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Abstract: - Global warming is causing dramatic climate change, leading to rainfall that triggers a more severe risk of flooding. The 

conventional moment method and linear moment method’s basic theories for the design of flood frequency analyses were introduced 

and compared for frequency analysis of rainfall. The rainfall data from 149 long-series representative rainfall stations in Jiangsu 

Province were processed using the random forest (RF) algorithm to address the missing data encountered during the actual rainfall 

monitoring process. The frequency was calculated using conventional and linear moment methods, and the differences and advantages 

of the two methods were analyzed by comparing the calculation results of different sites under each method. The results show that 

under low design frequencies, both the conventional moment and linear moment methods exhibit minimal errors, rendering them 

suitable for calculating design rainfall. The linear moment method outperforms the conventional moment method in terms of the 

unbiasedness of the estimation process and for very large values, and that the parameters estimated by the linear moment method are 

more accurate. In practical hydrological frequency calculations, different computation methods can be chosen according to specific 

needs to enhance calculation accuracy. 

Keywords: Hydrological Frequency Calculation, Linear Moment Method, Conventional Moment Method, P-III 

Distribution Frequency Curve, Random Forest Algorithm. 

I. INTRODUCTION 

Floods have always been one of the most serious and malevolent natural disasters, and countries around the 

world are threatened by floods to varying degrees, attracting widespread concern and attention from the government 

and academia [1-2]. Global warming has led to significant shifts in both average and extreme weather conditions 

across numerous areas, modifying the spatial and temporal patterns of water resource distribution and the water 

cycle. These changes have profound effects on agricultural output, worldwide biodiversity, and the overall human 

existence [3-4]. China is a flood-prone country, and flood prevention is a critical issue concerning safety of people's 

lives, property, and social stability. Over the last two decades, China's cities have experienced frequent flooding, 

and the phenomena of blockage, flooding, and heavy rainfall have become increasingly serious in most cities. Most 

floods in China are caused by torrential rain. In China, one important method for calculating design floods is to 

project design floods based on torrential rainfall data. Leveraging machine learning techniques, hydrological 

prediction and simulation have become essential tools for accurately forecasting and managing water resources, 

mitigating water-related disasters, and optimizing water utilization strategies by efficiently processing and 

analyzing vast amounts of meteorological and hydrological data, thus enhancing the accuracy of predictions and 

the efficiency of simulations. By establishing machine learning models, it is possible to predict hydrological 

variables such as rainfall, flood flow, and reservoir storage. Common machine learning models include random 

forest, neural networks, and support vector machines. These models can utilize historical data and meteorological 

information to predict future hydrological conditions, providing decision support for water resource management 

and flood disaster prevention. However, they also have the drawback of being prone to overfitting [5-6]. To address 

the overfitting issue, Breiman improved the regression tree model based on the bagging method and proposed the 

random forest model [7]. The Random Forest algorithm functions by building numerous decision trees in the 

training phase and then compiling their outcomes for predictions. This approach not only improves the accuracy 

of the model but also effectively reduces the problem of overfitting. By training multiple decision trees and 

combining their predictive outcomes, Random Forest is capable of capturing complex relationships within the data, 
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while maintaining a high level of generalization to new data. It is widely applied in fields such as hydrology and 

geography [8-9]. 

However, in practice applications, frequency analysis calculation remains the most common and effective 

method of determining the design flood. It is a critical basis for the design of hydraulic facilities and flood control 

management measures, especially within the framework of ongoing climate change, and is essential for identifying 

extreme values with a specified likelihood of occurrence [10-11]. Hydrologic frequency analysis began about 

1880~1890, Herschel and Rafter in the United States first applied the frequency curve (then called the duration 

curve); in 1896, Horton applied the frequency analysis method to the runoff study; in 1913~1914, Fuller and Hazen 

published papers describing the application of the frequency method; in 1921, Hazen proposed the use of 

logarithmic lattice probability paper and began fitting lines on it, which was the first lognormal distribution 

application[12]. Hydrological frequency calculations are the theoretical basis of China’s flood control design 

standards and are an important link in the design of water conservancy projects and water resource management. 

The frequency calculation method is mainly used to analyze the statistical change characteristics of a flood peak 

volume (or rainfall extreme value), explore the quantitative relationship between the frequency and flood peak 

volume, and deduce the design value of the flood peak volume (or rainfall extreme value) for a certain design return 

period. The primary concern in flood-frequency calculations are sampling methods, parameter estimation and line 

selection. The overall frequency distribution curve’s line shape is unknown, and a line shape is usually chosen to 

provide a good fit to most hydrologic series. A distribution curve is generally defined by a small number of 

parameters.  

Before calculating the flood frequency, we must first choose a statistical distribution model for the hydrological 

series. According to the Chinese flood data site, the Pearson type III (P-III) distribution curve has been considered 

suitable for most flood series in China since the 1960s. Therefore, Flood Calculation Specification for Water 

Conservancy and Hydropower Engineering Design (SL44-2006) states that “P-III shall be used for the line type of 

frequency curve, and other line types may be used after demonstration for special cases” (SL44-2006). In addition, 

because flood characteristics differ by location, distribution curves, including the generalized extreme value 

distribution (GEV), lognormal distribution (CNO), and generalized Pareto distribution (GPA), are recommended 

for flood frequency analysis at home and abroad [13–15]. The second method estimates the parameters in the 

distribution model, and the current methods of parameter estimation include the method of moments, method of 

weight functions, method of probability weight moments, linear moments, visual estimation of the appropriate line, 

and computer optimization of the appropriate line [16–18]. Hosking (1990) proposed a linear moment method 

based on probabilistic weight moments, and its good unbiasedness and robustness as a new parameter estimation 

method have piqued the interest of academic and engineering communities[19,20]. Since 1990, the Office of 

Hydrology (OHD) under the National Oceanic and Atmospheric Administration (NOAA) of the United States has 

conducted research on the application of the zonal linear moment method in flood control design standards. In 

2006, the Office proposed a complete system for analyzing rainstorm frequency using the linear moment method 

combined with a regional comprehensive analysis method, which has been promoted nationwide in the United 

States. The calculation of rainstorm frequency in the United States was conducted and incorporated into the national 

standards for flood management. Several domestic and international scholars have compared and analyzed different 

aspects of the conventional moment method and the linear moment method. Sankarasubramanian and Srinivasan 

[21] verified the superiority of the linear moment method over the conventional moment method by using actual 

data from several stations in India’s central region. Fill and Stedinger [22] conducted a comparative study of linear 

moments and constant rules and concluded that the quantile test estimated using the linear moment parameter is 

more effective than the conventional moment method. Hussain et al. [23] analyzed seven sites in the Pakistan’s 

Punjab area using a regional synthesis method based on the linear method of moments, and chose the most robust 

distribution. Liang et al. [24] used the Taihu Lake Basin in China as an example to demonstrate the theoretical 

superiority of the linear moment method over the conventional moment method in a preliminary comparison. 

Anghel and Ilinca [25] presented improved approximations for the estimation of probability distributions of 

hydrological extremes using the conventional moment method and the linear moment method and, in some cases, 

new approximations that provided a new paradigm for updating the normative standards in the field of hydraulics 

in Romania. 

In this paper, the estimation results of the conventional moment method and the linear moment method are 

analyzed and evaluated by utilizing the rainfall data of Jiangsu Province that has been processed by the random 

forest algorithm, along with the most representative P-III curve in China. 
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II. ALGORITHMS AND THEORETICAL COMPARISON OF CONVENTIONAL MOMENT METHOD AND LINEAR 

MOMENT METHOD  

Random Forest is a technique that utilizes several untrimmed classification and regression decision trees for 

both prediction and classification tasks. Its core concept is that each tree relies on a sample randomly drawn from 

the original dataset, and features are selected randomly during the growth process of the tree. The method of 

moments (MOM), a classical approach, is utilized for parameter estimation. For most distribution functions, 

moments of all orders of origin and central moments exist. Moreover, a correlation is present between the moments 

and the parameters of the distribution function, allowing for the representation of parameters through moments. 

The method of moments estimates the statistical parameters of a frequency curve by replacing (or estimating) the 

overall moments with the sample moments and using the equation of the relationship between the moments and 

parameters. 

A. Random Forest Algorithm 

Random forests employ the Bootstrap resampling technique to randomly select samples from the original 

dataset and construct decision trees for each sample set, resulting in a series of classification models {h1(X), 

h2(X),…hn(X)}; n different results are obtained from the predictions made by the established series of 

classification models, and the final prediction result is obtained by voting or taking the average [26]. 

The specific process is as follows:  

Step 1 uses bootstrapping to randomly generate K distinct sample datasets from the original dataset, which act 

as the sub-training set for each decision tree. The size of each sample matches that of the original dataset, with the 

data not selected in each sampling forming the out-of-bag data. 

Step 2 constructs a classification regression tree for each sample dataset, generating K decision trees. During 

the generation process, for each node within the decision tree, a subset of variables is obtained through random 

sampling from the original data variable set. The best variable for node splitting and branching is chosen from the 

subset by aiming to minimize the Gini index, according to the selection criterion. 

Step 3 every classification regression tree iteratively bifurcates from the top downwards until it meets the 

predefined minimum size for leaf nodes, termed nodesize, halting further expansion of the decision tree. These 

decision trees are then aggregated to create a random forest. 

Step 4 feeds the test data into model, employing the K decision trees for individual predictions, and calculates 

the mean of the outcomes from each decision tree to determine the regression value, that is, the forecasted value. 

This method boosts the model's capacity to generalize, lowers the likelihood of overfitting, and amalgamates 

the individual decision trees' classification and regression outcomes, counterbalancing certain random inaccuracies. 

[27]. The flowchart of the calculation is depicted in Figure 1. 

 
Figure 1: Flowchart of Random Forest Calculation 

B. Conventional Moment Method 

The conventional moment method, a classical approach for parameter estimation broadly employed, substitutes 

overall moments with sample moments.For the vast majority of distribution functions, there are origin moments 

and center moments, and the moments and distribution parameters tend to have a certain relationship; thus, it is 

common to use moments to represent each parameter to establish the corresponding relationship to estimate the 

parameters of the frequency curve. For the probability density function f(x) of a distribution, we define its moments 

of origin of order r as follows: 

 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞
     (1) 

Its r-order center moments are as follows: 
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 𝜇𝑟 = ∫ (𝑥 − 𝜇1
′ )𝑟𝑓(𝑥)𝑑𝑥

∞

−∞
     (2) 

The unbiased estimates of the statistical parameters obtained from the method of moments are: 

 𝑥̅ = 𝜇1
′ = 𝑚𝑒𝑎𝑛      (3) 

 𝐶𝑣 =
√𝜇2

𝑥̅
= √

∑ (𝐾𝑖−1)
2𝑛

𝑖=1

𝑛−1
     (4) 

 𝐶𝑠 =
𝑛∑ (𝐾𝑖−1)

3𝑛
𝑖=1

(𝑛−1)(𝑛−2)𝐶𝑣
3       (5) 

This technique is easy to compute and ranks among the most frequently employed methods for conducting 

frequency analysis calculations; however, it has significant drawbacks. According to previous research results, the 

moment method produces statistical parameters and estimated frequencies that are notably lower. Therefore, the 

obtained Cv and Cs are clearly insufficient, and the accuracy of the obtained design values must be improved. 

Typically, the values obtained directly from this method is used as references. 

C. Linear Moment Method 

Hosking characterized Linear moments as the expected values derived from specific linear combinations of 

order statistics, alongside linear coefficients of divergence and additional higher-order linear moment ratios, in 

contrast to the traditional method of moments. As a new parameter estimation method, the linear moment method 

has good unbiasedness and robustness to very large values as a new parameter estimation method. It was calculated 

as follows: 

Assuming that the variable X follows a certain distribution function, defining the r-order linear moment variable 

as: 

  𝜆𝑟 ≡ 𝑟−1 ∑ (−1)𝑘 (
𝑟 − 1
𝑘

)𝐸𝑋𝑟−𝑘:𝑟
𝑟−1
𝑘=0 , 𝑟 = 1,2,⋯   (6) 

By definition, the first four linear moments of this random variable X are: 

𝜆1 = 𝐸𝑋 

𝜆2 =
1

2
𝐸(𝑋2:2 − 𝑋1:2) 

𝜆3 =
1

3
𝐸(𝑋3:3 − 2𝑋2:3 + 𝑋1:3) 

 𝜆4 =
1

4
𝐸(𝑋4:4 − 3𝑋3:4 + 3𝑋2:4 − 𝑋1:4)    (7) 

The first four orders of sample linear moments for discrete samples are: 

𝑙1 = 𝑛−1∑𝑥𝑖

𝑛

𝑖=1

 

𝑙2 =
1

2
(
𝑛
2
)
−1

∑ ∑(𝑥𝑖:𝑛 − 𝑥𝑗:𝑛)

𝑛−1

𝑗=1

𝑛

𝑖=𝑗+1

 

𝑙3 =
1

3
(
𝑛
3
)
−1

∑ ∑ ∑(𝑥𝑖:𝑛 − 2𝑥𝑗:𝑛 + 𝑥𝑘:𝑛)

𝑛−2

𝑘=1

𝑛−1

𝑗=𝑘+1

𝑛

𝑖=𝑗+1

 

 𝑙4 =
1

4
(
𝑛
4
)
−1

∑ ∑ ∑ ∑ (𝑥𝑖:𝑛 − 3𝑥𝑗:𝑛 + 3𝑥𝑘:𝑛 − 𝑥𝑙:𝑛)
𝑛−3
𝑙=1

𝑛−2
𝑘=𝑙+1

𝑛−1
𝑗=𝑘+1

𝑛
𝑖=𝑗+1    (8) 

The general form of the r-order sample linear moments for discrete samples is: 

 𝑙𝑟 = 𝑟−1 (
𝑛
𝑟
)
−1

∑ ⋯∑ ∑ ∗ ∑ (−1)𝑟−1
𝑘=0

𝑛−𝑟+1
𝑖1=1

𝑛−𝑟+2
𝑖2=𝑖1+1

𝑘
(
𝑟 − 1
𝑘

) 𝑥𝑖𝑟−𝑘:𝑛
𝑛
𝑛≥𝑖𝑟=𝑖𝑟−1+1

, 𝑟 = 1,2,⋯ , 𝑛 (9) 

For sample linear moments, the expected value of the order statistic is defined as: 

 𝐸𝑀𝑟:𝑛 =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
∫ 𝑥[𝐹(𝑥)]𝑟−1[1 − 𝐹(𝑥)]𝑛−𝑟𝑑𝐹(𝑥)
1

0
   (10) 

The probability weight moments are defined as: 

 𝑀𝑖,𝑗,𝑘 = ∫ 𝑥𝑖𝐹𝑗(1 − 𝐹)𝑘𝑑𝐹
1

0
     (11) 

Where i, j and k are the order of moments, all positive integers. In order to avoid large sampling errors from 

higher orders, i=1, j=0 or k=0 is usually taken to obtain: 

 𝑀0,𝑗,𝑘 = ∫ 𝑥(1 − 𝐹)𝑘
1

0
𝑑𝐹,𝑀1,𝑗,0 = ∫ 𝑥𝐹𝑗

1

0
𝑑𝐹    (12) 

For parameter estimation of the frequency curves, the jth order probability weight moments 𝑀𝑖,𝑗,0 are generally 

used. Only the first three orders of moments must be calculated because a three-parameter distribution line shape 

is typically used in general calculations. 

Based on the discrete continuous series, compute its probability weight moments as: 
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𝑀0 = 𝑀1,0,0 =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 

𝑀1 = 𝑀1,1,0 =
1

𝑛
∑

(𝑛 − 𝑖)

(𝑛 − 1)
𝑥𝑖

𝑛

𝑖=1

 

𝑀2 = 𝑀1,2,0 =
1

𝑛
∑

(𝑛 − 𝑖)(𝑛 − 𝑖 − 1)

(𝑛 − 1)(𝑛 − 2)
𝑥𝑖

𝑛

𝑖=1

 

 𝑀3 = 𝑀1,3,0 =
1

𝑛
∑

(𝑛−𝑖)(𝑛−𝑖−1)(𝑛−𝑖−2)

(𝑛−1)(𝑛−2)(𝑛−3)
𝑥𝑖

𝑛
𝑖=1     (13) 

The linear moments can thus be expressed as: 

𝜆1 = 𝑀0 

𝜆2 = 2𝑀0 −𝑀1 

𝜆3 = 6𝑀0 − 6𝑀1 +𝑀2 

 𝜆4 = 20𝑀0 − 30𝑀1 + 12𝑀2 −𝑀3     (14) 

Similar to the conventional moment, the statistical characteristic parameters of the linear moments are defined 

as: 

𝜏 =
𝜆2

𝜆1
 is the linear coefficient of variation, 𝐿 − 𝐶𝑣; 

𝜏 =
𝜆3

𝜆2
 is the linear coefficient of skewness, 𝐿 − 𝐶𝑠; 

𝜏 =
𝜆4

𝜆2
 is the linear coefficient of kurtosis, 𝐿 − 𝐶𝑘. 

The linear moment method is generally used in developed countries such as the United Kingdom and United 

States. It has the advantages of unbiasedness, good robustness, and high accuracy, and can be widely used in the 

estimation of hydrological frequencies such as design floods and extreme rainfall. 

D. Theoretical Comparison between Linear Moment Method and Conventional Moment Method 

Statistics show that, in the conventional moment method, for the p-order origin moment of a random variable 

X, when p=1, 

 𝐸(𝑋̅) = 𝐸 (
1

𝑛
∑ 𝑋𝑖
𝑛
𝑖=1 ) =

1

𝑛
∑ (𝑋𝑖)
𝑛
𝑖=1 = 𝜇    (15) 

That is, the sample mean X̅ is an unbiased estimate of the overall mean µ. However, when p > 1, (X̅)p is not an 

unbiased estimate of μp. For example, when p=2 and, 

 𝐸(𝑋̅2) = 𝐷(𝑋̅) + [𝐸(𝑋̅2)]2 =
𝜎2

𝑛
+ 𝜇2 ≠ 𝜇2    (16) 

For a p-order central moment of random variable X, when p = 2,  

𝜎̂2 = 𝐸(𝑆2) + 𝐸 [
1

𝑛
∑(𝑋𝑖 − 𝑋̅)2
𝑛

𝑖=1

] 

=
1

𝑛
𝐸 {[∑[(𝑋𝑖 − 𝜇) − (𝑋̅ − 𝜇)]2

𝑛

𝑖=1

]} 

=
1

𝑛
[∑𝐸(𝑋𝑖 − 𝜇)2 − 𝑛𝐸(𝑋̅ − 𝜇)2

𝑛

𝑖=1

] 

=
𝑛−1

𝑛
𝜎2 < 𝜎2 (17) 

It clear that the sample second-order central moment S2 is not an unbiased estimate of the overall variance σ2, 

while the estimator σ̂2 < σ2. It can be shown that the p-order central moments of the samples are not unbiased 

estimates of the overall p-order central moments when p > 2 and that the degree to which the estimates are biased 

increases as p increases. 

In a hydrological frequency analysis, it is often necessary to estimate Cv and Cs, which leads to hydrological 

frequency calculations and predictions. 

If the conventional moment method is used for parameter estimation, second-, third-, or even higher-order 

moments of the origin are required. Therefore, Cs estimated by the conventional moment method is large, which 

can be proven to result in a small and unsafe estimate P of the design flood and heavy rainfall when applying the 

following Pearson type-III curve estimation formula. The Pearson type-III curve inverse function in terms of Cv 

and Cs can be expressed as: 
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 𝑃 =
(

2

𝑋̅𝐶𝑣𝐶𝑠
)
2

𝛤(
4

𝐶𝑠
2)

∫ (𝑋 − 𝑋̅ +
2𝐶𝑣

𝐶𝑠
𝑋̅)

4

𝐶𝑠
2−1∞

𝑋
× 𝑒𝑥𝑝 [−

2

𝑋̅𝐶𝑣𝐶𝑠
(𝑋 − 𝑋̅ +

2𝐶𝑣

𝐶𝑠
𝑋̅)] 𝑑𝑥   (18) 

From the analysis provided, it is clear that the linear moment method demonstrates significantly greater 

robustness in parameter estimation than the conventional moment method. In the linear moment method, the 

moments of each order are linear combinations of the expected values of the sample-order statistics. In practical 

applications, only addition and subtraction operations using sample information are required, which significantly 

reduces errors that exist in the sample itself. Simultaneously, according to the definition of various linear moment 

coefficients, the corresponding linear moments are divided; however, the conventional moment method is also 

reduced in the calculation of bias coefficients used in the calculation of the third-order moments of the error 

generated. Therefore, the linear moment method is theoretically superior to the conventional methods. The 

following table 1 provides a list of comparisons between the conventional and linear moments. 

Table 1: Comparison of Conventional Moments and Linear Moments 

conventional moments linear moments 

formulation clarification formulation clarification 

𝜇 = 𝐸(𝑋) 
first-order moment 

average value 
𝜇 = 𝐸(𝑋1:1) 

one-dimensional 

combination 

average value 

𝜇2 = 𝐸(𝑋 − 𝜇)2 

𝜎 = 𝜇2
1 2⁄

 

𝐶𝑣 = (𝜇2
1 2⁄ ) 𝜇⁄  

Second-order 

moments (deviations) 

standard deviation 

devariation coefficient 

𝜇 = 𝐸(𝑋1:1) 
𝐿 − 𝐶𝑣 = 𝑡 = 𝜆2 𝜆1⁄  

binary combination 

linear deviation 

coefficient 

𝜇3 = 𝐸(𝑋 − 𝜇)3 

𝐶𝑠 = 𝜇3 (𝜇2
1 2⁄ )

3
⁄  

third-order moments 

bias coefficient 
𝜆3 =

1

3
𝐸(𝑋3:3 − 2𝑋2:3 + 𝑋1:3) 

𝐿 − 𝐶𝑠 = 𝑡3 = 𝜆3 𝜆2⁄  

ternary combination 

linear bias coefficient 

𝜇4 = 𝐸(𝑋 − 𝜇)4 

𝐶𝑘 = 𝜇4 (𝜇2
1 2⁄ )

4
⁄  

fourth-order moments 

kurtosis coefficient 
𝜆4 =

1

4
𝐸(𝑋4;4 − 3𝑋3:4 + 3𝑋2:4 − 𝑋1:4) 

𝐿 − 𝐶𝑘 = 𝑡4 = 𝜆4 𝜆2⁄  

quadratic combination 

linear kurtosis 

coefficient 

Comprehensive comparative analysis show that the linear moment method is the optimal algorithm among 

many current parameter estimation methods, and it is also most widely used algorithm in the international 

community. The linear moment method is less affected by the length of the data series [28-29], so it is widely used 

in the regional frequency analysis of rainstorms. 

III. CASE STUDY - JIANGSU PROVINCE AS AN EXAMPLE  

A. Overview of the Study Area 

Jiangsu Province is located between 116°18′-121°57′ east longitude and 30°45′-35°20′ north latitude, situated 

in the Yangtze River Delta, with a flat terrain, vast plains, no steep mountains, numerous lakes, a dense water 

network, and borders the Yellow Sea. Jiangsu Province is located in a subtropical to warm temperate transitional 

climate zone. Its climate has obvious monsoon characteristics, with dry and cold winter, hot and humid summers, 

four distinct seasons, a mild climate, moderate rainfall, rain and heat in the same season, and sufficient light energy. 

The province's multi-year average rainfall is 700-1250 mm, and rainfall is abundant; however, the spatial and 

temporal distributions are uneven. In Jiangsu Province, the bulk of heavy rainfall occurs in the flood season, 

spanning four months from June through September. From the analysis of the causes of heavy rainfall and flooding, 

the early period (early June to early July) of the plum rains, late typhoon storms, and plum rains is prone to basin-

wide flooding, and typhoons are typically the main cause of regional flooding. In addition, short-calendar-time 

thunderstorms are prone to small-scale localized flooding. Jiangsu Province, positioned within the Yangtze River 

Economic Belt, leads the nation in GDP per capita, regional development, and the Development and Livelihood 

Index (DLI), identifying it as one of the most holistically developed provinces in China. The swift advancement of 

the economy and urbanization has accelerated the improvement of the construction level of water conservation 

projects, and the requirements for hydrological frequency analysis are also increasing. Therefore, determining a 

better parameter estimation method that yields more accurate estimation results has become the focus of 

hydrological frequency analysis in Jiangsu Province. 

B. Rainfall Frequency Calculation and Parameter Estimation 

This research selected annual extreme value data from 149 long-duration representative rainfall stations in 

Jiangsu Province, covering four different durations: 1-day, 3-day, 7-day, and 15-day periods. The random forest 
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model was programmed using the Scikit-learn library in the Python language, employing long-series data as 

training samples to predict missing values in precipitation sequences. The results indicate that the predictions are 

reliable and can enhance the data series. Based on this, the rainfall frequency was analyzed using both conventional 

and linear moment methods. Figure 2 depicts the distribution of rain stations. 

 
Figure 2: Distribution of Rainfall Stations in Jiangsu Province 

The station storm frequency values were determined using the linear moment method. This method, through 

regional analysis, estimated the annual extreme rainfall frequency values for each station within the region for 

various recurrence periods by combining both local and general components. This method makes use of historical 

data of other stations in the region, fully considers information on the characteristics of local stations, and 

comprehensively analyzes the rainfall frequency distribution curves for each rainfall station in the region. The 

regional analysis assumes that the rainfall series at each site can be divided into two parts: a regional component 

reflecting rainfall characteristics common to the region and a local component reflecting rainfall characteristics 

specific to the region. Based on this assumption, the commonalities are partitioned regionally to obtain a 

dimensionless frequency distribution curve, while individuality is left local. The commonality and individuality 

are then superimposed to obtain a single-site frequency estimate. Its advantage is that it fully utilizes the historical 

information of other stations in the region and fully considers the characteristics of the local station information to 

carry out a comprehensive analysis of the rainfall frequency distribution curve of each rainfall station in the region 

and then deduces the precision and accuracy of each station with higher rainfall frequency estimates. 

The method of calculating the frequency values of station storms using the conventional moment method is as 

follows: a preliminary estimation of different frequency values is carried out for different stations and time period 

series values, followed by fitting the estimated values for different stations and time periods using P-III type curves 

to derive design values for different frequencies. 

According to the SL44-2006, the P-III distribution frequency curve was used to calculate the design flood, and 

its distribution function is as follows: 

 𝑓(𝑥) =
𝛽𝛼

𝛤(𝛼)
(𝑥 − 𝛼0)

𝛼−1𝑒−𝛽(𝑥−𝛼0)    (19) 

Where α, β, and α0 are the shape, scale, and location parameters of the distribution function respectively, and 

they are related to the three commonly used statistical parameters 𝑥̅, Cv and Cs as follows: 

 𝛼 =
4

𝐶𝑠
2 , 𝛼 =

2

𝑥̅𝐶𝑣𝐶𝑠
, 𝛼0 = 𝑥̅(1 −

2𝐶𝑣

𝐶𝑠
)    (20) 

The frequency curve obtained by the fit-line method fits better with the empirical data; thus, the fit-line method 

is primarily used to estimate the statistical parameters of the frequency curve in China [12]. 

To make a more intuitive and precise comparison of the differences between the rainfall frequency estimates 

obtained by the conventional and linear moment methods under different recurrence periods, four stations with 
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longer station sequences in the 1-day extreme rainfall event in Jiangsu Province were selected for comparison. 

Because the constant rule method plus the P-III curve is primarily used in China to fit rainfall or flood data to 

estimate its frequency estimates under different return periods, only the single-site P-III curve based on the constant 

rule method, and the P-III curve based on the regional linear moments method for rainfall estimation were 

compared here and plotted as a dot plot, as shown in Figure. 3. 

 
(a) 51021500 Yundongzha Station                        (b) 51025200 Xinghua Station 

   
(c) 51029900 Yaowanggangzha Station                   (d) 51031100 Qinglonggang Station 

Figure 3: Comparison of Rainfall Estimation Results between the Conventional Moment Method and the Linear 

Moment Method for P-III Curves 

The relative error values of rainfall designed by linear and conventional moment methods under each recurrence 

period were calculated and compared, as shown in Figure. 4. 

   
(a) 51021500 Yundongzha Station                            (b) 51025200 Xinghua Station 

   
(c) 51029900 Yaowanggangzha Station                   (d) 51031100 Qinglonggang Station 

Figure 4: Comparison of Rainfall and Relative Error Designed by Conventional Moment Method and the Linear 

Moment Method under Each Recurrence Period 

Except, for the recurrence period of 1 year, if the design frequency is less than 10%, the recurrence period is 

less than 10 years, the disparity in the design rainfall determined by the conventional moment method versus the 
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linear moment method is minimal. As the design frequency rises, the disparity slowly widens, and the frequency 

estimates derived from the two methods show larger variances as the recurrence interval extends. 

To analyze the reasons for the above differences, first of all, the conventional moment method lacks objective 

criteria, the curve and point data may not be completely fitted, the results are affected by human factors to a certain 

extent, and there is general subjective arbitrariness. Furthermore, the selection of statistical parameters takes into 

account incomplete factors, resulting in certain sampling errors. Second, when frequency calculations were 

performed, the lack of information on the historical return period for the occurrence of rainfall mega-values in past 

years prevented the wiring from adequately considering the maximum value of the rainfall series, and there were 

certain errors. As the length of the sample series utilized is only approximately 70 years, it is less reliable for 

estimating rainfall over a return period of more than 100 years. Therefore, when comparing the outcomes of the 

constant rule approach with the linear method of moments at individual stations, notable differences emerge for 

return periods exceeding 100 years. 

C. Comparison of Estimated Parameters  

1) Unbiasedness test 

The unbiasedness test of the parameter estimation method adopted the ideal sample reduction method for a 

comparative study[30], where the sample size was the number of sites calculated in this frequency calculation, and 

the design frequency was P=1%. The formula is as follows: 

 𝑋(1%) = 𝐸𝑥[1 + 𝐶𝑣𝜙(𝑃, 𝐶𝑠)]    (21) 

Where Ex is the mean value and φ (P, Cs) is the dispersion coefficient. The correspondence between frequency 

P, skewness coefficient Cs and dispersion coefficient φ (P, Cs) has been made into a numerical table. For a given 

frequency P and a determined Cs, the corresponding deviation mean coefficient φ can be obtained. Table 2 displays 

the results of the unbiasedness test, highlighting only the outcomes and deviations for the mean values, Cv, Cs and 

P = 1% estimates for the four sites in the sample are listed. The values in the table are expressed as relative 

deviations (the percentage of deviation between the estimated value and the population value in the population 

value), and the absolute average values of the relative deviations of each sample mean value, Cv, Cs and P = 1% 

are listed in the table. The average deviation figures presented in Table 2 serve as an integrated index for assessing 

the unbiased characteristics of the proposed methodology. A smaller absolute average of the relative deviation 

indicates a higher degree of unbiasedness in the parameter estimation method. From the calculation results, the 

average deviations for the estimated values of Cv, Cs, and P = 1%, when computed using the linear moment 

method, are found to be lower than those derived through the conventional moment method. Thus, the parameters 

estimated by the linear moment method are more accurate than those of the conventional moment method, and it 

surpasses the conventional moment method regarding the unbiased nature of the estimation process. 

Table 2: Unbiasedness Comparison Test Results of P-III Distributed Parameter Estimation Methods 

    (%) 

Station number item Theoretical value Conventional moment method Linear moment method 

50437600 Ex 104.95 4.8 4.8 

 Cv 0.44 9.3 0.2 

 Cs 1.40 25.6 7.0 

 X(1%) 254.27 17.6 8.6 

50941400 Ex 109.17 6.7 6.7 

 Cv 0.46 7.5 -3.2 

 Cs 1.31 27.0 5.7 

 X(1%) 272.36 8.8 -1.1 

51025200 Ex 104.27 2.7 2.7 

 Cv 0.41 7.3 2.4 

 Cs 2.14 -2.3 -0.9 

 X(1%) 259.48 4.7 -0.3 

51027850 Ex 117.99 3.2 3.2 

 Cv 0.45 8.3 -0.5 

 Cs 1.14 35.5 4.0 

 X(1%) 284.27 9.8 2.8 

Mean deviation Ex  4.0 4.0 

 Cv  10.3 3.9 

 Cs  29.8 4.0 

 X(1%)  16.8 7.1 
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2) Robustness test 

Robustness is an important index for measuring the stability of parameter estimation methods and reflects the 

degree of simulation of singular values. Simultaneously, the sample size has a certain impact on the precision of 

parameter estimation. In general, the larger the sample capacity, the smaller the influence of the singular value, the 

higher the precision of the parameter estimation, and the stronger its robustness. Conversely, the robustness of the 

parameter estimation method was inferior. 

When testing the robustness of each parameter estimation method, we only consider whether they are 

significantly affected by individual point data (maximum or minimum). In the test, it was assumed that there were 

K extreme points in the actual sample that were contaminated; the peak value rose and the nadir value dropped 

while the recurrence period remained constant. For the other series of unchanged samples, the original method was 

used to estimate the statistical parameters and design values. 

Comparing the deviation of the "contaminated" sample from the design value of the original sample, the smaller 

the deviation, the less the method is affected by individual points. Deviations were calculated using the following 

formula: 

 𝑑𝑒𝑙𝑥𝑋𝑝(𝑖) =
[𝑋𝑝(𝑖)−𝑋𝑝0(𝑖)]

𝑋𝑝0(𝑖)
× 100%     (22) 

 𝑀𝑥𝑝 =
1

𝐿
∑ |

[𝑋𝑝(𝑖)−𝑋𝑝0(𝑖)]

𝑋𝑝0(𝑖)
|𝑛

𝑖=0 × 100%    (23) 

Where L is the number of samples taken and Xp (i) and Xp0(i) are the estimated value of the contaminated 

sample and the theoretical value of the sample when the sample number is i, respectively. The robustness of the 

parameter estimation method was tested using an ideal sample reduction method. The sample size was the number 

of sites calculated in this frequency calculation, and P was set to 4%, 1% and 0.1%. The robustness test results are 

shown in Table 3, where only the values P = 4%, P = 1% and P = 0.1% of the four locations with exceptionally 

high or low figures in the dataset are documented, and the values in the table are expressed in terms of relative 

deviation (the percentage of the deviation between the estimated value and the total value in the total value). The 

average deviation results in Table 3 can be used as a comprehensive index to evaluate the robustness of the proposed 

method. The smaller the absolute average of the relative deviation, the better the robustness of the parameter 

estimation method. The results show that the average deviation of P = 4%, P = 1% and P = 0.1% estimates 

calculated by the linear moment method is lower than the average deviation calculated by the conventional moment 

method; thus, the linear moment method has great advantages over the conventional moment method in terms of 

the robustness of the estimation process. 

Table 3: Robustness Comparison Test Results of P-III Distributed Parameter Estimation Methods (%) 

Station number item Theoretical value Conventional moment method Linear moment method 

50939100 X(4%) 206.19 3.7 -1.2 

 X(1%) 266.85 4.3 -0.8 

 X(0.1%) 366.28 4.7 0.3 

51023450 X(4%) 204.94 6.7 -5.8 

 X(1%) 272.29 8.1 -7.4 

 X(0.1%) 384.44 10.9 -8.5 

51024600 X(4%) 211.57 5.6 -3.8 

 X(1%) 283.28 6.7 -5.8 

 X(0.1%) 402.30 7.8 -7.1 

51026600 X(4%) 204.71 4.0 -1.5 

 X(1%) 270.73 5.2 -2.6 

 X(0.1%) 387.62 5.3 -5.0 

Mean deviation X(4%)  6.2 2.0 

 X(1%)  8.1 2.1 

 X(0.1%)  10.5 2.3 

IV. CONCLUSIONS 

In this study, the differences between the linear moment method and the conventional moment method in 

parameter estimation were compared from both theoretical and practical perspectives. The frequency analysis used 

the P-III distribution curve, which most commonly used in hydrological frequency analysis, and rainfall data from 

149 rain stations in Jiangsu Province were processed using the random forest algorithm. The outcomes and 
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differences between the two parameter estimation methods were analyzed and compared, yielding the following 

conclusions and recommendations: 

(1) In theory, the linear moment, as the expected value of the linear combination of sample-order statistics, 

significantly reduces the estimation error caused by using the samples' second- and third-order central moments in 

the normal method. 

(2) Using rainfall data from Jiangsu Province as an example, simulations and predictions were made using the 

random forest model, which can also supplement missing rainfall data in practical applications. Based on this, 

frequency calculations were compared and analyzed using both the conventional moment and linear moment 

methods. The results show that when the design frequency is low, the error of the conventional moment and linear 

moment methods are small, and both can be used to calculate the design rainfall. The error of linear moment method 

was smaller and closer to the actual value as the design frequency increased. 

(3) The study and discussion of the parameter estimation methods, particularly those based on the measured 

data, and the comparison of the linear moment method and the conventional moment method revealed that the 

linear moment method outperforms the conventional moment method in terms of the unbiasedness and robustness 

of the estimation process, and that the parameters estimated by the linear moment method are more accurate than 

those estimated by the conventional moment method. 

The risk of floods triggered by extreme climate change poses even more severe challenges to society and 

physical infrastructure, which means that the precision and accuracy of hydrological frequency analysis needs to 

be pursued to a higher level. Currently, hydrologic frequency analysis in China is still based on the traditional 

method of artificial line fitting, which only focuses on linear distribution and parameter estimation in the case of a 

single station, and has significant limitations. For example, the single-station and single-period analysis method is 

heavily influenced by errors, and the design value estimated by the normal method is obviously small. Furthermore, 

the line-fit method necessitates a very high level of calibration and experience from the worker; therefore, its 

estimated design values are typically poor in terms of precision and accuracy. Although the P-III distribution curve 

is the standard requirement for calculating hydrological frequency in China, it may not be the optimal linear 

distribution in a given region and is therefore unsuitable for hydrological frequency test analysis. Simultaneously, 

frequency curves and corresponding statistical parameters used in engineering should be analyzed not only in terms 

of hydrological statistics, but also in the context of the physical causes of hydrological phenomena and regional 

patterns. The linear moment method is useful not only for single-station hydrologic frequency calculations, but 

also for regional synthesis and line identification in undocumented areas. To reduce the error generated by the 

conventional moment method, frequency calculations can be performed using the optimized fit-line method, which 

optimizes the fit of empirical frequency data to the known theoretical frequency curve by establishing an objective 

function. 
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