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Abstract: - As the complexity and uncertainty of smart distribution networks increase, data security issues in smart meters have become 

a pressing challenge, such as false data injection and electricity theft. To ensure fairness, safety, and overall economic efficiency of 

distribution networks, it is essential to accurately detect abnormal electricity consumption. However, traditional methods relying on 

on-site inspections by grid personnel suffer from low efficiency and high costs in detecting user anomalies. This paper proposes an 

electricity consumption data anomaly detection method based on CNN-BiLSTM-Attention. CNN is utilized to extract data features, 

while BiLSTM and attention mechanisms capture contextual information in sequence data. Furthermore, experiments conducted on 

data extracted from smart meters demonstrate that the proposed model outperforms other models in anomaly detection, with accuracy, 

recall, and F1-Score all exceeding 91%. These results validate the effectiveness and feasibility of the proposed method, providing an 

efficient solution for user anomaly detection in national power grids. 
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I. INTRODUCTORY 

With the growing popularity of the intelligentization of China's power grid equipment and the ongoing 

refinement of the electricity billing mechanism, the complexity of the environment and uncertainty in the actual 

operation of the smart distribution network have also increased. Furthermore, smart meters face data security issues, 

including false data injection and electricity theft, which have become more profound. Preventing the injection of 

false data into the electricity system, accurately detecting instances of electricity theft, and identifying 

abnormalities in the power information collection system are crucial to ensure the security and fairness of the 

distribution network, as well as the overall economy of the network. The standard method of detecting abnormal 

electricity consumption necessitates the installation of metering boxes and on-site inspection by grid personnel, 

leading to excessive expenditure in both time and resources. Electric power enterprises currently have access to a 

vast and intricate collection of data, encompassing sales, power consumption, user behavior, and other time series 

data. Our focus is on utilizing this data to detect abnormal user power consumption, conduct detailed analysis, and 

make efficient determinations of said anomalies. 

II. RELATED WORK

Wherever Times is specified, Times Roman or Times New Roman may be used. If neither is available on your 

word processor, please use the font closest in appearance to Times. Avoid using bit-mapped fonts if possible. True-

Type 1 or Open Type fonts are preferred. Please embed symbol fonts, as well, for math, etc. 

The National Institute of Standards and Technology (NIST) released "Smart Grid Information Security 

Strategies and Requirements" in 2009. This publication was created to merge energy and information technology 

in order to establish a grid information security system that can efficiently manage security threats within the 

electric power system and upgrade the smart grid's security[1]. China's smart grid research began after advanced 

foreign countries, and the Provisions on Security Protection of Electric Power Monitoring System, enacted in 2014, 

elevated it to a national level for the first time. As a result, the security of the smart grid has become a growing 

concern, prompting more research by domestic and international scholars. Some recent studies by scholars like 

Zheng Shiying and Niu Qing[2]have shown that conducting analysis and research using electric power big data 

can contribute to the identification of anomalous power consumption patterns. The current research primarily 

concentrates on the instrument's prerequisites and relies mainly on manual extraction. However, the detection rate 

of abnormal electricity usage remains low. The detection of abnormal electricity consumption is typically executed 

through conventional means, such as manually inspecting the installation and configuration of the meter, 
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comparing meter readings from normal and abnormal meters, and examining the bypass transmission line. 

However, this approach can be arduous, expensive, and ineffective. Pan Jun[3] and other scholars argue that precise 

monitoring of abnormal electricity usage is crucial, and this can only be achieved through obtaining accurate 

information regarding electricity abnormalities from the user side of the smart grid. Zhang Guoqing[4] and other 

researchers, employed a multi-layer perceptron neural network to detect abnormal power in power systems. The 

method's resilience was evidenced through the neural network classifier's optimal design. You Qianqian[5] and 

fellow scholars constructed an abnormal power usage detection model using self-encoder and SVM. Feature 

extraction and classification were performed to reduce the false alarm rate while maintaining a high detection rate. 

Effective and accurate monitoring of abnormal power usage, utilizing abnormal power information obtained from 

the user side of the smart grid, is of paramount importance. Tao H.[6] and other researchers utilized energy 

consumption data from equipment to derive classification rules for users' normal and abnormal power usage 

models. They proposed an abnormal detection method for household power consumption based on a convolutional 

neural network. 

Numerous studies have indicated that security issues within smart grids have become a prominent concern. One 

such issue is the detection of abnormal power usage in these grids, which has received increasing attention from 

researchers. Currently, researchers are primarily focused on the performance aspects of detecting abnormal power 

consumption data. With the rapid growth of power user data and equipment, the dimension and data volume of 

power user data are increasing rapidly, leading to the challenge of low performance in existing power data anomaly 

detection algorithms. To resolve this issue, our study analyzes the temporal and high-dimensional properties of 

power user data and presents an anomaly detection algorithm for power user data based on CNN-BiLSTM-

Attention. Through experimentation, it has been demonstrated that the algorithm presented in this paper 

outperforms the traditional algorithm and enhances algorithmic performance. 

III. CNN-LSTM-ATTENTION MODEL STRUCTURE 

A. Convolutional Neural Network 

The Convolutional Neural Network (CNN) can effectively capture local spatial information and associations 

between features, making it a frequently employed feature extraction network in the field of deep learning[7]. It is 

capable of automatically learning useful features from the input data and transforming them into more meaningful 

representations for subsequent tasks. As depicted in Figure 1[8], the convolutional layer of a CNN carries out local 

perception and feature extraction by utilizing a group of filters that are modifiable. These filters identify various 

patterns, shapes, and textures in the input data. The paper uses the tanh hyperbolic tangent activation function to 

enable the extraction of more complex features after the convolutional layer. Stacking multiple convolutional layers 

gradually captures features at various levels, ranging from simple to complex and from low to high level. 

Subsequent pooling layers extract crucial features and maintain important spatial information by decreasing the 

dimensionality and size of the feature map, ultimately reducing the sensitivity of the model to noise and extraneous 

details in the input data, thereby improving the model's robustness. By utilizing convolutional and pooling layers, 

a CNN can extract abstract feature representations from raw data that capture important attributes and patterns. 

This allows for more efficient processing and analysis of complex data. 

 

Figure 1: Structure of CNN Network 

B. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) that deals with the problem 

of long-term dependency in traditional RNNs by capturing and processing such dependencies effectively in time 

series data[9]. The components that constitute the LSTM network are illustrated in Figure 2, where in C, he memory 

cell, controls the sequence transmission through three gating cells[10]. 
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Figure 2: Structure of LSTM Network 

The Forget Gate gets the output ht-1 from the previous moment and the input xt from the current moment. It 

uses a sigmoid activation function to output a value between 0 and 1, indicating the amount of information retained 

in the memory cell from the previous moment. A value close to 1 indicates that the majority of the information is 

retained, whereas a value close to 0 indicates that most of the information is forgotten. 

Input Gate: The input gate comprises a sigmoid activation function that decides which information requires 

updating, alongside a tanh activation function that generates a novel candidate value. The output of the sigmoid is 

multiplied by the output of the tanh and added to the output of the forgetting gate to derive an updated memory 

cell. Output Gate: The output gate is composed of a sigmoid activation function that determines the relevant parts 

of the output and a tanh activation function that scales the output. The knowledge state of the model at time t-1, 

denoted by Ct-1, is updated with newly acquired information, denoted by 𝐶̃𝑡 , through a process of multiplication 

with corresponding weighting parameter and subsequent summation, resulting in an updated knowledge state at 

time t. The weighting parameter determines the amount of knowledge retained at each moment. The above process 

corresponds to the following equation: 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (1) 

 𝑓𝑡 = σ(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

 𝑖𝑡 = σ(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

 𝐶𝑡̃ = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (4) 

 𝑜𝑡 = σ(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

Where [ht-1,x] is the new vector created by combining the input from the previous moment and the current 

moment. Wf represents the weight of the forgetting gate, and bf represents the bias value of the forgetting gate. Wc 

represents the weight of the memory cell, and bc represents the bias value of the memory cell. Wi represents the 

weight of the input gate, and bi represents the bias value of the input gate. Finally, Wo represents the weight of the 

output gate, and bo represents the bias value of the output gate. 

LSTM networks have the capability to selectively and adaptively forget, update, and output information when 

learning, which makes them ideal for capturing long-term dependencies. This is particularly significant for 

processing time-series data, especially for tasks requiring the consideration of long-range dependencies. 

C. Attention Mechanism 

Attention Mechanism (AM) is a technique that simulates how much attention individuals allocate to different 

parts of the information they process, enabling the model to concentrate on the vital information and enhance the 

model's input processing. The research of Bahdanau et al. (2014) and Luong et al. (2015) is regarded as the 

foundation of Attention Mechanisms in Deep Learning work[11]. The focus of this paper is to weigh the features 

that were extracted by the preceding CNN and LSTM. The aim is to capture the spatial and temporal fusion features 

of the original sequence, and subsequently input them into the model for prediction. Figure 3 illustrates the general 

structure of the model. 
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Figure 3: Structure of Attention 

 φ(ℎ𝑖 , 𝐶) = tanh(ℎ𝑖 ∙ 𝑊α ⋅ 𝐶𝑡 + 𝑏α) (7) 

 α𝑖 =
exp(φ(ℎ𝑖,𝐶))

∑ exp(φ(ℎ𝑗,𝐶))𝑛
𝑗=1

 (8) 

 𝐹 = ∑ α𝑖
𝑛
𝑖=1 ℎ𝑖 (9) 

In the above equations[12], the feature vector C is extracted after the CNN network, the hi feature vector is 

extracted by the LSTM network at moment i, and the weight is denoted by 𝑊𝛼 , with the bias term being denoted 

by 𝑏𝛼  . Eq. (7) weights the features extracted by CNN and LSTM and obtains the fused weights through the 

activation function. Eq. (8) passes the weights through the softmax function and finally, multiplies the output value 

of LSTM with the weights to obtain the final features through Eq. (9). The data is fed through a network's fully-

connected layer, and the output is used to classify it as either 0 (normal) or 1 (abnormal) using the softmax function. 

D. Model Structure 

The structure of the CNN-BiLSTM-Attention model proposed in this paper is shown in Figure 4. 

 

Figure 4: Structure of CNN-BiLSTM-Attention Model 

The algorithm flow for detecting abnormal electricity usage in residential areas, which is designed in this paper 

based on CNN-BiLSTM-Attention architecture, is outlined as follows: 

• involves preprocessing actual data related to residential electricity consumption and utilizing it as the model's input. 

• contour features are extracted utilizing CNN. 
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• sequence features are extracted utilizing BiLSTM. 

• involves using the Attention structure to weigh and combine the features. 

• Proceed through the fully connected layers and classifiers. 

• Obtain the outcome of abnormal power usage classification and terminate. 

IV. EXPERIMENTS AND ANALYSIS OF RESULTS 

A. Experimental Data and Pre-processing 

1) Data Cleaning: In this study, we selected real residential electricity consumption data collected by the power 

marketing business system as our research focus. The data was collected from January 1st, 2018 to December 

30th, 2018, with a daily sampling interval, and includes a comprehensive package of 3,400 users' electricity 

consumption data over the course of 365 days. The data information consists of user ID, daily electricity 

consumption of users for a period of one year, and labels for abnormal electricity consumption. Randomly selected 

four users' electricity consumption data for the whole year are plotted to draw the electricity load curve, as shown 

in Figure 5. 

 

 (a) User 57 (b) User 3321 

 

 (c) User 1922 (d) User 1182 

Figure 5: Residential Electricity Consumption 

By visualizing residential electricity consumption data, it becomes apparent that electricity consumption 

behavior among users is mostly regular. However, there are exceptions such as user 57 (Figure 5(a)) and user 3321 

(Figure 5(b)), There are fluctuations in electricity consumption data around the 0 scale, and it is evident that some 

users have missing electricity consumption data. There are two approaches to handling these missing values[13]. 

If the user has over 50% of their data missing, they will be removed. If the amount of missing data is less than 50%, 

the data will be supplemented using the Lagrangian interpolation method, such as with user 3321. After eliminating 

users with missing data exceeding 50%, such as user 57, the remaining users with less than 50% missing data will 

have missing values filled in using the Lagrangian interpolation method, such as user 3321. As a result of the data 

cleaning process, we obtained electricity consumption information from a total of 3,323 users with complete data. 

This data will be used as the experimental data for subsequent analysis. 
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2) Analysis of Abnormal Electricity Consumption data: Figure 6 displays a visualization of electricity user data, 

differentiating between normal and abnormal cases. 

 

(a)Normal Consumer Data (b)Abnormal consumer data 

Figure 6: Display of Normal Electricity User Data and Abnormal Electricity User Data 

Figure 6(a) displays the yearly electricity usage of client number 1922, labeled 1 in the anomaly table, indicating 

a normal electricity customer. Figure 6(b) exhibits the annual electricity consumption of customer number 1038, 

assigned a value of 2 in the anomaly label table, establishing the client as an abnormal electricity user. Through 

comparison, it is evident that the electricity consumption trend of regular users remains consistent, whereas during 

the halfway mark, the electricity consumption of anomalous user 1038 abruptly drops to zero. This unequivocally 

points towards electricity theft by the user. 

The overall sample size is 3323, comprising 2743 normal data and 681 abnormal data. The portion of abnormal 

electricity usage samples in the actual data is 20.49%, which constitutes a small percentage. The experimental 

sample is significantly unbalanced, which may lead to suboptimal model training. Therefore, this paper utilizes the 

SMOTE (Synthetic Minority Oversampling Technique)[14] in conjunction with undersampling to address the data 

imbalance issue. Specifically, abnormal electricity consumption residential data is interpolated to create new 

samples and increase the number of abnormal instances. Meanwhile, normal residential data undergoes simple 

random undersampling, resulting in a more balanced ratio of positive and negative samples that enhances model 

training effectiveness. After balancing the data, there are a total of 4000 samples, with 2400 samples of standard 

electricity users and 1600 samples of non-standard electricity users. 

Due to variations in electricity consumption patterns across industries, the data obtained through the user's 

smart meter shows significant differences in order of magnitude. As illustrated in Figure  7, it is evident that 

electricity consumption by industrial and commercial users is substantially higher than that of residential users. 

User 1182 and User 1922's electricity consumption curves offer further insight into this trend. 

 

Figure 7: Display of Electricity Consumption Data for Users with Different Levels of Electricity Consumption 

Thus, it is necessary to normalize data preprocessing for electricity consumption data processing to eliminate 

the impact of the magnitude gap on model training effectiveness[15]. In this study, maximum-minimum 

normalization was utilized to convert data into values ranging from 0 to 1 before model training. The normalization 

formula is presented below: 
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 x_normalized=
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (10) 

After normalizing the data, the model's convergence is faster and the training of the network is improved. 

B. Evaluation Criteria 

For a binary classification problem, that is, classifying instances into positive (positive) or negative (negative) 

classes, the following four cases occur in actual classification: if an instance is positive and is predicted to be 

positive, that is, it is a True Positive (TP); if an instance is positive but is predicted to be negative, that is, it is a 

False Negative (FN); if an instance is negative but is predicted to be positive, that is, it is a False Positive (FP); and 

if an instance is positive but is predicted to be positive, it is a False Negative (FP)(False Negative ); if an instance 

is a negative class but is predicted to be a positive class, it is a False Positive class FP (False Positive ); if an instance 

is a negative class and is predicted to be a negative class, it is a True Negative class TN (True Negative )[16]. 

Accuracy refers to the percentage of correctly predicted samples out of the total number, as defined in the 

following formula: 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (11) 

Precision, also referred to as accuracy rate, serves as an evaluation metric for prediction outcomes. In the model 

prediction for the results of positive samples, the percentage of truly positive samples, the specific formula is as 

follows: 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (12) 

Recall, also known as the retrieval rate, is an objective measure used to evaluate the original sample. It is 

calculated as the percentage of positive samples predicted correctly in the actual positive sample. The formula for 

Recall is as follows: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (13) 

The F1-Score is derived from the fact that precision and recall often pose a trade-off: high precision results in 

fewer false positives, yet a larger number of false negatives may occur; high recall results in fewer false negatives, 

yet a larger number of false positives. Therefore, it serves as an indicator of the proposed trade-off. The formula 

for Recall is as follows: 

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+Recall
× 100% (14) 

C. Results 

The pre-processed samples are put into the designed CNN-BiLSTM-Attention model for training, and the 

experimental results in the figure below are obtained. 

70% of the dataset was selected as the training set to train the model. Figure 8(a) displays the model's 

predictions. The remaining 30% of the dataset was used as the test set to validate the model. Figure 8(b) shows the 

model's predictions, where '1' indicates normal electricity consumption and '2' indicates abnormal electricity 

consumption. The balance between positive and negative sample sizes is apparent, and the predicted labels are 

circular, indicating a minimal disparity between the predicted and true labels. 

The following is a thorough assessment of the model's evaluation metrics. According to Figure 9, the confusion 

matrix displays the results of the test set. The model's accuracy rate is 91.42%, which demonstrates its capability 

of classifying samples. This high accuracy rate reflects the model's effectiveness in classifying all the samples. The 

model's precision is approximately 94.4%, denoting the proportion of correctly classified positive samples out of 

all positive samples. The high precision reflects the model's low likelihood of misclassifying positive samples, 

while the recall, at approximately 91.1%, describes the model's capability to accurately predict and capture positive 

samples. The high recall indicates fewer missed judgements in detecting positive samples. In summary, the model 

exhibits high accuracy and impressive overall performance. It excels at identifying normal electricity consumption 

samples, but its capacity to distinguish abnormal electricity consumption samples is relatively weak. A possible 

approach to enhancing the classification accuracy is to consider further optimization of the algorithm. 

Comparing the test results of other models to those of the model presented in this paper on the same dataset 

reveals that the CNN-LSTM model outperforms the CNN model. 

This finding indicates that the LSTM network can effectively extract temporal data features, and that the hybrid 

model is better suited to capturing inter-data features, thus improving the predictive capacity of the model. The 

CNN-BiLSTM model outperforms the CNN-LSTM model, demonstrating that the bidirectional LSTM coding can 

comprehensively capture the context features in between; the CNN-BiLSTM-Attention model proposed in this 

study yields the most optimal results compared to other models. The introduction of the Attention model leads to 
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a more reasonable feature weighting, resulting in better prediction performance. Comparison of test results of each 

model are presented in table 1. The F1-Score reaches 92.72%, which combines precision and recall rates, confirms 

the effectiveness of the proposed model in this paper. 

(a) Display of Prediction Effect of Training Set 

(b) Display of Prediction Effect of Prediction Set 

Figure 8: Display of Prediction Effect of Dataset 

Figure 9: Display of Test Set Result 

Table 1: Comparison of Test Results of Each Model 

modelling Accuracy Precision Recall F1-Score 

CNN 83.98% 86.90% 83.31% 85.07% 

CNN-LSTM 87.46% 89.61% 86.64% 88.10% 

CNN-BiLSTM 88.73% 92.75% 88.42% 90.53% 

CNN-BiLSTM-

Attention 
91.42% 94.39% 91.11% 92.72% 
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V. CONCLUDING REMARKS 

To address the issue of inefficient and costly detection of abnormal residential electricity consumption, this 

study proposes a hybrid CNN-BiLSTM-Attention model to extract real data from smart meters for identifying 

consumption anomalies. Experimental results demonstrate the model performs well with an accuracy rate, precision 

rate, recall rate, and F1-Score all exceeding 91%. However, in the future, individuals who steal electricity through 

abnormal means may become more difficult to detect. Therefore, the method of detecting abnormal electricity 

usage needs to be continuously updated. Conducting a cluster analysis of user electricity consumption behavior can 

help reveal patterns and improve both abnormality detection and the electric power system's service quality. 

Additionally, abnormal power consumption behavior can be correlated with climate data, users' power 

consumption behavior types, and other relevant information for analysis to enhance the detection strategy. 
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