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Abstract: - Papaya cultivation plays a vital role in global agriculture, providing a crucial source of nutrition and economic stability. However, 

the threat of diseases poses a significant challenge to papaya plant health. To address this challenge, we proposed an innovative approach for 

enhancing the detection of papaya leaf diseases using Convolutional Neural Networks (CNNs) and transfer learning fusion. Our proposed 

framework leverages the strengths of CNNs, known for their ability to extract intricate features from images, and the transfer learning approach 

combines these techniques to create a robust and efficient model for accurate papaya leaf disease diagnosis. Transfer learning approach with 

two pre-trained models: VGG-16 and ResNet-50 are taken to detect papaya leaf diseases. The training process involves utilizing a pre-trained 

model and fine-tuning it on a specific papaya leaf disease dataset. For experimentation, five different classes of papaya leaves such as Fresh 

Papaya Leaf, Papaya Black Spot, Papaya Leaf Curl, Papaya Ringspot, and Powdery Mildew of Papaya are considered. Experimental results 

demonstrate the effectiveness of our proposed approach in accurately identifying and classifying various papaya leaf diseases. The proposed 

model has received an accuracy of 99.79% using ResetNet-50 followed by CNN whose accuracy was 99.42% and VGG-16, whose accuracy 

was 98.25%. This fusion approach aims to create a robust and efficient model capable of distinguishing subtle patterns indicative of various 

papaya leaf diseases. This method not only improves the efficiency of disease detection but also demonstrates the adaptability of the model to 

various disease patterns. Our study contributes to the advancement of automated papaya leaf disease detection, providing a reliable and precise 

tool for early diagnosis. Overall, our approach offers a promising solution for improving papaya cultivation and ensuring a sustainable future 

for global agriculture. 
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I. INTRODUCTION 

Plant leaf disease identification is a global area for researchers. Papaya, a globally significant fruit crop, faces a 

significant challenge in sustainable cultivation due to various leaf diseases that can impact yield and quality. 

Accurate and early disease detection is crucial for effective disease management and crop protection. From a 

dietary point of view, papaya is in more demanding fruit because of its high nutritional value. Traditional methods 

of disease detection may be time-consuming and lack the precision needed for proactive intervention. So, it is 

important to include automation in farming for precise disease management. There are several methods to detect 

plant leaf diseases such as detection using GLCM (Gray-Level Co-Occurrence Matrix) feature extraction [4], ML 

(Machine Learning) based diseased classification, and DL (Deep Learning) based disease recognition. 

Classification of papaya leaf disease is carried out by checking the maturity status [1] of papaya, machine vision-

based detection [2], and using recent advancements in technology, such as Convolutional Neural Networks 

(CNNs) [7] and transfer learning [10] have shown great promise in revolutionizing disease detection in 

agricultural settings. This study explores the application of a novel framework, which combines the strengths of 

CNNs and Transfer Learning to enhance the accuracy of papaya leaf disease diagnosis. CNNs are highly effective 

in image analysis [18], allowing for the extraction of intricate features from papaya leaf images. The incorporation 

of Transfer Learning enables [12-13] the transfer of knowledge gained from a pre-trained model to the specific 

task of papaya leaf disease detection.  

The proposed framework has the potential to empower farmers with a proactive means to safeguard their papaya 

crops and mitigate the impact of diseases on yield and economic stability. The model has the potential to provide a 

reliable, automated, and precise tool for early papaya leaf disease diagnosis. This strategy leverages the pre-
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trained model's captured knowledge to achieve high accuracy with limited labeled data, allowing our system to 

effectively identify papaya leaf diseases through subtle pattern recognition. By fine-tuning pre-trained models on a 

smaller dataset of papaya leaf images, Transfer Learning enables the development of accurate and robust disease 

detection models, particularly in agriculture where obtaining large, labeled datasets for specific crops can be 

challenging. The proposed framework is designed to contribute to the growing body of research in precision 

agriculture, providing a valuable tool for the detection and management of papaya leaf diseases. 

II. LITERATURE REVIEW 

Papaya, a tropical fruit crop of great nutritional value and economic importance, faces challenges in sustainable 

cultivation due to various leaf diseases. In several studies, we found that ML [5-6] and DL [7-9] models have 

performed very well in plant leaf disease recognition and classification Traditional methods of disease detection in 

agriculture are often time-consuming and prone to human error. However, the integration of advanced 

technologies, such as Convolutional Neural Networks (CNNs), Transfer Learning [10-13], as well as deep CNN 

[14-18] holds great promise for automating and enhancing the accuracy of leaf disease detection and 

classification. Transfer Learning, a technique that leverages knowledge gained from pre-trained models on large 

datasets addresses the challenge of limited labeled data in specific domains. Researchers have also done great 

work in identifying leaf diseases such as tomato [16], potato[19], pomegranate[20], grapes[23], apple [24-25], and 

cucumber[37-38]. A systematic review and comparative study of DL models for plant leaf disease identification 

and classification are presented in well manner [26-31]. CNNs have shown remarkable capabilities in image 

analysis tasks, effectively extracting intricate features and patterns from visual data. In the realm of plant 

pathology, CNNs have proven successful in identifying and classifying diseases across different crops by 

analyzing images of leaves. The hierarchical feature extraction abilities of CNNs make them particularly well-

suited for detecting the subtle visual cues indicative of leaf disease recognition. Advanced computing with 

lightweight CNN model MobileNetV2 is carried out for real-time apple leaf disease identification and 

classification [33-34] and has achieved good accuracy. Multiple CNNs also provide a good option for plant leaf 

disease detection. Several techniques such as Deep residual network [36], global pooling [38], Ensemble learning 

[39], and 3D deep learning [40] are used vastly in plant leaf disease classification.  

Transfer learning is also used in the medical field for medical imaging [12-13], breast cancer detection [14], 

Alzheimer’s detection [41], and intro retention [42]. High-performing deep neural networks have made this field 

more promising for researchers. Several studies have demonstrated the potential of CNNs and Transfer Learning 

in plant disease detection, achieving notable success in crops such as tomatoes, apples, cucumbers, and grapes. 

However, there is a lack of research on the application of these technologies to papaya leaf disease detection in 

leaf as well as fruit, which this study aims to address with the introduction of a novel approach that integrates 

CNN and Transfer Learning for automated papaya leaf disease detection. By leveraging the knowledge gained 

from other related datasets, Transfer Learning can improve the accuracy of papaya leaf disease detection. In 

summary, the integration of CNNs and Transfer Learning offers a promising solution for automating and 

enhancing the precision of papaya leaf disease detection, ensuring the sustainability of this important tropical fruit 

crop.  

III. MATERIAL & METHODS 

This section describes the research methods used to build and evaluate model performance. The necessary 

information like the method chosen to acquire the dataset has been explained i.e., data preparation techniques, 

data analyzing techniques, etc. Also, it highlights the details of the selection of DL models to address papaya leaf 

disease recognition and classification. 

3.1 Data Acquisition and Pre-processing 

The CNN model and transfer learning model were evaluated and trained on the papaya leaves dataset with the aim 

of identifying and classifying papaya leaf diseases. A total of 700 images are used for a healthy and diseased 

category of leaves. The dataset used here is openly and freely available, which is created by referring to images 

from a plant village dataset. To evaluate the model performance 90% of the dataset is used for training and the 

remaining 10% is used for testing. Table 1 shows image distribution among five classes of papaya leaf used for 

training purposes. Data pre-processing and augmentation are applied using Image Data Generator. All input 

images are resized to 224×224. The dataset is taken under different environmental conditions and various light 
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conditions. The created dataset is then undergoes with pre-processing which removes noise and gives more 

precise images. Data augmentation is necessary to enhance the quality and quantity of images to increase data 

diversity for the training set. Data augmentation techniques include rotation (45), height and width shift (0.01), 

horizontal and vertical flip (false), etc. 

Table 1 Papaya Leaf Dataset 

Leaf Class No. of Images 

Fresh Papaya Leaf 41 

Papaya Black Spot 56 

Papaya Leaf Curl 45 

Papaya Ring spot 122 

Powdery Mildew of 

Papaya 
86 

Total Number of Images                      350 

The proposed model has been evaluated on five different classes of papaya leaf i.e., Fresh Papaya Leaf, Papaya 

Black Spot, Papaya Leaf Curl, Papaya Ringspot, and Powdery Mildew of Papaya.  Sample images for Papaya 

Leaf Classes are as shown in Figure 1. 

     

(a)          (b)                    (c)                   (d)                 (e) 

   Figure 1 Sample Images: (a) Fresh Papaya Leaf, (b) Papaya Black Spot, (c) Papaya Leaf Curl,  

(d)Papaya Ring spot, and  (e) Powdery Mildew of Papaya 

3.2 Experimental Setup 

All the proposed models CNN, VGG-16, and ResNet-50 are trained and tested on a system D4A50CDE-A6BC-

452F-8696-07951E7A7BF0 using Keras, Scitkit-learn, and OpenCV libraries. Python is used as a primary 

language for coding. The training and testing of all models were implemented using the TensorFlow framework. 

All experimentation is carried out on a system with Intel core i5-1235 U, 64-bit operating system, x64-based 

processor 16GB RAM. 

3.3 Performance Measures 

To analyze the model performance, individual CNN models are trained by providing different classes of papaya 

leaf datasets. In evaluating the model performance, statistical parameters play an important role. Accuracy, 

Precision, Recall, and F1-score evaluate the model performance. These parameters are mentioned in equation (1) 

to (4). Based on true positive and true negative values ‘Accuracy’ finds correctly classified values. ‘Precision’ 

indicates how often the model is correct based on all positive values. ‘Recall’ provides the model's predicted 

frequency; i.e., how the model predicts the correct positive values. The harmonic mean of Recall and Precision is 

represented by ‘F1 Score’. These measures are important to tell how well the model is trained also how precisely 

the model can recognize and distinguish different classes of papaya leaf.  

Accuracy: A= (TP+TN)/TP+TN+FP+FN (1) 

Precision: P = TP / (TP + FP)                    (2) 

Recall: R = TP / (TP + FN) (3) 



J. Electrical Systems 20-2s (2024): 1015-1024 

1018 

F1 Score: F1 = 2*P*R / (P+R) (4) 

Where; TP, FP, TN, and FN are true positive, false positive, true negative, and false negative resp. 

3.4 Model Selection 

To form an automated plant leaf diagnosis system CNN architectures are trained and assessed. In this work, two 

architectures of CNN were tested to get more precise results for papaya leaf disease management. The models are 

VGG-16, and ResetNet-50, used primarily for classification and recognition.  

       3.4.1 CNN Models 

A deep learning model called a convolutional neural network (CNN) is used to process and analyze visual data, 

especially images. It performs exceptionally well on object detection, image categorization, and image 

recognition. Figure 2 shows the basic architecture of CNN is shown in Figure 2. It has convolutional layers, 

pooling layers, and fully connected layers. 

 

Figure 2 Basic CNN  Model Architecture 

Features are extracted from input images by using convolutional layers. The input volume's spatial dimensions are 

down-sampled through the use of pooling layers. Rectified Linear Unit (ReLU) and other activation functions like 

sigmoid are used to add non-linearity to the model. ReLU is frequently used to give a network non-linearity and 

the ability to learn intricate relationships. The information is flattened and sent through one or more fully 

connected layers after features are extracted from the input using convolutional and pooling layers. These layers 

use the learned features to make global decisions about the input. To avoid overfitting, dropout is used. It is a 

regularization technique that CNNs frequently employ. During training, it randomly removes a predetermined 

percentage of neurons, pushing the network to rely on alternative learning pathways. Cross-entropy loss is a 

popular loss function for classification applications. Reducing this loss is the main objective of training. During 

training, optimization methods like Stochastic Gradient Descent (SGD) and its variations (such as Adam and 

RMSprop) are frequently employed to update the model parameters. CNNs have proven to be remarkably 

effective in a wide range of computer vision applications. 

3.4.2 VGG-16 

A convolutional neural network architecture called VGG-16, or Visual Geometry Group 16, is intended for image 

classification as shown in Figure 3. It was created by the University of Oxford's Visual Geometry Group. The 

network is called "16" because it consists of 03 fully connected layers and 13 convolutional layers, a total of 16 

layers. With 16 weight layers, VGG-16 has a deep design that sets it apart.  
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Figure 3 VGG-16 Model Architecture 

The network is capable of learning complex hierarchical characteristics from input photos thanks to its deep stack 

of convolutional layers. The network architecture shows; primarily made up of convolutional layers, max-pooling 

layers, and fully connected layers. Its depth is influenced by the convolutional and pooling layer's repetitive 

pattern. Over the network, VGG-16 only makes use of 3x3 convolutional filters. Selecting tiny filter sizes lowers 

the number of parameters and enables the network to learn more intricate features. A Softmax activation function 

used in the final layer provides probabilities for the predicted classes. 

 3.4.3 ResNet-50 

In 2015 ResNet-50 was introduced by Microsoft Research, a 50-layer deep CNN architecture. ResNet stands for 

residual network, which uses residual connection or skip connection. Residual networks bypass the information to 

certain layers in the network. For object detection and image classification ResNet is very useful.                        

 

Figure 4 ResNet-50 Model  Architecture 

For classification purposes we have used the Keras ResNet-50 model as shown in Figure 4; because it can classify 

the images with greater accuracy than any other residual network. ResNet-50 helps in reducing vanishing gradient 

problems that may occur while working with huge datasets or training very deep neural networks. In architecture 

50 layers include; convolutional layers, residual blocks, and fully connected layers. To achieve depth architecture, 

multiple residual blocks are stacked. Large datasets like ImageNet often use pre-trained versions of ResNet-50 

which is widely available. For various computer vision tasks, transfer learning using pre-trained models is popular 

where the learned features from ImageNet can be fine-tuned for a specific task. 

IV. PROPOSED METHODOLOGY 

Figure 5 shows the proposed model for Papaya leaf disease identification and classification. The first step is to 

collect a dataset; the referred dataset is from the plant village dataset and the Kaggle dataset. The dataset is taken 

under different environmental conditions and various light conditions. Initially, all the selected input image 

datasets undergo pre-processing which removes noise and gives more precise images. Data augmentation is 

necessary to enhance the quality and quantity of images to increase data diversity for the training set.  
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Figure 5 Proposed Model for Papaya leaf disease identification and classification 

To train the model, it is necessary to divide the selected dataset into two categories i.e. training and testing 

datasets. The percentage for training data is 90% to that of test data is 10%. First of all, the model is trained with 

the CNN model. A total of 60 epochs are considered to train the model.  

The overall loss and accuracies for training and validation using the CNN model are mentioned in Table 2. The 

model undergoes with transfer learning technique using VGG-16 and ResNet50 models. A total of 60 epochs are 

taken for training. The learning rate taken throughout the training for this papaya leaf model was 0.0001. The 

overall loss and accuracies for training and validation are mentioned in Table 3 for the VGG-16 model and 

ResNet-50 is represented in Table 4. The performance measures we have used here are Accuracy, Precision, 

Recall, and F1-score. The proposed papaya leaf model can efficiently recognize and classify a total of five classes 

of papaya leaf. 

V. RESULT AND DISCUSSION 

This section describes how well the model has performed during the training and testing period. The techniques 

used for training are a fusion of CNN and transfer learning with VGG-16 and residual network ResNet-50.  

Table 2 shows the CNN model performance; the model is trained for 60 numbers of epochs. During training, it 

was observed that at the beginning the performance was poor but it improved after the 30th epoch and the model 

achieved an accuracy of 97.66% at the 40th epoch and got the best accuracy of 99.42% at the 50th epoch with 

validation loss of 1.4512. 

            Table 2 CNN Model Performance 

No. of 

Epochs 

Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

10 2.2260 0.6374 2.3886 0.3 

20 1.7328 0.7135 1.7243 0.85 

30 1.4081 0.8363 1.8761 0.2 

40 1.1294 0.9766 1.4608 0.6 

50 0.9633 0.9942 1.4512 0.6 

60 0.9037 0.9064 1.8706 0.2 

 

As the dataset used here is limited, so transfer learning approach is used to achieve the best accuracies. Table 3 

gives the VGG-16 model performance; 60 numbers of epochs are used for training. During training it is observed 

that from the beginning itself, the model has performed very well; it has achieved an accuracy of 88.30% at the 

10th epoch. At each stage, model accuracy had been improved. After the 30th epoch model achieved an accuracy 

of 97.66% and at the 40th epoch VGG-16 got the best accuracy of 98.25% with a loss of 1.7646. Again, at the 

50th epoch, the accuracy has dropped by almost 0.0059. 
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Table 3 VGG-16 Model Performance 

No. of 

Epochs 

Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

10 2.0565 0.8830 7.6397 0.20 

20 1.9097 0.9649 7.5580 0.2 

30 1.7884 0.9766 7.4809 0.2 

40 1.7646 0.9825 7.4527 0.20 

50 1.8337 0.9766 7.5233 0.20 

60 1.9093 0.9649 7.5573 0.20 

 

Table 4 represents how well the papaya leaf diseases are recognized and classified after applying the residual 

network ResNet-50 model; here also 60 numbers of epochs are used for training. During training it is observed 

that, from the beginning itself the model performed very well; at the very epoch model has received an improved 

accuracy. At the 40th epoch, the model achieved an accuracy of 97.97% and at the 50th epoch, ResNet-50 had got 

best accuracy of 99.79% with a loss of 3.5432 during training. After the 50th epoch the accuracy has dropped by a 

value of almost 0.0086 i.e. accuracy has dropped to 98.93%. 

Table 4 ResNet- 50 Model Performance 

No. of 

Epochs 

Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 

10 6.3958 0.8397 6.3788 0.5577 

20 5.7789 0.9231 5.5670 0.9327 

30 5.3518 0.9594 5.3940 0.7885 

40 5.0040 0.9797 4.9539 0.9135 

50 3.5432 0.9979 3.7776 0.8846 

60 3.4497 0.9893 4.0197 0.9135 

Table 5 represents the overall model performance. All three models have achieved the best possible accuracy for 

papaya leaf disease detection. ResNet-50 model has achieved the best accuracy of 99.57%. Also, VGG-16 has 

reached 98.25% accuracy followed by the CNN model which has achieved an accuracy of 96.24% 

Table 5 Overall Model Performance 

Model 

Learning 

Rate 

Optimizer Predicted 

Accuracy 

(%) 

CNN 0.0001 Adam 99.42% 

VGG-16 0.0001 Adam 98.25% 

ResNet50 0.0001 Adam 99.79% 

While training CNN models, accuracy and loss are critical to evaluate. These parameters highly show how well 

the model learns from the training data. The training process usually involves iterative optimization of the model 

and weights using the training data. In addition, a validation dataset is used to evaluate the performance of the 

model on unseen data during training.  

Figure 8 shows Accuracy and Loss during training and validation for different models. Numbers of epochs are 

represented on the x-axis and accuracies and losses are represented on the y-axis. CNN model got the best 

accuracy of 99.42% at the 40th epoch, with decreasing training loss. It is seen that the ResNet-50 model has 

achieved the best training accuracy as well as validation accuracy with decreasing validation loss. For VGG-16 

the performance was good from the initial stage of training itself. High training accuracy indicates that the model 

learns from the training data and makes accurate predictions. Validation accuracy measures the model's 

performance on a particular set of validation data that it doesn’t see during training. Validation accuracy helps to 

assess the general ability of the model. The training loss is a training error. Again, it is a quantitative measure of 

the difference between the predicted values and the actual entries in the training set. Validation loss measures the 
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difference between predicted and actual tags in the validation dataset. During each epoch, decreasing validation 

loss is desirable. Similar to training loss, the goal is to minimize validation loss.  

 

(a) 

 

(b) 

 

(c) 

Figure 8 Accuracy and Loss during Training and Validation for different models 

(a)CNN  (b) VGG-16 (c) ResNet-50 

By observing these results, it is clear that the proposed model with CNN and transfer learning fusion are more 

efficient in distinguishing diverse classes of papaya leaf than the existing model. This is a significant step in 

precision agriculture, enabling timely and targeted interventions to mitigate the impact of diseases on papaya 

crops.  

VI. CONCLUSION AND FUTURE SCOPE 

In the domain of papaya leaf disease detection, the application of deep learning models, specifically Convolutional 

Neural Networks (CNN), VGG-16, and ResNet-50 has proven to be highly effective for disease classification. The 

study aimed to leverage the capabilities of these models to enhance accuracy and efficiency in identifying various 

diseases affecting papaya crops. The implementation of CNN and Transfer Learning, a powerful approach in deep 

learning, for precise papaya leaf disease diagnosis has shown promising results in advancing the field of 

automated plant disease detection. Through the utilization of deep learning techniques, we have achieved 

significant improvements in accuracy and efficiency compared to traditional methods.  

This fusion of CNN and transfer learning has enhanced the model's ability to generalize and adapt to the 

intricacies of papaya leaf diseases, even in the presence of limited labeled data. The experiments and evaluations 

conducted on diverse datasets have showcased the robustness and reliability of the proposed methodology. After 

experimentation, the CNN model has an accuracy of 99.42% followed by VGG-16 with an accuracy of 98.25%. 
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Out of all these models, the ResNet-50 model has achieved the best accuracy of 99.57% with minimum loss. In 

summary, the study demonstrates the efficiency of CNN, VGG-16, and ResNet-50 in the realm of papaya leaf 

disease detection. The models not only offer high accuracy but also provide a foundation for future research in 

optimizing and tailoring these architectures for specific agricultural contexts. 

There are several avenues for future research and improvements such as the diverse samples dataset collection and 

exploring different fine-tuning strategies for transfer learning. Adapting and deploying the model for real-time 

disease detection.   
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