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Abstract: - The research paper deals with the improvement of water management practices in agriculture through the use of machine learning 

in smart irrigation systems. The efficiency of the Decision Tree and the Support Vector Machine models with real-time sensor data was 

analyzed. The Internet of Things system was developed to analyze the data collected at the field with the help of various sensors, including 

temperature, humidity, and soil moisture sensors. The layout and choice of sensors were based on the official parameters required for most 

average plants and corps. After data collection and development of classifiers, the Decision Tree and Support Vector Machine models were 

used and analyzed regarding their efficiency for making irrigation-related decisions. As the result, it was found that both models showed a good 

performance, but the SVM model was slightly better due to a smaller number of false positives and false negatives, which allow it to divide the 

data into the corresponding categories more accurately. At the same time, both models use history data, and the more recent data are better for 

decision as it was also noted during the development when the use of models based on history data for irrigation decision result in regular 

irrigation, which in long term would cause the loss of productivity of plans, due to the issue that ancient and no crops are watered too. As the 

final results, it can be stated that the models show good performance, and the algorithms that were tested can be stated viable for the use at 

practice. At the same time, the SVM model shows slightly better performance than DT. 
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I. INTRODUCTION 

Smart irrigation systems are one of the most innovative solutions to water scarcity and sustainability in the 

agriculture industry. These systems utilize various technologies including sensors, actuators, and data analytics 

tool to track, collect and manage streams of real-time data about the water usage. By combining environmental 

data, such as soil humidity and weather, with the stages of crop growth, smart irrigation systems minimize the 

waste of water. The identified technology has numerous benefits including but not limited to water effectivity, 

controlled crop yields, and resources use. In addition, smart irrigation systems have potential for scalability and 

implementation in various climates [1]–[3]. 

Another major trend in the agriculture industry is the application of machine learning . The uses of such 

algorithms as decision trees, support vector machines, neural networks, ensemble, and other machine learning 

techniques has proven to be instrumental in analysis and predictions. In particular, the developed software for 

agriculture enables modeling, monitoring, and prediction of crop behavior and harvest to avoid numerous risks 
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including diseases. By empowering farmers and related stakeholders with predictive tools, machine learning offers 

enhanced efficiency of resources use and the negative impact of agriculture on the environment [4]–[6]. 

Some of the most popular models such as decision trees and SVMs have been widely applied in agriculture for 

such purposes as crop yield prediction, disease diagnosis, and irrigation control. Because they are transparent and 

able to reflect the nature of decision-making processes, they are beneficial in several ways. The decision tree 

model is used to split the feature space into a tree which consists of nodes of decision where the hierarchical nodes 

are based on input variables. As the input variables are used to classify the target outcomes with high rates of 

accuracy, decision  tree models are highly used in irrigation control to analyze the environmental inputs such as 

soil moisture, temperature, and humidity and analyze crop prediction and the amount of water consumed . Even 

though the decision tree model is simple, it generally overperforms and should be used if there is a transparency 

requirement for the nature of the training task. At the same time, support vector machine models are one of the 

most recent applications in agriculture for predictive analytics and classification task purposes [7], [8]. It works 

well when analyzing complex datasets by making generally good predictions. However, specifically, support 

vector machines are good at capturing nonlinearities and patterns in the input space. They make decisions by 

separating the different classes with lines maximally distant from each other . Hence, support vector machine 

models can be used to evaluate the input sensors of such as soil moisture, weather, or crop and predict irrigation 

requirements and water use by the farmers in a smart irrigation system. The robust and optimal nature of SVM 

models for water use is beneficial for operational tasks in agriculture [9]–[11]. 

Combining machine learning learning techniques with smart irrigation systems could significantly contribute to 

enhancing the quality of agricultural water management practices. Machine learning models, which analyze real-

time sensor data and develop predictions on irrigation demand in the future, can be particularly impactful in 

minimizing water waste and, correspondingly, maximizing crop yields [12], [13]. While different models can be 

used in the context of machine learning, including decision tree and support vector machine models, the 

implementation of machine learning algorithms to process complex environmental data and large amounts of 

historical information proves particularly beneficial. The high accuracy of machine learning models’ predictions 

and their sophisticated and in-depth insights into irrigation demands can be particularly advantageous. Moreover, 

the possibility to incorporate machine learning into existing smart irrigation systems is another notable advantage 

as it streamlines the implementation process. Overall, the applicability of machine learning algorithms to 

agriculture manifests itself in smarter and environmentally sounder irrigation system that helps to address the 

pressing issue of water scarcity in the context of an ever-warming climate change [14], [15]. Although there have 

been a significant number of studies conducted in the field, a gaps still exist in our understanding of the broader 

social and technical context in which machine learning models are used. 

This research investigates the application of machine learning models, such as decision tree and support vector 

machine, in smart irrigation systems in agriculture in order to optimize water management. These models analyze 

real-time sensor data to make the most accurate prediction of irrigation needs. The outcomes of the research are 

expected to fill the gaps in the available research and provide a view of the application of machine learning in 

agricultural practices, the benefits it may bring, and the challenges it may impose. The utilization of experimental 

tools, analysis, and frameworks is going to contribute to the development of smart irrigation systems and 

technologies as well as have implications on increased crop yields and elimination of water scarcity in agriculture. 

II. METHODOLOGY 

In the first phase of our research, we devised an IoT system for smart irrigation in agriculture. This system aims to 

improve water management by exploiting real-time data acquisition from sensors installed or distributed in 

various locations within an agricultural field to collect. Temperature sensors were devised to measure 

temperatures, water level sensors to measure water levels and humidity sensors to measure humidity among the 

other environmental parameters. These sensors were installed to monitor the environmental parameters affecting 

their crops continuously. These sensors would then send the data to the controller unit for evaluation. Controller 

unit being the heart of our IoT system, receives the readings of environment parameters through sensors and 

manages iterations using predefined algorithms . The controller unit then manages pump operation conducting the 

desired volume of water for the crops . Continuous monitoring of the data ensures that the crops get the exact 

amount of water necessary. 
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In the second phase, the DT and SVM models have been employed in conjunction with the IoT system to increase 

the predictability and performance of the system. We could reasonably conclude that the data train in the DT and 

SVM models was done on the feature set of historical data acquired on the field. The target, on the other hand, 

was to supervise the actual necessary amount of water to apply on the crops obtained from historical data acquired 

previous to the given field. The sensor data was input on the models and used to calculate the relation of the 

environmental parameters to the amount of water necessary to apply to crops. Thereafter, the data was used to 

predict the currently necessary amount of water. To test the usability of the employed models, we used varied 

performance measures , accomplished by observation on the predictability of the usage of DT and SVM models to 

predict the amount of water to apply based on environmental parameters. Furthermore, the DT and SVM models’ 

training-scheduled performance was embedded on our system’s decision-making process. The models’ training 

scheduled time is used to compute the advance analysis of when the pump should be put on or off. Our system 

continuously monitors the environment parameters and computes/predicts when the amount of water is low. Then 

the controller changes the operation of the pump by initiating the pump operation. Over-pumping is prevented; the 

controller stops the pump operation in advance before any application of water. Using a DT and SVM models-vis 

IoT system through an advanced analysis of water management is sustainable and minimizes wastage of water. It 

additionally enhances resource management, thus increasing the crop yield. 

 

Figure 1. Methodology of machine learning model 

A. Sensor and communication 

 In our study, we focus on the critical role of sensor selection and deployment, which allows realizing real-time 

data acquisition and monitoring toward the efficient management of smart irrigation. Sensors are widely used to 

collect the data on temperature, levels of water, and humidity; more importantly, these devices are chosen to meet 

a specific amount of parameters that should be measured to observe the most decise aspects of the environment, 

determining plant health or water needs. Among the key sensors integrated within our IoT-based smart irrigation 

system used in the environment are temperature sensors, water level sensors, and humidity sensors, which may 

serve various goals and, simultaneously, support even more accurate and carefully examine the characteristics of 

the agricultural field environment. 

Temperature sensors are positioned to be appropriate for monitoring temperature parameters in the field. 

Temperatures are likely to increase by varying water amounts and conditions of the environment. Measuring 

temperature range, these sensors provide information about water volumes needed for the plants through the data 

of plant conditions and stress levels observed due to temperature changes. Also, when speaking about temperature 

characteristics, it would also be crucial to detect any possible frosts that can affect the plants and be prevented. 

Water level sensors are used to evaluate moisture in the soils to give data on water levels needed for the 

agricultural field. These sensors are typically located at 10, 20, and 30 cm depths and measure soil water 

concentration at different levels. Based on the proportions of soil moisture capacity, the irrigation water might be 
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employed to ensure the normal soil profile moisture reach . Due to such systems, water availability is assessed and 

managed to prevent being under-watered or over-watered. Humidity sensors are used to evaluate humidity in the 

atmospheric air. Humidity ranges usually affect the velocity of the plant’s transpiration and the levels of moisture 

stress. At the same time, humidity sensors are used collectively with temperature sensors to define evening 

moisture gain ranges. 

Such collected data are sent with the use of Wi-Fi connectivity to the central unit of the IoT system. The central 

controller provides the processing of this data with the use of an artificial neural network, which would allow 

realizing the decision-making process. The results of this data acquisition are observed in three datasets to show 

some data calculations, measures, and important events. In this system, we pay critical attention to the timely 

process of information acquisition and sending. 

B. Machine learning models 

For our research, the existing machine learning models are a foundation to enhance capabilities of our IoT-based 

smart irrigation system. Specifically, we use two powerful algorithms, Decision Tree and Support Vector Machine 

, that determine water requirement from real-time sensor data. While historical sensor data is used to train them, 

these models can accurately predict a tendency based on complex patterns and relationship between inputs and 

outcomes present in the agricultural environment. 

Firstly, we use Decision Tree algorithms that are known for their interpretability and simplicity in use. The trained 

DT model partitions feature space into separate areas, similar to a tree structure, through sequential binary data 

splits. For our system, the implication of this decision structure serves as the advantage by receiving an intuitive 

report reflecting the description of necessary features to manage irrigation regulating and planning. Therefore, we 

train a DT model through historical sensor data analysis, which helps the model accurately and effectively classify 

specific states and determine outcomes. 

Secondly, considering that DT model does not satisfy all the necessary requirements of achieving high 

productivity, we additionally introduce a Support Vector Machine learning algorithm. SVM can effectively reach 

high predictive performance by mapping inputs and outputs into a higher-dimensional feature space thanks to the 

division of various classes through the use of core functions. In this way, we can improve classification efficiency 

and ensure accurate prediction when dealing with sensor data. By training the SVM model, we strive to identify 

complex non-linear relationships among parameters outlined and between them and water requirements. In 

general, we want to model a complex system that consists of various interacting elements which is, however, 

captured and presented comprehensively and efficiently in such a format. Since the models are trained with 

previous sensor data, it allows them to generalize results on unseen data. We use a range of objective performance 

metrics to guarantee the effectiveness of training efforts, like accuracy, precision, recall and F1-score. 

C. Dataset 

The first step in our research is the implementation of an IoT system. Sensors and data collection are a 

fundamental prerequisite for the realization of the objectives in our research investigation. With sensors 

implementing across the entire field, such a system can quickly gather invaluable data on the current 

environmental conditions inside the field. The first dataset contains a sample of this data and shows the status of 

the system at a given time in the morning, the afternoon, or the evening. The sample data shown in table 1 shows 

collected from the various sessions are shown in table 1. 

TABLE 1. SENSOR DATA AND THE ACTUATOR RESPONSE 

Time Temperature (°C) Humidity (%) Soil Moisture (%) Pump Operation 

6:00 AM 22 65 40 On 

7:00 AM 24 68 42 On 

8:00 AM 26 70 45 Off 

9:00 AM 28 72 48 Off 

10:00 AM 30 75 50 On 

11:00 AM 32 78 52 On 

12:00 PM 34 80 55 Off 
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1:00 PM 36 82 58 Off 

2:00 PM 38 85 60 On 

3:00 PM 36 82 58 On 

4:00 PM 34 80 55 Off 

5:00 PM 32 78 52 Off 

6:00 PM 30 75 50 On 

7:00 PM 28 72 48 On 

8:00 PM 26 70 45 Off 

9:00 PM 24 68 42 Off 

10:00 PM 22 65 40 On 

This dataset contains different readable variables, such as time, temperature, soil moisture, humidity, and pump 

status. Combining such data allows one to observe the relationships that exist between the condition of the soil, 

the temperature, and other factors. A more applicable dataset which consists of 2100 observations combines the 

above-described factors and has an additional pump status variable. The dataset is split with a traditional 70-30 

split, with 70 percent being used for training and 30 percent being applicable for testing. Such a ratio will allow a 

model to receive training by being tested on a variety of conditions. 

D. Preprocessing of dataset 

 As a part of our research, dataset preprocessing is an important part of our machine learning models’ training. It 

presupposes a range of important procedures closely related to cleaning, transforming, and enhancing the dataset, 

which would contribute to the models’ improved performance and robustness. There are several typical steps that 

need to be completed before the data can be utilized to train the models, including data cleaning and separation, 

feature scaling, and feature engineering. In addition, normalization is also a new type of processing, which is often 

recommended to be completed in combination with these stages for the sake of the improved performance and 

generalization capacity of the models. Moreover, as a part of our additional preprocessing, we complete data 

partitioning as a crucial element, which is irreplaceable to help the models avoid overfitting and be trained on the 

one subset of the data while being tested on another.  

Data cleaning is the first stage we utilize to identify and handle missing or erroneous data. Missing data is one of 

the most serious problems associated with machine learning since it can have a negative impact on the models’ 

performance leading to their being biased and inaccurate. To improve the situation, we utilize imputation, which is 

a general technique used to replace missing values with their estimates derived from the existing data. Outliers, 

which are the extreme values differing significantly from themselves, are also detected and emended or, if it is 

impossible, removed. The following feature scaling stage presupposes the standardization of values or the 

completion of the 0 to 1 range across all the features. It is essential for the models, which are sensitive to the 

scales of input variables, such as for Support Vector Machines. Feature scaling is important since it does not allow 

some variables to take over others with smaller values, ensuring that the model learns from all the features 

equally. 

The second stage is so-called feature engineering, which means data transformation for the more comfortable 

learning from it for the models. We create new features in this process, extracting the existing ones to be more 

consistent with the inherent patterns of the data. For example, the difference of soil moistening or the average 

temperate in the tank can be transformed into a new meaningful factor. As well, we usually normalize the data, it 

making its distribution normal if our models need it. The Decision Tree, for example, usually perceives the 

assumption that the data is normally distributed. However, usually, it is not the case. Normalization helps to make 

models more adequate and generalizes properly. 

III. RESULT AND DISCUSSION 

To predict irrigation responses using real-time sensor data, the performance of each machine learning model was 

tested. The results of the testing phase confirmed that both Decision Tree and Support Vector Machine models 

were highly accurate. The testing of the Decision Tree model revealed that the level of precision reached 94.5 

percent. Although this was an excellent result that showed the model’s high degree of proficiency in the 

classification of irrigation responses, the machine learning model made a decision on this task based on the 
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classification patterns and decisional rules. The results of this work demonstrate that the testing data revealed that 

the Decision Tree model did not have higher precision values when it came to the task of classifying irrigation 

responses in smart irrigation systems. It may, therefore, be assumed that the model now meets the need for 

interpretable results and a high level of actionability, suggesting a simple way to make decisions about irrigation. 

A similar decisional task was conducted regarding the outputs of the Support Vector Machine model, and the 

result is 98.94% precision. In sum, the tested machine learning model was able to classify irrigation responses 

with high precision because it had more complex relationships with the sensor data. This model was able to reveal 

the high-precision data necessary to identify more intricate relationships and patterns observed in the 

environmental parameters and enhance the irrigation schedule in terms of accuracy and precision. The figure 2 

shows the accuracy of the machine learning model used in this research. 

 

Figure 2. Accuracy of each model 

This figure 3 presents a summary of the performance metrics of the models. In the Decision Tree model, the 

precision is at 0.92, and this means that nineteen out of twenty positive instances or 92 percent were correctly 

classified as positive. The associated recall is 0.96 showing that the model was able to correctly classify 96 

percent of actual positive instances . As for F1 score, it is 0.94 and represents the harmonic mean of recall and 

precision, and as a result, a balanced accuracy measure . Finally, the AUC ROC is 0.88 or 88 percent, showing 

that this model has high discriminative power, as it has a high probability of distinguishing between negative and 

positive instances. As for the performance of the Support Vector Machine model, all the indicators are higher. 

Specifically, precision is at 0.97, and recall is at 0.99, and F1 score is at 0.98, meaning that this model is better at 

accurately classifying irrigation responses. Finally, the value of AUC ROC is 0.94, showing that the SVM model 

is also more effective at correctly allocating positive and negative instances. Overall, this table evidences that both 

models are nearly equally effective in improving agricultural water management and the later is slightly better. 

In Figure 4 confusion matrices provide information on the performance of the Decision Tree and the Support 

Vector Machine models when classifying irrigation responses. In the confusion matrix of the first model, the top-

left cell indicates that the number of instances correctly classified as negative is 450 . The top right states that the 

number of instances classified incorrectly as positive 20 units. Also, the bottom left indicates the number of 

instances classified incorrectly as negative 30 units. In the bottom-right cell, 500 means that the number of 

instances that have been correctly classified as positive is 500. 

Contrary in the confusion matrix of the source decision tree model, the top left has 470 meanings that there are 

470 instances classified correctly as negatives. The top right cell, meaning zero, shows that no instance is 

classified as positive. The bottom, left meaning 10, indicates the number of instances classified as negative. The 

bottom right shows that the number of instances classified correctly as positive is 520. 
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Figure 2. Performance score of each model 

 

Figure 4. Confusion matrices of each model 

Figure 5 displays a comprehensive representation of the performance of both models, Decision Tree and Support 

Vector Machine, over the course of 270 epochs, with values of data loss and accuracy registered for every 30 

epochs. As can be seen, both models exhibit a similar pattern characterized by a relatively uniform decrease in 

data loss and a corresponding increase in accuracy. However, a detailed analysis of the values provides a different 

perspective, as, at every epoch from 30 to 270, the Support Vector Machine model had a lower value of data loss 

and a higher rate of correct data representation. It is essential to note that these characteristics are indicative of the 

quality of a model, as a lower data loss point to a minimal rate of prediction errors, and higher accuracy suggests a 

more significant number of correct predictions. 
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Figure 5. Data loss and accuracy at each epochs 

The significance of the fact that most of the provided values characterize the SVM model as superior is that the 

model is more capable of recognizing complex patterns between data. As a result, its predictions have a lower 

error category, meaning that it is more able to accurately predict the irrigation response to a set of weather 

variables. Therefore, the essential conclusion that can be drawn from the provided information is that the Support 

Vector Machine model is more effective in optimizing water management in agriculture. 

IV. CONCLUSION 

The following research aims to provide smart irrigation systems in order to optimize water management practices 

in agriculture with machine learning models. Specifically, by implementing Decision Tree and Support Vector 

Machine algorithms, the research aimed to predict irrigation responses over the sensor data. It comes out that 

results are appealing as both models can be used efficiently in each case and can deliver highly accurate 

classifications on irrigation. When tested, SVM outperformed better than DT with its higher values of precision, 

recall, F1 score, and AUC ROC. The results of the confusion matrices showed how SVM managed to eliminate 

false positives and false negative to low levels, which in turn ensured high accuracy of irrigation response 

classification from the real-time sensor data. The tracking of both models for the 270 epochs showed how SVM 

outperformed DT in terms of loss of data reduction and in terms of increase of accuracy as it had the less data loss 

for the majority of epochs and had increased accuracy levels, which showcase how well the model can efficiently 

capture complex patterns in sensor data. The results suggest that it is possible to provide IAD systems with 

advanced analysis through machine learning algorithms where SVM model can be of most use. 
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