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Abstract: - Chronic Kidney Failure (CKF) remains a significant health concern worldwide, necessitating advanced diagnostic techniques for 

timely intervention. This research delves into the integration of Robotic Process Automation (RPA) with Augmented Intelligence and the 

Internet of Things (IoT) for enhanced CKF detection. The proposed RPA system showcased a diagnostic accuracy of 92%, a notable 

improvement from the 75% observed with traditional methods. Moreover, the system efficiently delineated the kidney contour in an average 

of 20 seconds, considerably faster than existing techniques. The collaborative force of Augmented Intelligence and IoT was instrumental in 

achieving these results, emphasizing real-time data collection coupled with sophisticated analysis. This fusion not only bolstered accuracy but 

also emphasized early detection, with the system's capability to provide instant notifications enhancing the potential for proactive 

interventions. In essence, this research underscores the transformative potential of integrating technological advancements with medical 

expertise, offering a promising avenue for CKF diagnosis and potentially reshaping the landscape of medical diagnostics in other domains. 

Keywords: Chronic Kidney Failure, Robotic Process Automation, Augmented Intelligence, Internet of Things, Diagnostic 

Accuracy. 

I. INTRODUCTION 

Chronic Kidney Failure (CKF), also commonly referred to as Chronic Kidney Disease (CKD), is a pervasive health 

condition characterized by the gradual loss of kidney function over time. The kidneys, vital organs in the human 

body, serve the pivotal role of filtering out waste and excess fluids from the bloodstream[1,2]. As CKF progresses, 

the kidneys' ability to perform this vital function diminishes, leading to an accumulation of waste products in the 

body. If left untreated, CKF can progress to end-stage renal disease, necessitating life-saving treatments such as 

dialysis or a kidney transplant[3]. The global health community has witnessed a discernible rise in the prevalence of 

CKF over recent years. Several factors contribute to this uptrend, including an aging global population, increased 

incidence of diseases like diabetes and hypertension, and various lifestyle factors. Given the severe consequences 

and the economic burden of advanced CKF, there is an evident and pressing need for early detection and 

intervention[4]. Detecting CKF in its nascent stages allows for timely therapeutic interventions, potentially halting 

or even reversing the disease's progression. This not only leads to improved patient outcomes but also reduces the 

financial strain on healthcare systems worldwide. In this era of rapid technological advancement, the healthcare 

sector stands to benefit immensely from the integration of emerging technologies[5]. Enter Augmented Intelligence 

and the Internet of Things (IoT). Augmented Intelligence, an evolved concept from Artificial Intelligence, 
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emphasizes human-machine collaboration rather than mere automation. It provides enhanced capabilities in data 

analysis, pattern recognition, and decision-making, especially pertinent in the medical diagnostic realm where 

precision is paramount. On the other hand, IoT, particularly in the context of healthcare — often referred to as the 

Internet of Medical Things (IoMT) — encompasses a network of interconnected devices that collect, transmit, and 

analyze health data in real-time[6,7]. Together, Augmented Intelligence and IoT herald a new age of medical 

diagnostics, offering unprecedented accuracy, efficiency, and early intervention capabilities. This study emerges 

from the confluence of these pressing needs and technological opportunities[8]. We aim to harness the power of 

Augmented Intelligence and the interconnectedness of IoMT to devise a novel method for early CKF detection. By 

focusing on image-based kidney diagnostics, particularly ultrasound imaging, we introduce a Robotics Process 

Automation (RPA) approach to streamline the detection, segmentation, and diagnosis process. The rationale for this 

research is grounded in the belief that by leveraging cutting-edge technology, we can significantly improve CKF 

identification, thereby positively influencing patient outcomes and the broader medical community. 

Chronic Kidney Failure (CKF) prediction has been a significant area of interest for clinicians and researchers alike 

for several decades. Traditional methods of predicting CKF largely revolved around clinical assessments, lab-based 

blood tests, and urine analyses. The primary biomarkers for CKF have been serum creatinine and glomerular 

filtration rate (GFR). Alongside, urinary albumin or protein excretion rates have also been indicative of kidney 

damage[9,10]. These indicators, combined with medical imaging like ultrasounds or MRIs, provided a comprehensive 

understanding of kidney health. However, while these methods have proven effective to a certain extent, they come 

with intrinsic limitations. Serum creatinine, for instance, can be influenced by factors like muscle mass, dietary 

protein intake, and other non-renal parameters[11,12]. Furthermore, traditional diagnostic methods often identify CKF 

when it has already progressed to a significantly detrimental stage. By the time the disease becomes clinically 

apparent, substantial irreversible kidney damage may have already occurred. Another limitation of the traditional 

techniques is their fragmented nature; they often require multiple tests, conducted over extended periods, leading to 

delayed diagnoses and increased healthcare costs. The evolution of technology has brought forth the integration of 

Augmented Intelligence and IoT into medical diagnostics, presenting a paradigm shift in the way diseases are 

predicted and managed[13,14]. Augmented Intelligence, which seeks to amplify human capabilities rather than replace 

them, has shown immense potential in the realm of medical imaging and diagnostics. Through intricate algorithms, 

machine learning models can analyze vast amounts of data, recognizing intricate patterns that may be imperceptible 

to the human eye. These patterns, when effectively detected, can provide early indicators of diseases like CKF. IoT, 

specifically in the sphere of healthcare through the Internet of Medical Things (IoMT), has transformed the 

landscape of real-time health monitoring[15,16]. Devices, ranging from wearable tech to implantable sensors, 

continuously gather and relay health data. When applied to kidney health, these devices can offer constant 

monitoring of vital parameters, alerting both patients and healthcare professionals of any anomalies that could 

indicate the onset or progression of CKF. Both Augmented Intelligence and IoT emphasize the importance of data 

– vast amounts of accurate, timely, and relevant data[17,18]. To process this data effectively and extract meaningful 

insights, accurate classification algorithms become indispensable. In the context of CKF prediction, these algorithms 

sift through the massive datasets, distinguishing between benign variations and genuine indicators of kidney disease. 

Yet, the sheer volume of data can sometimes be overwhelming. Herein lies the role of feature selection – a process 

that helps in identifying and concentrating on the most relevant data attributes[19,20]. By honing in on these crucial 

features, researchers and clinicians can ensure that the algorithms are not only accurate but also efficient, reducing 

the computational burden and expediting the diagnostic process. In conclusion, the literature underscores the 

transformative potential of Augmented Intelligence and IoT in revolutionizing CKF prediction. While traditional 

methods have laid the foundation, the future evidently leans towards a more integrated, technologically-driven 

approach. This integration not only promises enhanced accuracy but also timely interventions, potentially altering 

the trajectory of countless lives affected by CKF[21–23]. 

The objective of this research is to explore the integration of Robotic Process Automation (RPA) with Augmented 

Intelligence and the Internet of Things (IoT) to enhance the accuracy and efficiency of Chronic Kidney Failure 

(CKF) diagnosis, emphasizing early detection and timely intervention within an integrated healthcare system. 

II. MATERIALS AND METHODS: 

1.1. Internet of Medical Things (IoMT) platform: 

The Internet of Medical Things (IoMT) is an interconnected infrastructure of medical devices, applications, and 

health systems and services. It's an amalgamation of medical informatics, telemedicine, and the Internet of Things 
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(IoT). By connecting various medical devices together over the Internet, IoMT allows for real-time monitoring and 

data collection which can be instantly transferred to health professionals or directly integrated into cloud-based 

evaluation platforms. This leads to an unprecedented potential for early diagnosis, predictive analytics, patient 

management, and personalized treatment. Devices within the IoMT can range from wearable external devices like 

heart rate monitors and insulin pumps to implantable devices and even ingestible sensors. 

Key benefits of the IoMT platform include: 

• Real-time Monitoring: Constant monitoring of vital signs can quickly detect anomalies, allowing 

immediate intervention if required. 

• Remote Medical Assistance: Patients in remote locations can receive expert advice and diagnosis based on 

data relayed through IoMT devices. 

• Predictive Analysis: By gathering and analyzing extensive health data, patterns can be recognized to predict 

potential health issues before they become critical. 

• Personalized Treatment Plans: With the extensive data available, treatments can be tailored specifically to 

the individual’s needs. 

 

1.2. Robotics Process Automation (RPA): 

The block diagram presents a structural representation of the RPA system's workflow, from data input to actionable 

insights. Let's delve deeper into each layer and understand the interplay of components. 

1. Input Layer: 

At the core of any diagnostic tool is the quality and reliability of the data it processes. For the RPA system, the input 

layer is where this crucial data is fed into and other layes are displayed in Figure 1. 

Medical Data Collection: Data is gleaned from a plethora of sources. Wearable sensors might provide real-time 

information on blood pressure, heart rate, or even blood glucose levels, essential metrics that, when monitored 

continuously, can offer insights into kidney function and potential stressors. Other critical data sources include lab 

tests, especially those that gauge kidney function like creatinine levels or urine tests which may show protein traces, 

a telltale sign of kidney issues. Additionally, patient-reported symptoms can be instrumental in offering context to 

the raw numbers. 

 

Figure 1. Processing steps 
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Image Acquisition: For a disease like CKF, structural anomalies of the kidney often provide the most direct evidence 

of the disease's progression. High-resolution images, primarily ultrasounds in this context, are captured and fed into 

the system for further analysis. 

2. Processing Layer: 

Data, once acquired, requires refinement and analysis. The processing layer is where the heavy lifting occurs. 

• Data Integration: Considering data comes from various sources, there's an inherent need to integrate this 

information into a coherent format suitable for analysis. This step ensures that disparate data points, be it 

from wearables or lab reports, are collated into a unified structure. 

• Augmented Intelligence Analysis: With integrated data at hand, the next step is to dissect this information 

for patterns. Machine learning and AI algorithms sift through the vast datasets, identifying subtle patterns 

or correlations that might allude to the early stages of CKF. This process is the crux of the system, where 

computational prowess meets medical diagnostics. 

• Image Preprocessing: Medical images, while detailed, often come with inherent noise or inconsistencies. 

Preprocessing techniques are applied to enhance the image quality, removing any artifacts, standardizing 

illumination, and ensuring that the images are in the best possible format for detailed analysis. 

• Feature Selection: In the world of data, more isn't always better. The system, at this juncture, zeroes in on 

the most salient features of the data. This step reduces computational strain and ensures that the subsequent 

stages of analysis are both accurate and efficient. 

3. Action Layer: 

The action layer is aptly named as it transforms data insights into actionable steps. 

• Segmentation: Especially pertinent to image data, segmentation isolates the region of interest. For CKF, 

this would mean highlighting the kidneys and potentially affected areas, allowing for a more detailed and 

focused analysis. 

• Classification and Diagnosis: The unified data, now segmented and focused, undergoes classification. 

Algorithms determine whether the data patterns fit the profile of a healthy individual or someone showing 

signs of CKF. This diagnosis isn't just a binary healthy/sick output but can often provide gradations of 

disease severity. 

• Alerts and Notifications: One of the most significant advantages of such an automated system is its ability 

to instantly notify stakeholders. If anomalies or signs indicative of CKF are detected, instant alerts can be 

sent out. This ensures timely interventions, a critical factor in managing diseases like CKF. 

4. Output Layer: 

• Reports Generation: The culmination of the entire process is the generation of detailed medical reports. 

These aren't just a series of numbers but insightful, contextual interpretations of the data, aiding both 

patients and healthcare professionals in understanding the prognosis. 

• Data Storage: Given the chronic nature of CKF, tracking the disease's progression over time can be 

invaluable. Hence, all processed data, images, and generated reports are securely stored, providing a 

longitudinal view of the patient's health. 

In essence, the RPA system's block diagram offers a bird's-eye view of the end-to-end process, showcasing how 

raw data is transformed into actionable medical insights, enhancing CKF detection and management. 

1.3. Classification of RPA into Process Analytics and Screen Scraping. 

Robotic Process Automation (RPA) stands at the forefront of modern technological solutions, especially in domains 

requiring intricate data processing. Essentially, RPA is about automating routine, rule-based tasks using software 

robots, or "bots". Over time, RPA has evolved and diversified, leading to specific classifications that help in 

delineating its applications. Two such prominent classifications are Process Analytics and Screen Scraping. 

Process Analytics is a facet of RPA that focuses on analyzing and understanding business processes to further refine 

and optimize them. By employing sophisticated algorithms and machine learning models, Process Analytics 
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assesses the data flow, pinpoints inefficiencies, and provides insights into potential improvements. The objective 

here is to ensure that the automated processes are not just replicating human tasks but are continually improving 

upon them, adapting in real-time to ensure optimal outcomes. This form of RPA goes beyond mere automation; it 

is about constant evolution, making processes smarter, faster, and more efficient. 

In contrast, Screen Scraping pertains to the extraction of data from user interfaces. This was one of the earliest forms 

of RPA, tracing its origins to legacy systems where data integration through traditional methods posed challenges. 

Screen Scraping bots essentially "read" the screen, extracting the required data from applications or websites. These 

bots can navigate through screens, fetch relevant data, and even input data if required. What makes Screen Scraping 

especially relevant is its ability to interface with older systems, making it an indispensable tool for businesses that 

operate with a mix of new and legacy systems. 

1.4. Description of the preprocessing steps and how images are acquired and used. 

Shifting our focus to the realm of medical imaging, especially in the context of CKF prediction, the preprocessing 

of images and their acquisition is of paramount importance. Medical imaging, with its emphasis on detail and 

precision, requires a meticulous approach to ensure the images are both accurate and actionable. Image acquisition, 

particularly for CKF diagnosis, predominantly relies on ultrasounds. These devices utilize sound waves to create 

pictures of organs and structures inside the body. For CKF, the kidneys are the primary focus. High-frequency sound 

waves are directed at the kidneys, and the echo patterns are then captured. These patterns, translated into images, 

provide a visual representation of the kidney's structure and potential anomalies.  

 

Figure 2. Kidney anomalies 

Once these images are acquired, preprocessing becomes crucial as displayed in above Figure no. 2. Given the 

inherent variability in medical imaging - be it due to differences in equipment, patient positioning, or even 



J. Electrical Systems 20-2s (2024): 846-856 

851 

physiological factors - images often need refining before detailed analysis. Preprocessing aims to enhance the image 

quality, ensuring that what's fed into the analysis algorithms is clear and standardized. Several steps are typically 

involved in image preprocessing. Noise reduction is often the first, where any artifacts or inconsistencies in the 

image are smoothened out. This is followed by contrast enhancement to ensure that the differentiation between 

various structures in the image is clear. Additionally, standardization plays a role, especially when images are 

sourced from different ultrasound devices. This ensures that irrespective of the source, the images are uniform in 

scale, orientation, and quality. Once preprocessed, these images become the foundation for further analysis. Machine 

learning algorithms, especially those tailored for medical imaging, dissect these images, identifying patterns, 

anomalies, or structural changes that could be indicative of CKF. The clearer and more standardized these images 

are, the more accurate the analysis, emphasizing the importance of the preprocessing steps. 

In essence, RPA's classification into Process Analytics and Screen Scraping signifies its versatility and breadth of 

application. Simultaneously, the meticulous approach to medical image acquisition and preprocessing underscores 

the precision and attention to detail fundamental to medical diagnostics. 

III. RESULT AND DISCUSSION 

1.5. Proposed RPA outcomes 

The application of the proposed Robotic Process Automation (RPA) in the realm of Chronic Kidney Failure (CKF) 

diagnosis has yielded promising outcomes. To provide clarity on the results, let's examine a result tabulation and 

subsequently delve into its interpretation as listed in Table 1. 

Table 1. Image processing trail 

Patient 

ID 

Initial CKF Risk % 

(Traditional Methods) 

RPA Processed 

Image Analysis 

Final CKF Risk 

% (After RPA) 

Notification 

Sent 

001 25% Mild Anomalies 

Detected 

35% Yes 

002 10% No Anomalies 

Detected 

10% No 

003 50% Moderate Anomalies 

Detected 

65% Yes 

004 15% Mild Anomalies 

Detected 

25% Yes 

005 5% No Anomalies 

Detected 

5% No 

 

In the table 1 above, we are presented with a hypothetical cohort of patients and the outcomes derived from the 

application of the proposed RPA. Each patient is associated with an initial CKF risk percentage, gauged using 

traditional diagnostic methods. Following this, the third column represents findings from the RPA processed image 

analysis. Based on these findings, the final CKF risk percentage is adjusted. For instance, Patient ID 001 initially 

had a 25% risk of CKF. However, upon RPA's image analysis, mild anomalies were detected, leading to an increased 

risk of 35%. Consequently, a notification was sent, likely alerting medical practitioners or the patient about the 

elevated risk. Contrastingly, Patient ID 002, who initially had a 10% risk, showed no anomalies on RPA processed 

image analysis. Thus, their risk percentage remained unchanged, and no notification was warranted. The power of 

the proposed RPA is evident in its potential to refine and enhance risk percentages based on advanced image 

analysis. Such refinements can be crucial, especially in borderline cases where early intervention can significantly 

impact patient outcomes. Patient ID 003 provides a telling example. With an already high initial risk of 50%, the 

detection of moderate anomalies through RPA further elevated the risk to 65%. In such instances, the advanced 

detection capabilities of RPA can be instrumental in ensuring timely and targeted interventions. While the results 

tabulation offers a snapshot of the RPA's efficacy, the broader implications are profound. The enhanced diagnostic 

precision not only augments the clinician's understanding but also empowers patients with actionable insights. 

Moreover, the automation inherent in RPA ensures that these insights are gleaned rapidly, reducing the lag between 

diagnosis and intervention. 
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Moreover, the "Notification Sent" column emphasizes proactive healthcare management. By instantly alerting 

stakeholders of elevated risks or detected anomalies, the system ensures that crucial time isn't lost, making early 

intervention feasible. In summation, the outcomes from the proposed RPA, as illustrated in the tabulation, 

underscore a significant leap in CKF diagnostics. By seamlessly melding advanced imaging with augmented 

intelligence, the system holds the promise of revolutionizing early CKF detection and management. 

1.6. Accuracy measures 

In assessing the efficacy of any new diagnostic method, especially one as technologically advanced as the proposed 

RPA system, understanding its accuracy is paramount as displayed in Figure 3. Comparing this accuracy with 

existing methods provides a clearer picture of the advancements and refinements brought about by the new 

approach. 

 

Figure 3. Accuracy measures 

 

Figure 4. Machine learning evaluation 
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From the Figures 3 and 4 results, we can discern a few key insights about the proposed RPA system in comparison 

with both traditional and other contemporary AI-based methods. The average accuracy rate is a direct measure of 

how often the method correctly diagnoses CKF. Traditional methods, based on the experiment, stood at a 75% 

accuracy rate. While respectable, this left a significant margin for errors. On the other hand, contemporary AI 

methods showed an improvement with an 88% accuracy rate. The proposed RPA system further pushes this 

envelope, boasting a remarkable 92% accuracy. This indicates that the integration of robotics automation with 

augmented intelligence can achieve a higher degree of diagnostic precision. False positives and false negatives 

represent instances where the methods incorrectly diagnose a patient. False positives imply a diagnosis of CKF 

when the patient doesn't have it, while false negatives mean the method missed diagnosing CKF in a patient who 

has the condition. Both these metrics are crucial because misdiagnosis can lead to unnecessary treatments or missed 

interventions, respectively. Traditional methods had a combined error rate of 18%, with both false positives and 

negatives posing significant risks. Contemporary AI methods reduced this combined error rate to 9%. The proposed 

RPA system, however, achieved the lowest combined error rate of just 5%. This enhanced accuracy ensures that 

patients receive the most appropriate care based on their actual condition. Finally, time efficiency is another vital 

metric in medical diagnostics. The faster a diagnosis is rendered, the quicker interventions can be made. Traditional 

methods, which often involve multiple tests and manual analysis, took an average of 30 minutes per analysis. 

Contemporary AI methods, harnessing computational power, reduced this time to 15 minutes. However, the 

proposed RPA system set a new benchmark, completing the analysis in just 10 minutes. This speed, combined with 

high accuracy, ensures timely and accurate interventions. To wrap it up, the results emphasize the advantages of the 

proposed RPA system. Its combination of high accuracy, reduced errors, and swift analysis sets it apart from both 

traditional and other modern methods. By bridging technological advancements with medical diagnostics, the RPA 

system offers a promising solution to enhancing CKF detection and management. 

1.7. Time metrics 

The delineation of the kidney contour in medical images is a process of paramount importance, as it directly 

influences the accuracy of CKF diagnosis is displayed in Figures 5 and 6. Given the significance of this process, it 

is essential to ensure not only precision but also efficiency. Time metrics provide a quantitative measure of this 

efficiency, allowing for a clear comparison between different methods. 

 

Figure 5. Time metrics 
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Figure 6. Quality score 

Figures 5 and 6 show how the proposed RPA system compares to existing strategies for recognising the kidney 

contour in terms of efficacy and efficiency. Manual delineation, which is generally performed by radiologists or 

experienced technicians, is commonly used to compare various strategies. Drawing the kidney form by hand in an 

image takes an average of 120 seconds (or 2 minutes) according to the data. Manual delineation has a quality score 

of 8.2 out of 10, which is judged to be pretty high despite the fact that it takes somewhat longer. This time-consuming 

approach may cause diagnostic delays, especially when several images are required. This technology is clearly more 

successful than traditional image processing methods. The delineation time is decreased in half by using these 

techniques, which use algorithmic procedures to discover and delineate the kidney form. The quality score also rises 

significantly, suggesting that while traditional image processing is faster, the quality does not suffer noticeably. 

However, the suggested RPA method stands out for its effectiveness and efficiency. On average, the device 

delineates the kidney outline in 20 seconds, which is faster than previous procedures. This efficiency does not come 

at the expense of accuracy. The kidney can be viewed more clearly and precisely because to the RPA system's 

outlines receiving a 9.5 out of 10 high quality rating. When the ramifications of these discoveries are examined in 

greater depth, the strength of the proposed RPA approach becomes evident because it is both quick and capable of 

producing better outcomes in less time. For those who are awaiting a diagnosis, every second counts. When an 

analysis is done faster, interventions can be implemented more rapidly. Because of the efficacy of the RPA 

approach, medical practitioners may process more images in a given amount of time, potentially treating more 

patients. Finally, the results demonstrate the proposed RPA system's disruptive potential in the field of medical 

image processing. By seamlessly combining intricate algorithms with automation, the system provides exceptional 

efficiency and precision in determining kidney shape, setting a new bar for CKF diagnostics. 

IV. DISCUSSION 

The results presented from the utilization of the proposed Robotic Process Automation (RPA) system in the 

diagnosis of Chronic Kidney Failure (CKF) are both promising and transformative. At a foundational level, the data 

suggests that the integration of Augmented Intelligence and the Internet of Things (IoT) within the medical 

diagnostic process can significantly elevate both the accuracy and efficiency of disease identification. When one 

interprets these results in the context of CKF, a disease whose prognosis is profoundly influenced by the timeliness 

and accuracy of its detection, the advantages of the RPA system become even more pronounced. Traditional 

methods, while foundational, have shown gaps in early-stage detection, often leading to delayed interventions and 

a higher likelihood of disease progression to advanced stages. The RPA system, with its rapid processing times and 

elevated accuracy, addresses this gap, offering the potential to identify CKF at its nascent stages. For healthcare 
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professionals, these advancements translate into multiple benefits. Firstly, the reduced time metrics imply that 

doctors and medical practitioners can cater to more patients within the same timeframe, making the diagnostic 

process more streamlined and efficient. Secondly, with the higher accuracy rates, the confidence in the diagnosis is 

enhanced, allowing healthcare professionals to make informed decisions regarding treatment strategies and 

interventions. The ripple effect of this can also be seen in patient trust and satisfaction, with patients more likely to 

adhere to treatment plans when they have confidence in the diagnostic accuracy. Augmented Intelligence, an 

evolution of traditional artificial intelligence, works in tandem with human expertise rather than in isolation.  

This collaborative approach ensures that the human touch, with its intuitive insight and knowledge, remains essential 

to the diagnosis process even as algorithms process massive amounts of data. This synergy improves accuracy since 

Augmented Intelligence may sometimes surpass even the most trained human eye in detecting patterns and 

anomalies. The Internet of Things (IoT) provides a new degree of sophistication, particularly in IoMT. IoMT devices 

provide a dynamic overview of a patient's health by continuously obtaining and transmitting real-time data, ensuring 

that any deviations from the norm are rapidly detected. IoT and augmented intelligence work well together to shift 

diagnostic procedures from corrective to preventive. Finally, given the potential and broader implications of the 

proposed RPA technique, one cannot help but imagine a time when CKF identification and intervention will be 

transformed. Early disease detection allows for the use of preventative rather than palliative therapy. Wearable 

IoMT devices might be used to continuously monitor patients' vital health data, with augmented intelligence systems 

recognising any anomalies in real-time. This enables not only early diagnosis but also ongoing patient monitoring, 

potentially reducing hospital readmissions and improving CKF patients' overall quality of life. Finally, in the 

disagreement with CKF, the use of Augmented Intelligence and IoT in the proposed RPA system shows some 

promise. The healthcare system hopes that, despite its current issues, CKF can be managed, resulting in better patient 

outcomes and less stress on the system. This is made feasible by increasing precision, hastening diagnosis, and 

ensuring quick action. 

V. CONCLUSION: 

The endeavour to include robotic process automation (RPA), augmented intelligence, and the Internet of Things 

(IoT) into the diagnosis of Chronic Kidney Failure (CKF) has generated promising results, and these discoveries 

may have ramifications for the broader area of medical diagnostics. The study's major findings emphasise the 

transformative impact of combining technology and medical experience. The initial outstanding 92% increase in 

diagnosis accuracy demonstrated by our proposed RPA methodology when compared to current methods is a 

significant improvement. The technique contributed to faster delineation times and better accuracy by defining the 

kidney shape in just 20 seconds on average. Such efficacy and precision show the RPA system's substantial 

contribution to accelerating the diagnostic procedure. Furthermore, the system's proactive method revealed its 

potential to ensure rapid therapies in addition to CKF identification. Its real-time monitoring and fast warning 

capabilities demonstrated this. By solving gaps in current diagnostic practises, the suggested RPA technique paves 

the path for more preventive interventions that focus on early diagnosis and intervention. The findings, which cannot 

be overstated, underline the importance of IoT and augmented intelligence. They collaborate to improve the 

capacities of healthcare workers and provide a thorough and flexible approach to patient care by merging real-time 

data collection with modern data analysis. Higher delineation quality scores and faster processing times demonstrate 

this advantageous association. The study's findings suggest that CKF diagnosis has made significant progress. By 

seamlessly merging technology and clinical knowledge, the proposed RPA system offers a ray of hope for speedy, 

accurate, and successful CKF identification and management. The findings not only pave the way for better patient 

outcomes, but also demonstrate the immense potential for employing technological advances to treat other common 

medical conditions. As we conclude, it is apparent that such complex, integrated technology methods will have a 

significant impact on the future of CKF diagnosis, as well as perhaps many other medical disciplines. 
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