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Abstract: - Underwater Optical Wireless Communication (UOWC) revolutionizes underwater exploration, leveraging seawater's unique 

property—reduced absorption of blue-green light. This offers superior advantages over traditional communication methods, providing higher 

bandwidth and lower latency. This paper explores the integration of UOWC with Remotely Operated Vehicles (ROVs), enhancing data 

exchange and command capabilities in challenging underwater environments. Seawater's unique properties empower UOWC to outperform 

acoustic and RF methods, crucial for real-time applications. The study utilizes advanced techniques like Fiber-Optic Communication, High 

Order Sliding Mode Control, and Hybrid Blockage Detection for ROV integration and control. While the abstract focuses on theory and 

design, it sets the stage for empirical validations, emphasizing the need for future research to quantify improvements in real-world underwater 

scenarios 
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I. INTRODUCTION 

In contemporary times, the integration of wireless communication has become ubiquitous across terrestrial devices. 

However, its application in the underwater domain has particularly captured the attention of the military, industry, 

and scientific communities [1,2]. Notably, acoustic systems have emerged as a successful means of underwater 

communication, capable of transmitting data over considerable distances, sparking continuous research for further 

improvements. 

Underwater vehicles, specifically Remotely Operated Vehicles (ROVs), are typically under the guidance of an 

operator stationed at the surface, controlling the vehicle through a Surface Control Unit (SCU). Enhancing autonomy 

for particular activities, such as accurate position monitoring, dynamic positioning (station-keeping), automated 

direction and depth control, blockage identification, and the facilitation of automated notifications, is a popular trend 

in ROV development. Consequently, the development and control of ROVs are confronted by a range of distinctive 

challenges: 

1. Parametric Uncertainty: The challenge of managing parametric uncertainty becomes more pronounced 

as contemporary ROVs adopt modular capabilities. This set of modules includes many different types of tools and 

skids, such as rotary disk cutters, wire and cable cutters, pipeline camera skids, manipulator skids, water-jetting 

tooling skids, and rotatory brush skids. The significance of using automated alerting systems is highlighted by this 

diversity [3]. 

2. Dynamic Underwater Environment: Significant disruptions are introduced to ROVs by the dynamic 

underwater environment, especially when there are underwater currents and interactions with waves. In applications 

involving shallow water, this effect is particularly noticeable [4]. 

Addressing these challenges is pivotal in advancing the capabilities of underwater ROVs, catering to a wide array 

of applications and requirements. 

Overview of ROV Command 

This section offers an examination of the present state of the art. The primary objective of this study is to conduct a 

comprehensive review of control strategies for Remotely Operated Vehicles (ROVs), with a specific focus on 

addressing critical challenges in position trajectory and station-keeping control. A substantial amount of research 
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on various control approaches, including fuzzy control, standard sliding mode control, PID-like control, and other 

approaches, is available in the international literature [5].The subsequent section offers a detailed examination of 

the most pertinent and influential works in this domain. 

1.1 Visual Serving Control 

A number of approaches make use of visual-based control strategies [1-4], which locate the ROV precisely and 

guide it along a predetermined visual path by using photographs of the seafloor or landmarks. Nevertheless, vision-

based position monitoring and station-keeping management are not practicable due to the challenges presented by 

the dark underwater environment. 

1.2 Intelligent Control 

Underwater vehicle management has been proposed to benefit from intelligent control techniques such as Fuzzy 

Logic, Neural Networks, or their combination in Neuro-Fuzzy control, especially for tasks involving observation 

and blockage detection. Relevant examples can be found in [6-7]. While intelligent controllers have significant 

potential, they are mostly used in experimental vehicles and often need extensive parameter tweaking. There remains 

a potential application space for these control techniques in industrial vehicles [8]. 

1.3 PID Control 

In the realm of underwater robotics, practicality often leads to the widespread use of Proportional Derivative (PD) 

or Proportional Integral Derivative (PID) controllers in industrial underwater robots [8, 10]. Their straightforward 

structures and efficacy under specific conditions make them the go-to choice. PID-like controllers generally exhibit 

good functioning. Nonetheless, they fail to account for system nonlinearities, which can potentially degrade 

performance or introduce instability [9-10]. 

In [11], the authors propose a sequential linear controller employing P and PI techniques to regulate position (𝑥) 

and vehicle velocity (𝑢). Experimental results involving the THETIS (UROV) are presented. 

In [12], researchers suggest a control strategy that integrates linearizing control with PID techniques for depth and 

heading station-keeping. Linearizing control necessitates knowledge of the vehicle's model and parameters. 

Simulations and swimming pool tests illustrate the strategy's effectiveness in maintaining depth and heading control. 

[13, 14] introduces an adaptive control law for underwater vehicles, which incorporates PD action with adaptive 

compensation to address hydrodynamic effects. This approach is tested in real-time and simulation using the ODIN 

vehicle and its mathematical model, demonstrating asymptotic tracking without requiring current measurements or 

exact system dynamics knowledge. 

The notion of self-tuning autopilots is introduced in [15], featuring two schemes: an implicit linear quadratic online 

self-tuning controller and a robust control law based on a first-order approximation of open-loop dynamics, coupled 

with online recursive identification. The performance of these controllers is assessed through simulations. 

The rest of the paper is organized as, In Section II, an in-depth discussion of optical aspects provides essential 

background information. Section III offers a comprehensive depiction of the proposed model and details the design 

and construction of the Remotely Operated Vehicle (ROV). Section IV extensively discusses the results obtained 

from the research, critically analyzing the data and outcomes. Lastly, in Section V, the developed blockage 

identification and classification model, emphasizing its utilization of optical fiber, is succinctly summarized, 

encapsulating the key findings and contributions of the research. 

II. OPTICAL FIBRE 

Fibers with attenuations exceeding 1 dB/km have limited utility in communication networks. Poorly matched fibers 

may experience attenuations surpassing 1 dB/km per connector or splice, particularly if mishandled during 

installation. Achieving optimal coupling effectiveness requires precise fiber positioning to center the cores. To 

minimize connector losses, a straightforward method is to permanently splice the fiber ends, either through adhesive 

bonding or high-temperature fusion. Losses in gaps, akin to Fresnel losses, occur due to the presence of an air gap 

introducing 2 media interfaces, each associated with Fresnel reflection losses. Two primary losses are considered: 

One originates from the inner surface of the transmitting fiber, while the other arises from reflections off the second 
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fiber's surface. To mitigate these losses, introducing a coupler designed to match the optical impedances of both 

materials is effective [11-13]. 

2.1 Advantages of Fiber Optic Transmission 

Fiber optic transmission has largely supplanted copper wire communication in developed world core networks, 

primarily due to its advantages over electrical transmission. The key advantages of fiber optic transmission include: 

Extremely High Bandwidth: Fiber optics outperform other cable-based data transmission mediums in bandwidth. 

They transmit a significantly larger volume of data per unit of time compared to copper cables. 

Longer Distance: Fiber optic transmission permits data to travel over longer distances, thanks to minimal power 

loss, which surpasses the capabilities of copper cables. 

 Resistance to Electromagnetic Interference: Fiber is highly resistant to electromagnetic interference, making it 

a preferred choice for deployment in environments with substantial interference sources. 

Low Security Risk: Fiber optic transmission enhances data security, as information is transmitted via light, 

rendering it difficult to intercept or eavesdrop on the data being transmitted. 

 Small Size and Lightweight: Fiber optic cables have a compact diameter and are lightweight, saving space and 

facilitating installation [17]. 

2.2 Model-Based Control (Linearizing Control) 

Addressing underwater control challenges, model-based strategies become essential, taking into account system 

nonlinearities. While they require a mathematical model of the system and precise knowledge of robot parameters, 

creating a complete nonlinear six Degrees of Freedom (6 DOF) dynamic model can be complex and time-

consuming. A variety of model-based trajectory-tracking controllers intended for a fully actuated underwater vehicle 

are evaluated experimentally in a preliminary manner in [16]. The analysis comes to the conclusion that while 

various controllers exhibit similar effort, model-based approaches perform better. The OTTER vehicle is used in 

real-time tests at the Monterey Bay Aquarium Research Institute (MBARI) [18], which demonstrate how well a 

model-based linearizing control method can improve station-keeping skills. This approach takes observation and 

detection of blockages into consideration, as well as interaction forces resulting from arm movements. Furthermore, 

[19] uses a different accurate linearizing model-based control approach. 

Table 1. Comparative Analysis of Classifiers 

Classifiers Merits Demerits 

K-nearest 

neighbor 

a) Provides an 

intuitive and 

easily 

understandable 

approach. 

a) Vulnerable to noise or 

irrelevant data. b) Testing 

entails significant time due 

to distance calculation to all 

known instances. 

Support 

Vector 

Machine 

a) Apt for 

datasets with 

numerous 

dimensions and 

intricate 

structures. 

a) Kernel function and 

parameter selection for 

higher-dimensional data 

mapping poses challenges. 

b) Training processes can be 

time-intensive. c) Only 

handles two classes adeptly. 

Decision 

Tree 

a) Easy to 

interpret for 

small-sized 

trees.  

 

a) Tendency to overfit in 

datasets with noisy 

classification/regression 

tasks. 
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Artificial 

Neural 

Network 

a) Effectively 

learns non-

linear data 

relationships. 

a) Faces scalability issues. b) 

Requires ample training 

samples. c) Demands 

increased processing time. 

 

Table 1 above provides a comparative analysis of available classifiers, here we list out the merits and demerits of 

classifiers. The chief contributions of the research works are outlined as follows: 

Development of a New Predictive Algorithm (HBD) for Blockage Detection: 

The research introduces a novel predictive algorithm, termed HBD, designed specifically for the detection of 

overflow and blockage within pipes. This algorithm employs Fiber-Optic Communication, integrating 

Ethernet/WiFi for communication, and is tailored for use at significant depths (ranging from 100 to 120 meters). 

The processing approach is parallel, and the system's physical dimensions are specified at 18.4 × 29.5 × 33.5. The 

primary goal of this algorithm is to significantly reduce the time required to detect blockages within pipes. 

 Integration of Enhanced Machine Learning for Feature Extraction and Classification: 

An advanced machine learning architecture is incorporated to extract and classify features based on images and 

video data captured during the research. This architecture is optimized through suggested techniques to enhance the 

identification of blockages while providing real-time location tracing of Remotely Operated Vehicles (ROVs) in the 

images and video data. 

Introduction of an Energy-Efficient Routing Algorithm: 

A novel energy-efficient routing algorithm is introduced, aimed at minimizing energy consumption and enhancing 

throughput and Packet Delivery Ratio (PDR). This algorithm's performance is optimized to improve the detection 

of overflow and blockages within pipes using the proposed model. 

Evaluation of Overflow and Blockage Detection Model: 

The research conducts a comprehensive evaluation of the proposed overflow and blockage detection model within 

pipes, comparing its performance with existing algorithms and classifiers. Various performance measures, including 

the utilization of machine learning classifiers with a deep learning approach for prediction, are employed to assess 

the model's effectiveness. 

These contributions collectively advance the field of blockage detection and contribute to more efficient, real-time 

solutions for addressing overflow and blockage issues within pipe systems 

III. PROPOSED MODEL 

Figure 1 depicts system block diagram on which the proposed controller is tested. In contrast to the research 

conducted in reference [25], the experiments in this study were performed on a one Degree of Freedom (DOF) 

underwater system. This choice was made because such a system effectively retains the primary characteristics of 

an underwater system, as established in reference [20]. 
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Figure 1. System block diagram 

3.1 Mechanical system 

The one Degree of Freedom (DOF) underwater system is equipped with speed variation capabilities using a control 

voltage range of +/-5. The thruster is attached to a base, and the system is made up of two vertical metal bars that 

are designed to restrict the thruster's movement to the depth direction alone. The complete mechanical structure is 

submerged in a predetermined-sized water container that is 20 meters long, 10 meters high, and 33 meters in 

diameter. The thruster is capable of moving within a range of 5 meters in the depth direction, allowing for controlled 

and precise depth adjustments within the underwater environment. 

Algorithm for Sewage Detection System 

The process for detecting blockage in a pipe using sensor measurements can be summarized in the following steps: 

STEP 1: Begin by measuring the length of the pipe using a sensor and establish this measurement as the Standard 

Reference. 

STEP 2: Utilizing the Standard Reference distance (D), calculate the time it takes for the sensor signal to travel to 

the end of the pipe and return. Record this time as the Standard Reference Time (T). 

STEP 3: The sensor generates periodic reports at predefined intervals, such as hourly or every 30 minutes, to 

monitor the conditions inside the pipe. 

STEP 4: Calculate the velocity or speed of the wave within the pipe using the formula: Velocity = Distance Traveled 

/ Time. In this case, since the signal travels to the end of the pipe and back, you can simplify this to Velocity = 2 * 

Pipe Length / Time, which equals 2L / T, where L is the length of the pipe, and T is the time taken. 

STEP 5: Calculate the value 1, which is the product of the calculated velocity (Speed of the wave) and the time (T) 

divided by 2, giving you 1 = (Velocity * T) / 2. 

STEP 6: If 1< DSR there is possibility of blockage, so issue warning. 

This process allows for the continuous monitoring of the pipe's condition based on the speed of the wave and can 

help detect blockages or restrictions in the flow of material through the pipe. 

Algorithm above provides insight into the process of monitoring a pipeline for blockages. In the initial step, when 

the first Ultrasonic pulse is released, it serves to measure the total length of the pipe, establishing this measurement 

as the Standard Reference with respect to Distance. Subsequent Ultrasonic pulses are released at regular intervals 

to continuously monitor the pipe for potential blockages. If a blockage occurs, the Ultrasonic pulse sent into the 

pipe will return in a shorter time duration, as referenced in [21]. This return time is compared with the Standard 

Reference time. If the return time is less than the Standard Reference time, it indicates the presence of a blockage 

in the specific pipeline, confirming the need for further action or intervention. 
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3.1 Proposed ROV Design 

The block diagram of the suggested hardware system, which displays the electronic design, is shown in Figure 2. 

The remotely controlled vehicle (ROV) and the remote control interface are its two essential parts. Detailed 

specification is listed in table 2 below. These two subsystems are interconnected via a WiFi network, enabling users 

to control the ROV using a personal computer, laptop, or mobile device, all accessible through Virtual Network 

Computing (VNC) connectivity [22]. The ROV's hardware configuration incorporates a System on a Chip (SoC) 

Raspberry Pi, creditworthy executing parallel tasks, including: The system has multiple functions: (i) using a digital 

camera to record video; (ii) collecting and recording information from multiple sensors within the system; (iii) 

controlling motors in conjunction with an Arduino Nano microcontroller; (iv) keeping an eye on battery voltage to 

assess internal temperature and energy consumption; and (v) managing communication with the remote control. 

The used digital camera has an IP68 waterproof housing, which makes it easier to deploy it underwater for 

obstruction surveillance. In addition, the system has two power sources: one incorporates an electronic speed 

controller and relays for motor control, while the other is a 5V, 10,000mAh power bank that powers the Raspberry 

Pi, Arduino Nano microcontroller, and digital sensors [23]. Regarding wireless control, users can effortlessly 

operate the ROV using this arrangement, which consists of a WiFi network router connected to a computer or mobile 

device. 

 

Figure 2:  Architecture of ROV 

The electronic speed controller (ESC) controls the operation of the brushless motors, which are linked in a star 

arrangement. An Arduino Nano microcontroller produces a pulse width modulation (PWM) signal that powers the 

three-phase output signal produced by the ESC. 

In my previous research, I conducted an analysis of frequency domains. When a partial blockage occurs inside a 

pipe, the pressure signal exhibits a distinctive pattern that differs from the typical signal in an unobstructed pipeline. 

This dissimilarity arises from the way pressure waves interact with the partial obstruction, resulting in unique 

frequency characteristics. 

Table 2:  System Specification 

Software Hardware 

Simulation Proteus 8 

Professional 

Arduino Uno 

Arduino Humidity & Temp Sensor (DHT 

11) 

 Water level Sensor 

 Gas Sensor(MQ2) 
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 LCD 

 DC Motor 

 Adaptor 

 12V Relay Module 

 GSM Module (SIM 808) 

Due to the inherent high frequency and measurement noise in pressure signals, distinguishing pressure variations 

between unobstructed and partially obstructed pipes in the time domain can be challenging. Consequently, time 

domain information is transformed into the frequency domain to facilitate the identification of these variations [24]. 

In this study, the parameter F is employed, calculated as the average of the average distances between the left and 

right neighbors of 50mm intervals (1). This parameter helps quantify and analyze the frequency characteristics of 

pressure signals, allowing for more effective differentiation between normal and partially obstructed pipe 

conditions. 

𝐹 =

(𝑥𝑖 − 𝑥𝑖−1 + 𝑥𝑖 − 𝑥𝑖−2 + ⋯ + 𝑥𝑖 − 𝑥𝑖−𝑘)
𝑘

+  
(𝑥𝑖 − 𝑥𝑖−1 + 𝑥𝑖 − 𝑥𝑖−2 + ⋯ + 𝑥𝑖 − 𝑥𝑖−𝑘)

𝑘
2

 

In this analytical approach, X represents a vector of frequency domain amplitudes derived from a time-domain 

pressure signal through the Quick Fourier Transform. Each element xi in X signifies the amplitude at a particular 

frequency component. The analysis introduces the parameter k, which determines the window size for evaluating 

local features in the frequency domain. Each xi has two values: the right difference mean and the left-differences 

average, which measure the mean of the differences between xi and its k right surrounding points and the variances 

between xi and its k left nearby points, respectively. These statistical measures serve to determine whether xi 

represents a meaningful peak or a significant feature within the frequency domain signal, facilitating the 

identification of relevant characteristics (1). 

IV. EXPERIMENTAL RESULTS 

The experimental results are shown, including a breakdown of the hardware resources allotted to each algorithm 

and running processes, using the Raspberry Pi as the onboard computer for underwater blockage detection in the 

ROV. The photographs from both real sea conditions and controlled aquatic habitats are included in the results; 

these images form the basis for the analysis of the data that follows. Additionally, the research introduces the 

outcomes of implementing a smart controller and provides a comparative analysis of key features against 

commercial ROVs. 

The experiments reveal that a 1 µs time interval is optimal for ensuring the ROV's stability underwater, particularly 

for video capture and blockage observation. The circuit design incorporates a pair of relays per motor, allowing for 

the alteration of motor rotation direction in response to operational requirements [25]. Given the absence of a line 

of sight between the wireless access point and the ROV several meters underwater, precise position and orientation 

measurements become essential. To address this, a 3D angular position determination system employing 

accelerometers and gyroscopes is employed. The measurements indicate minor variations (noise vibrations) present 

in both static and dynamic conditions, which are attributed to the forces acting on the ROV and subsequently impact 

its stability. To mitigate these variations, a complementary filter is utilized to reduce undesired effects. The 

Raspberry Pi is tasked with processing these filter outputs. The filter design considers the accelerometer 

measurements for the low-pass filter's cutoff frequency and the gyroscope-based signal for the high-pass filter. The 

schematic of the complementary filter is depicted in a provided figure 3. 

 

Figure 3:  Diagram of the ROV's complementary filter implementation. 
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The next transfer function for the complementary filter is derived by fusing data from both the accelerometer and 

gyroscope sensors. Implementation of this complementary filter results in enhanced stability for the ROV, as 

visually demonstrated in the provided figure. The application of the complementary filter is instrumental in reducing 

noise significantly, leading to improved ROV stability. Consequently, this enhancement contributes to an overall 

improvement in the quality of the captured images, which is a crucial factor in underwater operations and blockage 

detection. 

 

Figure 4:  Output signal of the MPU6050 sensor without conditioning: (a) ROV in motion with direction in 

y; and (b) ROV without movements (parked). 

Figure 4 shows the output signal  results generated with and without conditioning and Figure 5 shows motion sensor 

signals generated using complementary filter. 

 

Figure 5: Motion sensor signal by using complementary filter: (a) ROV in motion with direction in y; and 

(b) ROV parked. 

4.1 Stability Performance 

 

Figure 6: stability testing of the ROV using the suggested method on the filter's output. both x- and y-axis 

movements (a and b, respectively). 

The MPU6050 sensor plays a pivotal role in tracking the ROV's orientation and facilitating its stability. The 

complementary filter amalgamates data from both the accelerometer and gyroscope, resulting in a smoothed signal. 

For short-term operations, gyroscope data were preferred for their precision and resilience to external forces, while 

accelerometer data were relied upon for long-term stability due to their lack of drift. In this experiment, the 
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accelerometer was set to a sensitivity of 16,384 LSB/g, and the gyroscope to 131°/s. Figure a and Figure b, presented 

for reference, illustrate stability tests on the complementary filter's output, showcasing minimal noise and drift in 

both accelerometer and gyroscope data. The utilization of the complementary filter significantly enhances the ROV's 

stability, ultimately improving the quality of captured images. Notably, the implementation of the complementary 

filter is lightweight and straightforward for embedded systems like the Raspberry Pi. 

1.2 Comparative Analysis 

Table 2 provides a comparative analysis of features between the proposed ROVs and commercial counterparts. 

While some features are similar, the proposed ROV distinguishes itself with its parallel computing capability, 

enabling concurrent execution of multiple tasks and image capture. The ROV's remote control operates via a Python-

coded graphical user interface compatible with various operating systems, including GNU/Linux, Windows, 

Android, and OS X. The payload capacity of the ROV, which includes additional sensors, measurement instruments, 

and ocean-collected samples, benefits from the design's mechanical and hardware characteristics, allowing for 

convenient maintenance and component replacement. This technological independence fosters flexibility in ROV 

operations, setting it apart from traditional ROV manufacturers. 

Table 3. Comparison of characteristics of the proposed ROV vs. commercial ROV 

Features Open ROV Proposed ROV 

Architecture Open Open 

Internet connectivity Yes Yes 

Maximum depth [m] 100 to 120 M 100 to 120 M 

Processing type Serial Parallel 

Frames per second  30 42 to 45 

Controller algorithm PID Smart PID 

RC Joystick for Graphic user 

Payload [kg] 1.000 3.128 

Dimensions 

(length×width×height

) [cm] 

8 × 20 × 40 18.4 × 29.5 × 

33.5 

15.64 

 

V. CONCLUSION 

The integration of Underwater Optical Wireless Communication (UOWC) with remotely operated vehicles (ROVs) 

represents a groundbreaking leap in technology for efficient high-speed data transmission and control in underwater 

environments. This advancement holds immense promise, particularly for applications demanding substantial data 

throughput, such as real-time video streaming and ROV operations. The ROV system proposed in this study 

showcases outstanding capabilities, executing precise translational and rotational movements across three axes to 

capture blockage images in video graphic array format. 

Engineered to operate seamlessly at depths ranging from 50 to 100 meters, this ROV surpasses the limitations of 

human divers, whose typical depth reach is limited to 30 meters. Utilizing the four cores of a System-on-Chip (SoC) 

Raspberry Pi, the system shows proficiency in simultaneous motion control, 3D location, temperature sensing, video 

capture, and underwater blockage identification. An operating system-neutral graphical user interface written in 

Python facilitates seamless communication between the ROV and the wireless access control. 

The ROV's six brushless motors are intelligently governed by a PID controller, augmented by a complementary 

filter that enhances sensor data, thereby contributing to elevated stability and video quality during processing on the 

Raspberry Pi. Boasting an impressive autonomy of 2 to 3 hours, the system's open-source algorithms provide 

adaptability for integrating additional sensors and functionalities, catering to diverse underwater operations ranging 

from surveillance and fishing to marine research and environmental monitoring.  
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The versatility of the mechanical design and the use of cost-effective hardware underscore the system's technological 

independence, positioning it as a robust solution with the potential for a myriad of underwater applications without 

compromising data acquisition quality. 
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