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Abstract: - Since the glass outer screen of a cell phone is the main sensory part of the human eye when using a cell phone, the 

advantages and disadvantages of the cell phone screen directly affect people's sense of use. Therefore, the defect detection requirements 

for cell phone screens are high and need to meet the needs of high-volume factory inspection. Most of the traditional defect detection 

methods use visual methods, the detection results are overly dependent on the subjectivity and experience of workers, the efficiency 

of this method is low, and the accuracy is poor. Currently, machine learning-based detection methods are applied in numerous 

industries. In this paper, a faster Regional Convolutional Neural Network (R-CNN) with multi-head attention mechanism for defect 

detection of cell phone screen is proposed. To enhance the network's capability in extracting feature information, a four-head attention 

mechanism is added to the last convolutional layer of the ResNet50 network. An improved Region of Interest (ROI) Align is proposed 

to replace the original ROI Pooling to reduce the localization error of cell phone screen defects. Replace the original Rectified Linear 

Unit (ReLU) activation function with the Copy Exponential Linear Unit (CELU) activation function to expedite the convergence 

capability of the network. Finally, by comparing with other classical model training, the evaluation results indicate that the proposed 

method achieved an average accuracy of 95.71%, which is a 5.34% improvement compared to the original faster R-CNN network. 

Keywords: Defect Detection (DD), Convolutional Neural Network (CNN), Image Recognition (IR), Multi-Head 

Attention Mechanism (MHAM), Cell Phone Screen (CPS). 

 

 

I.  INTRODUCTION 

In recent years, deep learning-based object detection algorithms have been widely applied in various fields such 

as facial recognition [1], aerospace, medical diagnosis, and intelligent surveillance. Many scientists work on 

machine learning-based defect detection methods [2]. Weimer [3] et al proposed a deep convolutional neural 

network (DCNN) technique for defect detection in industry, which automatically generates robust features from 

amounts of training data with minimal expert knowledge through a hierarchical learning strategy. The results show 

that the method of deep convolutional neural networks outperforms the currently available techniques in terms of 

overall detection accuracy. Li [4] and his colleagues proposed a defect detection technique that combines multilayer 

perceptron with deep learning. Additionally, it utilizes a coarse-precision strategy to improve the efficiency of the 

model. The results show that this algorithm performs well in detecting defects such as scratches, foreign objects, 

and light stains. Kuchipudi [5] et al. proposed a region-based CNN for automatically detecting, localizing, and 

segmenting defects in noisy ultrasound images corresponding to multiple features. Moreover, this network utilizes 

ROI Align instead of traditional ROI Pooling. Compared with several state-of-the-art defect detection networks, 

the results show that this network achieved the best mean average precision (mAP) of 0.98 on the test set. Fu [6] 

et al. used faster R-CNN to train, validate, and realize the automatic identification of pavement cracks and 

compared it with the automatic identification method of U-Net segmentation of pavement cracks. The result shows 

that the recall and accuracy are greatly improved by the proposed detection method with deep learning, and both 

achieve more than 85% results. The results of the faster R-CNN method are closer to the real condition of pavement 

cracks than the U-Net segmentation automatic identification method. Mansour [7] et al. combined Faster R-CNN 

with deep reinforcement learning models for video anomaly detection and classification. The paper uses a deep Q 

learning based reinforcement learning model to classify the detected anomalies. The final accuracy on datasets 

Test004 and Test007 reaches 98.5% and 94.8%, respectively. Chen [8] et al. utilized the MobileNet network in 

conjunction with the SSD model for defect detection in curved parts, achieving over 90% recognition accuracy for 

two defect categories in the dataset. Additionally, they achieved a detection speed of 0.78 seconds per image, 

making a significant contribution to defect detection in the ceramic industry as a whole. In summary, the detection 

method using deep learning has the advantages of higher accuracy and higher efficiency. However, compared with 
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road cracks and other surface defects, the defects of cell phone screens are relatively small. Therefore, the detection 

of cell phone defects has relatively high requirements on the network for feature extraction. 

Therefore, to address these issues, this paper added a multi-head attention mechanism in Faster R-CNN to 

represent the problem of incomplete feature extraction during the feature extraction process. The network replaces 

ROI Pooling with ROI Align on the original network structure, thus reducing the localization error. The research 

results display that the average accuracy of this method can be as high as 95.71%, which is improved by 5.34% on 

the original network. 

II. RELATED WORK 

A. Data Sets and Image Preprocessing 

1) Data set acquisition 

In this paper, 400 sheets of each of the three types of defects, stains, scratches, and dirty were collected using 

an industrial camera. Smudges are pits with small areas and a certain depth on the surface of the glass screen due 

to improper operation of the engraving head, grinding head, etc. during the opening, slotting, chamfering, and flat 

grinding processes. The image of the defect is shown in Figure 1. 

 
Figure 1: Stains Defect 

Scratches are mainly caused by a narrow indentation on the surface of the glass screen due to improper operation 

of the grinding head or flat grinding equipment during the grooving, chamfering, and flat grinding process. The 

length is about 15mm, and the scratch defect is shown in Figure 2. 

 
Figure 2: Scratches Defect 

Dirt is mainly in the printing, it is possible that the screen leakage of ink improperly, resulting in a certain area 

of ink in the glass sheet blank without the need for inking. The defects are shown in Figure 3, with a length of about 

20mm and a width of about 6mm. 

 
Figure 3: Dirty Defect 

Due to the training in deep learning, the larger amount of data, the higher accuracy of network learning. 

Therefore, in this paper, 4800 defect images are finally obtained utilizing data augmentation [9], including up-

down and left-right flipping and clockwise rotation of ninety degrees. Flipping usually refers to flipping in the 

horizontal or vertical direction, in this paper, the horizontal flipping method is used, and the defective image of the 

cell phone screen takes the horizontal axis of symmetry as the axis, and the double defective samples of the cell 

phone screen are generated by the flipping operation. The rotation operation is similar to the flip operation, the 
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rotation center is usually the geometric center of the image center, and the image is randomly rotated within a 

certain rotation angle. In this paper, the rotation angle is set to 30° clockwise, and the data labels are preserved. 

Figure 4 shows the effect of using vertical and horizontal flipping as well as clockwise rotation in this paper. 

Finally, the defect types and bounding box locations in the cell phone cover glass screen images are labeled 

according to the VOC2007 dataset format. Divide all defect images into training sets, validation sets, and test sets 

in a ratio of 7:1.5:1.5. The following Table 1 shows the data distribution of each kind of defect on the dataset. 

Table 1: Distribution of Data Sets 

 Train Validation Test Total 

Dot 1120 240 240 1600 

Line 1120 240 240 1600 

Block 1120 240 240 1600 

Total 3360 720 720 4800 

 
Figure 4: Data Enhancement (a) Turn upside-down; (b) Turn clockwise 

2) Preprocessing algorithms 

In industrial production, most of the cell phone screen images we obtain are with redundant backgrounds and 

great noise, because of the great influence on the subsequent experimental analysis and calculation. Therefore, 

preprocessing of images is crucial, as it aims to eliminate irrelevant features in the images, retain useful 

information, and enhance detectability. The preprocessing steps for the research content of this paper are as follows: 

grayscaling, filtering and denoising, image segmentation, and geometric transformation. 

The operation of converting a color image into a grayscale image is called image grayscaling. For RGB images, 

which are gray-scale images at that time, grayscale images occupy less memory and faster computing speed. 

Additionally, converting to grayscale images can visually enhance contrast and highlight target areas. This paper 

uses a weighted averaging method for grayscale conversion, the calculation principle is shown in the following 

formula: 

 ( ) ( ) ( ) ( ), 0.299 , 0.578 , 0.114 ,R G BI x y I x y I x y I x y=  +  +     (1) 

The purpose of filtering and denoising is mainly to remove the interference of noise to avoid interference in the 

subsequent image analysis, the most commonly used in image processing is the median filtering method, but due 

to the use of median filtering on the edges of the cell phone screen denoising effect is not particularly ideal, such 

as Figure 5(a), the edge of the phone burr is more serious, the edge information is not ideal, so we use the adaptive 

median filtering, such as Figure 5(b), and find that it can better remove noise and preserve edge information. It is 

found that the noise can be removed better and the edge information is preserved. Adaptive filtering is currently 

one of the best noise reduction methods, as it offers superior adaptability and filtering capabilities. The principle 

of adaptive median filtering is to dynamically adjust the window size of the median filter based on preset conditions, 

balancing the effects of noise reduction and edge detail preservation. 

In image processing, it is often necessary to extract the Region of Interest (ROI) to simplify the workflow of 

this paper. Simply put, the region of interest is selected from an image, and the cell phone screen region is the main 

focus of this paper. In this paper, this region is selected for further processing. The region of interest can not only 

reduce the computational load of the network but also decrease processing time, thus enhancing work efficiency. 

There are many types of common edge detection operators, but the Canny operator has the best noise suppression 

effect and can detect the edge information well. 

(a)

(b)
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Figure 5: Filtering and Denoising Methods. (a) Median filter; (b) Adaptive median filter 

Therefore, in this paper, the Canny operator is chosen for edge detection, and the edge details are optimized by 

combining the morphological closure operation, and the final edge image obtained is shown in Figure 6. 

  
Figure 6: Edge Detection Results 

B. Original Neural Network Structure 

The Faster R-CNN algorithm is an extension of R-CNN [10] and Fast R-CNN [11], as shown in Figure 7. As 

the name suggests, the function of a feature extraction network is to extract the feature information from input 

images. These features are then input to the Region Proposal Network (RPN), which uses a   sliding window 

combined with different scales and ratios to generate proposed target regions [12]. Subsequently, the outputs of 

both networks are simultaneously input into ROI Pooling to generate feature maps of a fixed size. Finally, pass the 

generated feature maps to a fully connected layer for classification and regression tasks. 

  
Figure 7: Faster-RCNN Network Structure 

III. IMPROVING THE ALGORITHM 

A. Overall Framework 

The feature extraction network used in the original Faster R-CNN is VGG16, but VGG16 is difficult to ensure 

that the defective features on the cover glass surface are adequately extracted due to its limited number of 

convolutional layers (13 layers), and poor detection of small targets. However, using deeper networks to enhance 

feature extraction capabilities, problems such as gradient vanishing and overfitting may occur [13]. In contrast, the 

residual network ResNet can effectively avoid the above problems and extract more feature information of small 

targets due to the inclusion of residual module structure in the stacked convolutional layers. In this paper, after 

testing ResNet networks with different depths, ResNet50 is chosen as the feature extraction network. ResNet50 

uses jump connections, and its inputs and outputs are directly connected, as shown in Figure 8, where the two 1×1 

convolutions are for dimensionality reduction and dimensionality upgrading, and the 3×3 convolution is for 

extracting feature information. And since ROI Pooling in the original structure introduces two quantization 

operations, it can lead to the region mismatch problem. Therefore, replacing ROI Pooling with ROI Align can 

avoid quantization errors and reduce the localization errors of defects on the glass outer screen. The improved 

network structure proposed is shown in Figure 9. 

(a) (b)
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Figure 8: Residual Structure 

  
Figure 9: Improved Structure of Faster-RCNN 

B. Detailed Improvements 

1) Multi-attention mechanisms 

In recent years, the attention mechanism has achieved remarkable advancements in image processing, natural 

language processing, and object detection, clearly demonstrating its ability to improve model performance. 

Introducing the attention mechanism into the network can enhance the feature extraction from images while 

increasing the weights of features related to defects [14]. Attention mechanisms apply corresponding attention 

weights to image features, highlighting important features of the target object and suppressing irrelevant 

information. Common attention mechanisms currently used include self-attention mechanism, multi-head attention 

mechanism [15], spatial attention mechanism [16], and channel attention mechanism [17]. The multi-head attention 

mechanism is a more complex version of the self-attention mechanism, representing a variant of self-attention [18], 

aiming to enhance the expressive and generalization capabilities of the model. Figure 10 is a diagram of a multi-

head attention mechanism, where Q, K, and V are three fixed values mapped through Linear layers. These values 

are processed by the Scaled Dot-Product Attention scoring function and concatenated with the output of each head. 

Finally, they are mapped back to the output similar to that of a single attention head through Linear transformation. 

Each head represents a different type of attention, selecting distinct information. By utilizing several individual 

attention heads to compute attention weights independently and combining all results through concatenation or 

weighted sum, a richer representation is obtained. The multi-head attention mechanism achieves this by parallel 

linear transformations and attention calculations for multiple sets of queries, keys, and values, and eventually 

connecting them to enhance the model's focus on different features. This helps the model to capture the information 

in the input data in a more comprehensive way, allowing the model to achieve better results. Therefore, this paper 

defines the input of the multi-head attention mechanism as the final output of ResNet50's last convolutional layer, 

enhancing the capability of feature information extraction. The improved ResNet50 network structure is shown in 

Figure 11. The formula for the multiple attention mechanism is as follows: 

 , , , 1,..., 4Q K V

i i i i i iQ QW K KW V VW i= = = =     (2) 

 ( ), , , 1,..., 4i i i ihead Attention Q W V i= =     (3) 

 ( ) ( )1 4, , ,..., oMultiHead Q W V Contact head head W=     (4) 



J. Electrical Systems 20-2 (2024): 1707-1716 

 

1712 

Where Q is the query matrix, K is the key matrix and V is the value matrix. 

  
Figure 10: Structure of the Multi-attention Mechanism 

  
Figure 11: Improved Residual Network Structure 

2) ROI align 

ROI Pooling is done by dividing the region of interest from the feature map and then making it a fixed size and 

dimension feature map. However, the feature mapping and chunking process can lead to region mismatch problems 

due to the introduction of two quantization operations for rounding. In order to prevent quantization errors and 

enhance localization accuracy, this paper opts for ROI Align over ROI Pooling to address the problem of region 

mismatch. The operation flow of ROI Align is shown in Figure 12. First, each candidate region is traversed, second, 

the candidate regions are equally divided into m×m cells (m = 2 in the figure). After being equally divided, the 

vertices are unlikely to fall on real pixels. Therefore, four fixed pixels are selected for value calculation, where the 

value at each point is interpolated bilinearly based on the values of the nearest four actual pixels. Finally, the 

maximum value among them is taken as the resulting value, with an output size of m×m, where m is set to 2. The 

improvement of ROI Align can obtain more accurate ROI location information of glass cover defects, thus 

improving defect detection accuracy. 

  
Figure 12: ROI Align 



J. Electrical Systems 20-2 (2024): 1707-1716 

 

1713 

3) Activation functions 

ReLU is an activation function widely used in neural networks and is known for its fast computation and 

powerful performance. Still, the output of the function is zero for input x <0, and the loss gradient disappears during 

backpropagation, which results in the parameters not being able to be updated, resulting in neuron death. To address 

this issue, this paper improves the ResNet50 network by selecting CELU [19] as the activation function. CELU is 

a nonlinear function with a kink that also possesses continuity and differentiability, which can benefit the 

convergence of neural networks. The CELU activation function is calculated as follows, taking α as 0.075, and the 

output value of the function is compared as in Figure 13. 

 ( )

0

,
exp 1 , 0

x if x

CELU x x
if x









=    
−   

  

    (5) 

Kaiming normal distribution in the CELU activation function can accelerate the convergence of the model with 

better results [20], the model in this paper chooses Kaiming normal distribution as the initialization weight way. 

  
Figure 13: Comparison Curve of Activation Functions ReLU and CELU 

IV. EXPERIMENTAL COMPONENT 

A. Experimental Configuration and Computer Configuration 

The hardware environment and main software configurations used in the experiment are shown in Table 2. 

During the model training process, Faster R-CNN is trained using stochastic gradient descent optimization 

algorithm with momentum (SGDM), and the learning rate is set to 0.0002, momentum to be 0.9, weight decay to 

be 0.0001, Epoch to be 50 times, Batch Size=5, and the image size to be 224×224. 

Table 2: Experimental Environment and Software Configuration 

Name Parameters 

CPU Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 

GPU Geforce RTX 4050 

Operating system Windows10 

Editing software MATLAB 2020b 

B. Assessment Criteria 

Typically, the false detection rate and leakage rate are common metrics used to assess the accuracy of defect 

detection. The false detection rate is generally measured by mean average precision (mAP); the leakage rate is 

generally measured using the recall rate (Recall). When the average accuracy rate rises, the false alarm rate tends 

to decrease; similarly, an increase in the recall rate leads to a decrease in the miss detection rate. The recall rate is 

calculated based on the true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) for 

the four classes, as detailed in Table 3. 

Table 3: Confusion Matrix 

Category 
Predictive labeling 

Total 
0(no defect) 1(defect) 

truthful labeling 

0(no defect) TP FN P 

1(defect) FP TN N 

Total P` N` P+N 

Recall is a measure that evaluates the percentage of accurately predicted positive samples among all positive 

samples, and it is calculated as follows: 
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TP TP

call
TP FN P

= =
+

      (6) 

The Average Precision (AP) is determined by computing the area under the Precision-Recall curve, while mAP 

denotes the average of AP across each image category [21]. mAP is calculated using the formula: 

 
( ) ( )

1

0
1 100%

n

i

P R dR n

mAP
N

== 
      (7) 

Where: P(R) is the Precision-Recall curve, n is the category number, and N is the number of categories. 

C. Comparative Tests and Results 

1) Comparison test of different feature extraction networks 

To assess the effectiveness of the enhanced ResNet50 network introduced in this paper, four networks, AlexNet, 

MobileNetV2, ResNet18, VGG16, and ResNet50, are selected in this paper to be compared with the improved 

ResNet network as the feature extraction network for Faster R-CNN. The detailed experimental results are 

presented in Table 4. 

Table 4: Experimental Results of Different Feature Extraction Networks 

Model mAP/% Recall/% 

AlexNet 77.80 75.45 

MobileNetV2 83.92 81.24 

ResNet18 86.73 83.51 

VGG16 88.65 86.30 

ResNet50 88.90 86.92 

Improved ResNet50 89.34 87.67 

From Tab. 4, it is evident that when using the improved residual network proposed in this paper to build the 

faster R-CNN, the feature extraction capability is significantly enhanced the detection effect is improved 

significantly, the average precision reaches 89.34% and the recall rate reaches 87.67%. Compared to other 

networks, the improved ReaNet50 network has the highest average precision and recall, i.e., the lowest leakage 

and false detection rates, demonstrating strong feature extraction capabilities. Compared to AlexNet, 

MobileNetV2, ResNet18, VGG16, and ResNet50 in terms of average precision, it improves 11.54%, 5.42%, 

2.61%, and 0.69%, 0.44%, and recall improves 11.22%, 5.43%, 3.16%, and 1.37%, 0.75%, respectively. The 

improved network proposed in this paper effectively enhances the network's ability to extract feature information 

and significantly reduces the leakage and false detection rates due to the adoption of the multi-head attention 

mechanism. 

2) Classical network comparison test 

To further confirm the effectiveness of the enhanced network proposed in this paper, YOLOv2, SSD, Faster R-

CNN, and the proposed network were chosen for comparison. The results of the experiments are displayed in Table 

5. 

Table 5: Comparison between the Model of This Paper and the Classical Model 

Model mAP/% Recall/% 

YOLOv2 80.12 75.61 

SSD 85.98 79.86 

Faster R-CNN 90.37 87.25 

improved-Net 95.71 89.15 

From the results, the improved network proposed has a great reduction in the leakage rate and false detection 

rate compared to other classical models, and the speed has been shortened. The ultimate training outcome of the 

proposed network model in this paper attains an average precision of 95.71% and a recall of 89.15%. Compared to 

YOLOv2, SSD, and the original Faster R-CNN network, the average accuracy is improved by 15.59%, 9.73%, and 

5.34%, respectively. In recall, it is improved by 13.54%, 9.29%, and 1.9%, respectively. Thus, it can be shown that 

the improved network in this paper is effective and can fulfill the detection needs of the industry. 

3) Comparison of model detection effectiveness 

To continue to verify the detection effect of the improved network, three images of glass cover defects 

containing different types of defects are selected for testing and verification, as shown in Fig. 14. Fig. 14(a) shows 

the image to be detected, in which the defective target to be detected is labeled with a dashed box, and Fig. 14(b)-

(d) show the detection results of the three original Faster-R-CNN, YOLOv2, and improved detection models, 

respectively. 
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Figure 14: Test Results: (a) Image to be detected (b) YOLOv2 algorithm (c) Faster-R-CNN algorithm (d) 

Improved network algorithm 

Observing Figure 14, it is apparent that when utilizing the enhanced network suggested in this paper to detect 

defects on mobile phone screens, there is a significant improvement in detecting different types of defects compared 

to other classical networks, and there is also an improvement in detection time. Therefore, it can be shown that the 

improved network algorithm in this paper can more accurately identify the defect categories and locations of cell 

phone glass covers, with higher average precision and recall, and better solve the problems of leakage and 

misdetection. 

V. CONCLUSIONS 

In this paper, MHFCA-Net is proposed to realize the detection of different types of defects for cell phone 

screens, which achieves 95.71% accuracy and 89.15% recall on a home-made dataset, which is a good detection 

result and can be used as an alternative to manual detection. The average accuracy of the model proposed also 

reaches 90.67% for the input detection of a single image. However, the average accuracy is 86.1% when using the 

YOLOv2 network, and the original Faster R-CNN network achieves an average detection accuracy of 89.2%. This 

fully demonstrates the excellence and accuracy of the improved model. In addition, the improved ResNet50 

network incorporates a dual-head attention mechanism to enhance the information extraction ability of feature 

information. Furthermore, employing ROI Align eliminates the need for quantization in ROI Pooling, thereby 

decreasing localization errors for defects with extreme aspect ratios. Although the improved model in this thesis 

achieves higher accuracy in defect detection, it still has shortcomings. There are still small oscillations in the 

accuracy and loss function change curves in the late stage of model training, and the convergence speed is slow. 

Therefore, in the follow-up work, further parameter optimization will be carried out to achieve convergence. 

In future work, the following research will be conducted: (1) extending the application of the proposed method 

to a broader spectrum of mobile phone defect detection categories; (2) further exploring optimization algorithms 

to enhance detection speed. 
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