
J. Electrical Systems 20-3s (2024): 1382-1389 

1382 

1Minerva M. 

Fiesta 

2Thelma D. 

Palaoag 

3Marvin D. 

Mayormente 

Improving Abiotic Stress Mitigation via 

Predictive Modeling of Water Quality 

Parameters in Recirculated Aquaculture 

Systems 
 

Abstract: - A sustainable aquaculture solution can be provided by Recirculated Aquaculture Systems or RAS, nevertheless, Abiotic stress 

factors can negatively impact aquatic organisms' growth and well-being. This study’s purpose is to demonstrate how Random Forests 

machine learning method helps to develop a predicting model that can aid in forecasting and in the mitigation of abiotic stressors in 

Recirculating Aquaculture Systems by regulating water quality influences.  

The study used the historical data on water quality, such as temperature, dissolved oxygen, pH, ammonia, and TDS levels in constructing 

a Random Forest-based predictive model. Based from the results reveal, the developed prediction model using random forests machine 

learning method was 90% accurate in making prediction and improved abiotic stress in RAS.  

Understanding the complex relations between water quality indicators and abiotic stress variables in RAS is crucial for identifying major 

abiotic stress drivers and developing effective models for forecasting water quality parameters, which results in real-time insights and 

actionable information for making proactive decisions and employing adaptive management techniques.  

Furthermore, RAS improves aquaculture productivity while reducing environmental impacts, which results in increased productivity, 

resource utilization, and system performance. This study makes a vital contribution to the aquaculture sector by proposing a data-driven 

method to improve the control of water quality parameters in RAS and, eventually, raise the sustainability and effectiveness of Recirculating 

Aquaculture Systems 
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I. INTRODUCTION 

Aquaculture, particularly within recirculating systems, has emerged as a pivotal player in global food security, 

meeting the escalating demand for seafood while minimizing environmental impacts [1]. Recirculated Aquaculture 

Systems (RAS) offer a controlled environment, but effective management of water quality remains a critical 

challenge due to the intricate interplay of various abiotic stressors [2]. These stressors, encompassing factors such 

as temperature fluctuations, dissolved oxygen levels, and pH variations, can significantly impact the health and 

growth of cultivated fish [3]. 

The increase in fish production is heavily reliant on the chemical and biological properties of the water, which must 

meet the aquaculture water quality requirements. As a result, good fish pond management necessitates knowledge 

and comprehension of water quality. However, water sampling takes time to monitor water quality, and laboratory 

results do not disclose the current condition of water in fish ponds, which is vital information for fish growers. It is 

recommended that Water quality monitoring in fish ponds should be done in real-time, and water parameter analysis 

should be done as quickly as possible to assure water quality and acceptability for aquaculture goods. Aquacultured 

goods are susceptible to infections and other issues as a result of poor water quality; real-time water monitoring in 
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ponds is a solution to many pond concerns. To conduct proper water monitoring, the appropriate equipment and 

water parameters should be obtained and processed using acceptable water quality evaluation techniques in 

consideration of the current aquaculture product that is being nurtured. This information will assist the fish farmer 

in effectively managing and maintaining the water quality of their ponds [4]–[6] 

Abiotic stressors are associated with aquaculture and culture-based fisheries. Extreme weather occurrences occur 

frequently for a variety of reasons, both natural and manmade. In contrast, the abiotic and biotic stresses associated 

with these causes exacerbate the condition significantly. Abiotic stress is an environmental element that has an 

adverse impact on living things. Universal climate change is a worry that threatens aquaculture operations by making 

the growth, survival, and productivity of culture organisms increasingly subject to climatic variations. When one or 

more environmental conditions, such as excessive temperature, flood, drought, rainfall, salinity, and so on, 

approach, the organisms are at serious threat [2]. 

Moreover, climate change is an unavoidable occurrence that impedes the production of aquaculture farms and 

culture-based fisheries in open waters. It poses a severe danger to global food security by displacing fish stocks 

from their natural habitats, affecting biodiversity, ecosystems, and global fish production. To address the effects of 

climate change, a variety of mitigation and adaptation strategies are being developed [2], [7]. 

The emergence of Artificial Intelligence with machine learning presents a promising path for addressing the 

complexities related with water quality management in RAS. Inspired by the human brain's neural architecture, 

Artificial Neural Networks or ANNs , have established excellent ability in modeling complex systems and prediction 

patterns [8]. Integrating ANNs into aquaculture systems holds the potential to revolutionize the proactive 

management of abiotic stressors by making precise predictions of vital water quality parameters. 

This study aims to discover and utilize the predictive ability of machine learning based on Random Forests to 

anticipate disparities in key water quality parameters within a Recirculated Aquaculture System. By reating a 

predictive framework for parameters such as temperature, dissolved oxygen, pH levels, ammonia, and nitrite 

concentrations, the study seeks to provide a proactive method to mitigate abiotic stressors and improve 

environmental conditions for aquatic life. 

The purpose of this research includes the development and validation of a predictive model specifically designed 

for the unique dynamics of Recirculating Aquaculture Systems. The accuracy of the model in forecasting critical 

water quality parameters is expected to be beneficial to aquaculturists with real-time insights, which will facilitate 

in the timely interventions to sustain ideal conditions for fish health. 

By proposing this innovative method, we visualize contributing to the sustainable development and effectiveness of 

aquaculture practices. By utilizing cutting-edge technology to forecast and regulate water quality parameters, we 

assume a notable decline in the negative effects of abiotic stress on fish populations within a recirculated system. 

II. METHODOLOGY 

This research focused on the development of a predictive model using random forests-based machine learning that 

can monitor and analyze water parameters level in a recirculated aquaculture system to improve mitigation of abiotic 

stress of tilapia. The researchers were able to acquire the water parameters required in this study as well as the 

aquaculture range of tolerance, which includes the ideal water parameter for tilapia from the local government office 

Bureau of Fisheries and Aquatic Resources BFAR. Dissolved oxygen, total dissolved solid, PH, temperature, 

salinity, and ammonia are parameters that have a major impact on the health, growth, and survivability of the 

aforementioned aquacultures. These parameters have also been confirmed and validated by other study. 

1. Recirculated Aquaculture System of Water Quality Prediction Setting 

This research study adopted the RAS Architectural Diagram presented in the research of [9] as shown in the figure 

1 below. 
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Figure 1. RAS Architectural Diagram[10] 

Figure 1 shows the Recirculating Aquaculture System architectural design. The RAS uses different water tanks such 

as stocking tank, detection tank, filtration tank and Water solution tank with the following specification on table . 

Table 1. Material used in RAS [9] 

Particular Specification Purpose 

1 - IBC Water Tank 1000 Liters Capacity 

1 x 1 x 1.2 (meters) 

Main tank 

4 – water container 168 Liters Capacity 

ordinary 

1- Detection, 2- 

Filtration 

& 1- Solution 

Tank 

PBC pipe 2 inches Connect the 

different tanks 

1 - Aerator/ air pump 45 Watts Generate 

dissolved 

Oxygen 

1 – submersible water 

pump 

55 Watts, 3000L per hour Recirculate water 

from the 

solution tank 

going back to the 

Main tank 

1 – portable submersible 

heater 

300 watts To increase the 

water 

temperature level 

Mechanical & 

Biological 

Filtration 

Net, pebbles, sand, stone, 

foam, water purifier lilies 

Filter the water 

from the 

Main tank 

2. Framework for Recirculated Aquaculture System Water Quality Prediction 

 

Figure 2. Water Quality Prediction framework in RAS 
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Fig. 2 depicts the framework for water quality prediction in RAS used in this study. From left to right , the framework 

is separated into three sections: collecting and processing of raw data , training and prediction model, and storage 

and display. 

2.1. Data Acquisition and Pre-Processing 

The deep well was the water source of the Recirculated Aquaculture System, and the Two sources of raw data are 

used to predict the water quality of the RAS: the sensors located at the detection tank provide the raw data, while 

the other source of data were acquired by using handheld water quality parameter measuring devices [11].  

Water quality criteria for aquaculture such as tilapia, milkfish, and shrimp were provided by the office of the BFAR 

office and were validated based from previous related studies [12]–[15]. Water ammonia was used in a study by 

[16], which stated that it was frequently altered due to the feeding of cultured fish in fish ponds. This has an impact 

on aquaculture development and survival, thus the experiment was often examined. Total ammonia was calculated 

using pH and temperature data. First, determine the ammonium ion's ionization constant, pKa. To calculate the pKa 

value, the researcher utilized the following equation: 

 

Where T= temperature in Degree Celsius. 

To compute the fraction of NH3 or Ammonia, the equation below was used: 

 

Observations indicated that water temperature and pH play significant roles in determining ammonia levels in water. 

Elevated levels of feed waste in the water lead to an increase in ammonia levels. Additionally, the water temperature 

affects tilapia's feeding habits and metabolism [9]. If the temperature decreases from the optimal level (25 - 30 

degrees Celsius) tilapia fish tend not to eat [17] [18]. 

 2.2 Development of prediction model using Random Forest. 

The purpose of employing a random forest is to create a forest consist of decision trees and combine them to reach 

a more precise and consistent outcomes. Random forest comprises two forms of randomness. Initially, the samples 

are chosen is a random manner: a specific quantity of selections is taken from the training set to form the root node 

samples of the classless decision tree. Secondly, the process of creating each decision tree involves the random 

selection of a certain number of potential attributes. The split node is then selected based on the most suitable 

attribute. In order to create numerous training sets for decision trees, the random forest model randomly resamples 

the input data set. The final prediction is then derived from the average or majority of the decision trees' outputs. 

The random forest training method is depicted in Figure 3. 

 

Figure 3. Training process of random forest 
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The following are the basic steps of the random forest algorithm [11]: 

• Sampling: K sets of datasets are generated from the training set T using Bootstrap sampling with replacement. 

Each dataset is divided into two a) sampled data and b) unsampled data (out-of-bag data). A decision tree is then 

generated for each dataset through training. 

• Growth: Every decision tree is trained through a training data. At each sub-node, m features are randomly selected 

from M attributes, and the ideal features are carefully chosen based on the Gini metric for full branching growth 

until no further growth is likely, without pruning. 

• Testing: By means of out-of-bag data to assess the accuracy of the model, to some extent, model effects and 

generalization capabilities can be tested since out of bag data are not used in modeling. The prediction error of out-

of-bag data is utilized to determine the best decision tree in the algorithm and to refine the model consequently. 

• Prediction: Using the determined model for new data and prediction, the average of all decision trees prediction 

results is the final output. 

III. RESULTS AND DISCUSSION 

As presented by[19], abiotic stress is an environmental condition that negatively impacts organisms. Global climate 

change is a topic that poses a hazard to aquaculture enterprises as they expand, survive, and the productivity of 

cultural organisms is becoming increasingly subject to climate change. Extreme environmental conditions, including 

temperature, flood, drought, rainfall, and salinity, pose a significant threat to organisms. 

This study investigated water quality indicators as an abiotic stressor for Nile tilapia. Water quality characteristics 

such as dissolved oxygen (DO), pH level, ammonia, and Total Dissolved Solids (TDS) all have a direct impact on 

tilapia survival and growth in a recirculating aquaculture system [20]. Other abiotic stresses were mitigated by this 

controlled environment, the RAS. 

Table 2. Abiotic stresses related to water quality characteristics 

Abiotic Stressor Impact of stressor Level Reference 

Low Temperature Stop food taking and increase 

in mortality 

18°C and below [21] 

 

High water temperature slow growth, reduce feeding 

efficiency and increase 

mortality 

Above 31°C [22][23] 

Ammonia Stress cause body lesions, necrosis, 

and lesions on the fins 

0.05 mg/L and death at 

approximately 2.0 mg/L 

[24] 

[25] 

Low Dissolved Oxygen 

(DO) 

Lethargic, lose their appetite, 

and show reduced activity 

levels. Their growth rates can 

also be stunted, and they may 

become more susceptible to 

diseases and infections. 

3ppm and below [26][27][28] 

Low pH level (Acidic) Reduced growth 

Increased susceptibility to 

disease 

Reproductive problems 

Severe exposure lead to death 

5 and below [29] 

TDS Reduce the amount of 

dissolved oxygen in the 

water, which can make it 

difficult for tilapia fish to 

breathe. 

Above 350ppm [30] 

Table 2 shows the different abiotic stressors related to the water quality indicators. Long exposure to these stressors 

can lead to increase in mortality rate.  
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Using these water quality indicators and random forest machine learning, the researchers were able to achieve 90% 

accuracy on the prediction of these abiotic stresses as shown in the figure below. As shown in the study of [11] 

random forest performs the best out of all the machine learning models that have been examined. 

 

Figure 4. Abiotic Prediction Model using Random Forest Machine Learning

Table 3. Stressor Impact Rate 

Stressor Impact Rate 

Ammonia 35% 

Dissolved Oxygen (DO) 20% 

pH Level 19% 

Temperature 15% 

TDS 11% 

 

Table 2 shows that Ammonia was the predicted most impactful water quality stressors on tilapia. Increase on 

Ammonia level can be contributed by the high temperature, pH level and TDS. Increase in the TDS and acidity of 

the water were associated with the poor filtration of water in the RAS that eventually may lead to low dissolved 

oxygen (DO). 

IV. SUMMARY AND CONCLUSION 

This study’s aim is to improve abiotic stress mitigation in recirculated aquaculture systems (RAS) by conducting a 

thorough analysis of water quality measures and their relationship to abiotic stress factors such as temperature, 

dissolved oxygen, pH, and ammonia concentration which can be done through the development of prediction model 

using random forest machine learning algorithm with the different water quality parameters.  

The prediction model provided valuable insights and results. This significant developments in prediction models 

offers aquaculturists with suitable tools for forecasting and regulating water quality fluctuations, reducing stress on 

aquatic species and promoting ideal growth and health in aquaculture systems. Recognizing the critical importance 

of understanding complex relations between water quality parameters and abiotic stress variables in RAS leads to 

the identification of major abiotic stressors and the development of effective models for forecasting water quality 

parameters, resulting in real-time insights and actionable information for making proactive decisions and 

implementing adaptive management techniques.  

Furthermore, Recirculating Aquaculture Systems improve aquaculture productivity and sustainability while limiting 

environmental footprint, leading to increased productivity, resource utilization, and system performance. 

V. IMPLICATIONS AND RECOMMENDATIONS 

This study highlights predictive modeling as an instrument for reducing abiotic stress within recirculating 

aquaculture systems (RAS). This prediction model is strongly recommended for practitioners for better water quality 

regulation. Implementing this method into their RAS operations can effectively reduce stress on aquatic life. 
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