning with a focus on privacy-preserving techniques 

Client Devices: 

• These are the gadgets—such as cell phones, Internet of Things sensors, or edge devices—where data is 

first created. Local datasets are stored by them.  

• Using its own data, each client device oversees training a local model. 

• Client devices use methods like federated learning with encrypted data or differential privacy to protect 

privacy. This guarantees the protection of sensitive data in the local datasets. 

Local Model Trainer: 

• This part manages the local model's training and is housed within every client device. 

• To protect the privacy of the data while training the model, it uses privacy-preserving algorithms. 

• Following training, the central server or aggregator receives encrypted model updates (gradients) from 

the local model trainer. 

Central Server or Aggregator: 

• Every participating client device sends encrypted model updates to the central server, which combines 

them to create a global model that represents all of the devices' combined knowledge. 

• The central server uses secure aggregation techniques, like secure multi-party computation (MPC), to 

protect privacy during aggregation. These techniques enable computations to be done on encrypted data 

without disclosing individual contributions. 

Privacy-Preserving Mechanisms: 

• Differential Privacy Module: Adds controlled noise to the model updates to protect the privacy of 

individual data points. 

• Secure Aggregation Module: Utilizes cryptographic protocols like MPC to aggregate model updates 

securely without exposing any individual gradients. 

• Homomorphic Encryption Module: Enables computations on encrypted data without the need for 

decryption, ensuring privacy during model aggregation. 
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Model Evaluation and Deployment: 

• Following aggregation, the global model can be used for inference tasks and its performance assessed. 

• To ensure data confidentiality, privacy-preserving measures might be used again when evaluating and 

deploying the model. 

Privacy Governance and Compliance: 

• This part of the architecture includes mechanisms to manage data access rights, obtain user consent, audit 

privacy-preserving processes to ensure compliance with legal and ethical requirements, and ensure that 

privacy regulations and standards are followed throughout the federated learning process. 

Organisations can efficiently manage privacy issues and legal obligations by incorporating these components and 

strategies into their architecture, which will enable them to use federated learning while protecting the privacy of 

decentralised data sources. 

V. EVALUATION METRICS AND BENCHMARKS 

Evaluation Metrics and Benchmarks play a pivotal role in assessing the efficacy and performance of privacy-

preserving techniques in Federated Learning. This paper offers a thorough analysis of the evaluation measures and 

benchmarks now in use, highlighting their advantages, disadvantages, and suitability for a range of situations. We 

go over popular metrics like computing overhead, communication efficiency, privacy preservation level, and model 

accuracy[18]. We also look at benchmark datasets designed for federated learning environments, emphasising their 

representativeness of real-world data distributions, diversity, and size. Our analysis is to support the development 

of privacy-preserving federated learning approaches and standardised evaluation processes. 

5.1 Metrics for Evaluating Privacy-Preserving Techniques- 

Metrics for evaluating privacy-preserving techniques in federated learning play a crucial role in assessing the 

effectiveness and robustness of these methods. Several key metrics are essential for comprehensive evaluation: 

Privacy Guarantee: This statistic gauges how well a strategy protects privacy; it is frequently measured using 

differential privacy parameters or other assurances that sustain privacy. 

Information Leakage: Assesses the degree of information that is exposed during model training concerning 

specific data samples or sensitive qualities, offering insights into the possibility of privacy violations. 

Utility Preservation: Evaluates how privacy-preserving methods affect the federated learning model's performance 

or utility, considering parameters like accuracy, convergence speed, and generalisation ability. 

Communication Overhead: Metrics the extra communication overhead that privacy-preserving techniques like 

encryption, secure aggregation, or data obfuscation introduce and that impact federated learning systems' scalability 

and efficiency. 

Computational Overhead: Indicates how much computing power is needed for privacy-preserving tasks like 

encryption, decryption, and cryptographic calculations. This information affects whether these approaches may be 

used in contexts with limited resources. 

Adversarial Robustness: To protect the security and integrity of federated learning systems, this study looks at 

how resilient privacy-preserving strategies are against adversarial assaults such as membership inference attacks, 

model inversion attacks, and reconstruction attacks. 

Scalability: Assesses how scalable privacy-preserving methods are in relation to the scale and heterogeneity of the 

federated learning environment, considering variables like the quantity of clients involved, the dispersion of data, 

and processing power. 

Regulatory Compliance: To ensure legal and ethical compliance in federated learning deployments, regulatory 

compliance considers how privacy-preserving strategies match with pertinent data protection rules and compliance 

standards, such as GDPR, HIPAA, or CCPA. 
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Quantification of Privacy Risk: allows stakeholders to decide on the trade-offs between privacy and usefulness in 

federated learning situations by providing a quantitative assessment of the privacy risk associated with various 

privacy-preserving strategies. 

Practical Applicability: Evaluates the viability and scalability of privacy-preserving methods in real-world 

federated learning systems, considering aspects like maintenance costs, simplicity of integration, and compatibility 

with current infrastructure. 

When taken as a whole, these metrics provide a thorough framework for assessing the effectiveness, efficiency, and 

applicability of privacy-preserving methods in federated learning, which helps practitioners and researchers create 

and implement privacy-preserving solutions. 

5.2 Benchmark Datasets and Evaluation Frameworks- 

Benchmark datasets and evaluation frameworks play a crucial role in assessing the efficacy and performance of 

privacy-preserving techniques in federated learning. 

Diversity in the Dataset: To accurately reflect real-world situations found in federated learning applications, 

benchmark datasets should include a wide variety of data kinds and distributions[19]. This diversity guarantees the 

robustness and efficacy of privacy-preserving approaches in a wide range of data fields. 

Data Heterogeneity: Evaluation frameworks must to consider the heterogeneity of data sources in federated 

environments, encompassing differences in data volume, feature space, and label distribution among involved 

clients. This makes it possible for academics to assess the generalisation and scalability of privacy-preserving 

techniques in practical settings. 

Levels of Privacy: Evaluation frameworks should include several degrees of privacy requirements, from relatively 

lenient privacy-preserving techniques like federated learning with safe aggregation to more stringent privacy 

assurances like differential privacy. This makes it possible to evaluate privacy-preserving methods thoroughly over 

the whole range of privacy-utility trade-offs. 

Performance measures: Clearly defined performance measures that account for trade-offs between privacy, 

computational efficiency, convergence speed, model correctness, and communication overhead should be included 

with benchmark datasets. Accuracy, privacy loss, convergence rate, communication expense, and computing 

complexity are examples of common measures. 

Scalability and Robustness: As the number of participating clients and data samples rises, evaluation frameworks 

should evaluate the scalability and robustness of privacy-preserving strategies. Benchmarking performance under 

different network conditions, client availability, and data distribution shifts are all part of this process. 

Adversarial Scenarios: To assess how resilient privacy-preserving methods are to possible assaults such data 

poisoning, membership inference, and model inversion, evaluation frameworks should incorporate adversarial 

scenarios. This guarantees that the techniques offer strong safeguards against invasions of privacy. 

Reproducibility and Transparency: Open access, thorough documentation, and reproducibility are necessary for 

benchmark datasets and evaluation systems to enable equitable comparisons and foster transparency within the 

scientific community. This encourages cooperation and allows scientists to expand on previous findings in privacy-

preserving federated learning. 

Practical Uses: Ultimately, it is imperative that benchmark datasets and assessment frameworks are synchronised 

with actual federated learning systems. This will guarantee that privacy-preserving methods are assessed in settings 

pertinent to real-world implementations. This makes it possible for researchers to verify the efficiency and 

applicability of privacy-preserving techniques in actual situations. 

5.3 Challenges in Benchmarking Privacy- 

Benchmarking privacy-preserving techniques in federated learning presents significant challenges due to the 

intricate balance between privacy protection and model performance. Firstly, it is still difficult to define suitable 

measures that accurately reflect the complex trade-offs between privacy and utility. It is possible that traditional 

evaluation metrics like accuracy don't accurately capture privacy preservation. Second, it is intrinsically challenging 
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to create benchmark datasets that accurately capture real-world circumstances while adhering to privacy 

restrictions[20]. The complexity and diversity of real data may be absent from synthetic datasets, which would 

restrict how broadly benchmark results may be applied. Furthermore, there are difficulties in guaranteeing 

consistency and repeatability among various privacy-preserving methods because implementations differ and are 

not standardised. Moreover, evaluating privacy-preserving methods' resilience to hostile attacks introduces another 

level of intricacy to benchmarking initiatives[21][22]. Furthermore, adaptive evaluation approaches are necessary 

for benchmarking in federated learning contexts due to the dynamic nature of data distributions. Addressing these 

challenges is crucial for advancing the field and facilitating the adoption of privacy-preserving federated learning 

techniques in real-world applications. 

VI. APPLICATIONS AND CASE STUDIES 

Healthcare: This section examines how collaborative model training across dispersed healthcare facilities is made 

possible by federated learning with privacy-preserving approaches, thereby revolutionising the field of healthcare 

while maintaining patient data privacy[23]. Applications including illness prediction, individualised treatment 

suggestions, and medical imaging analysis are covered. Case studies could feature sensitive patient data diagnosis 

using federated learning installations on medical pictures. 

Banking: To improve fraud detection, risk assessment, and consumer profiling while protecting sensitive financial 

data, federated learning approaches are being used more and more in the banking industry. Applications such as 

credit scoring, anomaly identification in financial markets, and fraud detection in banking transactions are covered 

in detail in this section. Federated learning algorithms that are used to identify fraudulent activity across several 

financial institutions without disclosing specific transaction information may be used in case studies. 

Telecommunications: While protecting user privacy, federated learning presents chances to enhance user 

experience, predictive maintenance, and network optimisation in the telecommunications industry[24]. Applications 

including spectrum management, predictive maintenance of network infrastructure, and user behaviour analysis for 

personalised services are covered in this area. Case studies could showcase applications of federated learning that 

maximise network performance while protecting user privacy. 

IoT and Edge Computing: In these contexts, where data is generated and processed locally, federated learning is 

especially pertinent. Applications such as smart grid optimisation, edge device personalisation, and predictive 

maintenance of Internet of Things devices are covered in this section. Federated learning techniques for developing 

predictive maintenance models on edge devices while protecting data privacy and reducing communication 

overhead may be included in case studies. 

Other Industry Applications: Federated learning has applications in a number of other areas, including 

manufacturing, retail, and transportation, in addition to healthcare, banking, telecommunications, and the Internet 

of Things[25]. Numerous applications are covered in this area, including predictive maintenance in transportation, 

demand forecasting in retail, and quality control in manufacturing. Case studies could present federated learning 

implementations that solve data privacy issues and improve performance while being customised to industry 

challenges. 

VII. CHALLENGES AND OPEN PROBLEMS 

Scalability Issues: 

Explanation: Training machine learning models over many decentralised devices or servers is known as federated 

learning. Scalability becomes a major difficulty as the number of players rises. Federated learning systems' 

scalability may be hampered by resource limitations on edge devices, coordination complexity, and communication 

overhead. 

Open Problems: Creating scalable aggregation techniques, decentralised optimisation algorithms, and effective 

communication protocols to manage extensive federated learning deployments. addressing problems arising from 

variations in network circumstances and device capabilities. 
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Performance Overhead: 

Explanation: Computational overhead and communication expenses are introduced by privacy-preserving 

techniques including encryption, secure aggregation, and differential privacy. In federated learning systems, these 

overheads may influence the model convergence rate and training efficiency. 

Open Problems: To reduce performance overhead while maintaining strong privacy guarantees, lightweight 

privacy-preserving algorithms should be designed, communication protocols should be optimised, and effective 

cryptographic primitives should be developed. weighing the needs for privacy against measures for measuring the 

performance of the model, such as accuracy, speed of convergence, and resource usage. 

Robustness and Security Concerns: 

Explanation: Adversarial attacks and other security risks can target federated learning systems. Federated learning 

models' availability, confidentiality, and integrity can be jeopardised by malevolent actors, data poisoning attacks, 

model poisoning attacks, and communication flaws. 

Open Problems: federated learning systems' resilience and security against hostile assaults and Byzantine 

behaviour are improved. creating defence systems to identify and lessen security concerns, such as secure federated 

averaging, robust aggregation approaches, and anomaly detection strategies. Ensuring reliability and responsibility 

in federated learning environments. 

Regulatory Compliance: 

Explanation: Concerns about legal and regulatory compliance arise from the processing and sharing of sensitive 

data among dispersed entities in federated learning. Strict guidelines on data handling, consent management, and 

data security are enforced in federated learning scenarios by privacy legislation including GDPR, HIPAA, and 

CCPA. 

Open Problems: ensuring federated learning system deployment complies with legal and data privacy frameworks. 

Creating technology and governance frameworks that improve privacy in order to protect user privacy, get informed 

consent, and guarantee accountability and openness in data processing. 

Future Research Directions: 

Explanation: Federated learning is a fast-moving topic that offers lots of room for more study and development. 

The state-of-the-art in privacy-preserving federated learning could be advanced by new trends like domain 

adaptation, meta-learning, adaptive federated optimisation, and hybrid learning techniques. 

Open Problems: investigating new avenues for research and interdisciplinary partnerships to tackle the changing 

opportunities and problems in federated learning. looking into the social, moral, and financial effects of federated 

learning. encouraging multidisciplinary research projects to close the knowledge gap in the fields of cybersecurity, 

machine learning, encryption, and privacy. 

Researchers can aid in the creation of reliable, scalable, and privacy-preserving federated learning systems with 

wide applicability across numerous domains and use cases by tackling these obstacles and investigating open topics. 

VIII. CONCLUSION 

In conclusion, this paper has provided a comprehensive overview of recent advancements in privacy-preserving 

techniques for federated learning from a machine learning perspective. By categorizing and analyzing state-of-the-

art approaches, we have gained insights into the strengths, limitations, and potential applications of these techniques. 

It is evident that federated learning holds great promise for collaborative machine learning while safeguarding data 

privacy, addressing concerns associated with centralized data processing. However, several challenges remain, 

including scalability issues, performance overhead, and robustness concerns. Addressing these challenges requires 

further research and innovation in the development of efficient and secure privacy-preserving mechanisms. 

Additionally, ensuring regulatory compliance and building trust among stakeholders are crucial aspects that need to 

be considered in the deployment of federated learning systems. Looking ahead, future research directions should 

focus on enhancing the effectiveness and scalability of privacy-preserving federated learning techniques. This 

includes exploring novel algorithms, improving communication efficiency, and addressing emerging threats and 
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vulnerabilities. By addressing these challenges, we can unlock the full potential of federated learning for 

collaborative machine learning applications across various domains while upholding the highest standards of data 

privacy and security. 
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